organic compounds
(3-Benzoylphenyl)(phenyl)methanone
aDepartment of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan, and bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: zareenakhter@yahoo.com
Molecules of the title compound, C20H14O2, show approximate Cs symmetry with the approximate mirror plane perpendicular to the central ring. The torsion angles about the acyclic bonds are 30.05 (15) and 30.77 (15)° in one half compared to −36.62 (14) and −18.60 (15)° in the other half of the molecule. The central aromatic ring makes dihedral angles of 47.78 (4) and 51.68 (3)° with the two terminal rings.
Related literature
For background to diarylketones, see: Olah (1964); Szmant (1989); March (1992). For the synthesis of benzoylbenzene and its derivatives, see: Karrer et al. (2000); Kowalski et al. (2005). For its natural occurrence, see: Baggett et al. (2005); Chiang et al. (2003); Bernardi, et al. (2005); Kulanthaivel et al. (1993); Iijima et al. (2004). For applications of these compounds, see: Bohm et al. (2001); Chan et al. (2004); Bagheri et al. (2000); Husain et al. (2006).
Experimental
Crystal data
|
Data collection: X-AREA (Stoe & Cie, 2001); cell X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811033344/fy2021sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811033344/fy2021Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811033344/fy2021Isup3.cml
For the synthesis of 1,3-dibenzoylbenzene, a 250 ml three-necked round bottomed flask equipped with a thermometer and a magnetic stirrer was charged with 20 milliliters of benzene and 19 g (0.15 mole) of anhydrous aluminium chloride (AlCl3). Then 9 g (0.044 mole) of isophathaloyl chloride was gradually added into the flask over a period of 2 h. During this addition, the temperature of the reaction mixture was maintained at 285–291 K. After the addition was complete, the reaction was continued at 291 K for another 4 h. The mixture was slowly heated to 313 K and kept at that temperature for 2h. Finally, the reaction mixture was cooled and poured into 200 ml of aqueous HCl solution. Some white solid precipitated out, which was filtered, washed with ethanol and the crude product obtained was recrystallized from petroleum ether (b.p. 333–363 K). The related yield is 80% and melting point of the product is 378 K. For the growth of single crystals the compound was dissolved in petroleum ether (b.p. 333–363 K) and set aside for crystallization.
H atoms were geometrically positioned and refined using a riding model with C—H = 0.95Å and U(H) set to 1.2Ueq(C).
Data collection: X-AREA (Stoe & Cie, 2001); cell
X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. Molecular structure of title compound. Displacement ellipsoids are drawn at the 50% probability level. |
C20H14O2 | F(000) = 1200 |
Mr = 286.31 | Dx = 1.307 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 32870 reflections |
a = 16.2029 (5) Å | θ = 2.7–28.7° |
b = 7.8648 (4) Å | µ = 0.08 mm−1 |
c = 22.8422 (8) Å | T = 173 K |
V = 2910.8 (2) Å3 | Block, colourless |
Z = 8 | 0.45 × 0.45 × 0.43 mm |
Stoe IPDS II two-circle diffractometer | 3095 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.050 |
Graphite monochromator | θmax = 28.4°, θmin = 3.0° |
ω scans | h = −21→21 |
40513 measured reflections | k = −10→10 |
3653 independent reflections | l = −29→30 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.101 | w = 1/[σ2(Fo2) + (0.0547P)2 + 0.4425P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
3653 reflections | Δρmax = 0.28 e Å−3 |
200 parameters | Δρmin = −0.15 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0128 (12) |
C20H14O2 | V = 2910.8 (2) Å3 |
Mr = 286.31 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 16.2029 (5) Å | µ = 0.08 mm−1 |
b = 7.8648 (4) Å | T = 173 K |
c = 22.8422 (8) Å | 0.45 × 0.45 × 0.43 mm |
Stoe IPDS II two-circle diffractometer | 3095 reflections with I > 2σ(I) |
40513 measured reflections | Rint = 0.050 |
3653 independent reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.28 e Å−3 |
3653 reflections | Δρmin = −0.15 e Å−3 |
200 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.57553 (5) | 0.26790 (13) | 0.50072 (4) | 0.0480 (2) | |
O2 | 0.72489 (5) | 0.52781 (15) | 0.23112 (4) | 0.0539 (3) | |
C1 | 0.60337 (6) | 0.42835 (12) | 0.41666 (4) | 0.0262 (2) | |
C2 | 0.60051 (6) | 0.42295 (12) | 0.35545 (4) | 0.0259 (2) | |
H2 | 0.5597 | 0.3564 | 0.3363 | 0.031* | |
C3 | 0.65756 (6) | 0.51526 (13) | 0.32241 (4) | 0.0286 (2) | |
C4 | 0.71769 (6) | 0.61245 (13) | 0.35094 (5) | 0.0334 (2) | |
H4 | 0.7570 | 0.6743 | 0.3286 | 0.040* | |
C5 | 0.72029 (7) | 0.61901 (13) | 0.41153 (5) | 0.0347 (2) | |
H5 | 0.7607 | 0.6866 | 0.4306 | 0.042* | |
C6 | 0.66382 (6) | 0.52687 (13) | 0.44426 (5) | 0.0304 (2) | |
H6 | 0.6662 | 0.5306 | 0.4858 | 0.036* | |
C7 | 0.54757 (6) | 0.32464 (13) | 0.45492 (4) | 0.0293 (2) | |
C8 | 0.65929 (7) | 0.50879 (14) | 0.25675 (5) | 0.0338 (2) | |
C11 | 0.45990 (6) | 0.29171 (12) | 0.43842 (4) | 0.0268 (2) | |
C12 | 0.41725 (6) | 0.38926 (13) | 0.39722 (4) | 0.0303 (2) | |
H12 | 0.4445 | 0.4802 | 0.3778 | 0.036* | |
C13 | 0.33493 (7) | 0.35381 (15) | 0.38441 (5) | 0.0365 (2) | |
H13 | 0.3063 | 0.4198 | 0.3561 | 0.044* | |
C14 | 0.29496 (7) | 0.22188 (15) | 0.41305 (6) | 0.0400 (3) | |
H14 | 0.2388 | 0.1978 | 0.4044 | 0.048* | |
C15 | 0.33652 (7) | 0.12507 (14) | 0.45422 (5) | 0.0378 (3) | |
H15 | 0.3089 | 0.0347 | 0.4736 | 0.045* | |
C16 | 0.41827 (6) | 0.15987 (13) | 0.46714 (5) | 0.0312 (2) | |
H16 | 0.4463 | 0.0938 | 0.4957 | 0.037* | |
C21 | 0.58125 (6) | 0.47839 (13) | 0.22351 (4) | 0.0300 (2) | |
C22 | 0.50446 (7) | 0.53230 (13) | 0.24428 (5) | 0.0313 (2) | |
H22 | 0.5006 | 0.5873 | 0.2812 | 0.038* | |
C23 | 0.43365 (7) | 0.50573 (15) | 0.21107 (5) | 0.0371 (2) | |
H23 | 0.3815 | 0.5417 | 0.2254 | 0.044* | |
C24 | 0.43937 (8) | 0.42670 (15) | 0.15702 (5) | 0.0400 (3) | |
H24 | 0.3910 | 0.4086 | 0.1344 | 0.048* | |
C25 | 0.51537 (9) | 0.37388 (15) | 0.13580 (5) | 0.0414 (3) | |
H25 | 0.5190 | 0.3199 | 0.0987 | 0.050* | |
C26 | 0.58596 (8) | 0.39992 (15) | 0.16880 (5) | 0.0375 (3) | |
H26 | 0.6380 | 0.3641 | 0.1541 | 0.045* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0428 (5) | 0.0614 (6) | 0.0398 (5) | −0.0123 (4) | −0.0126 (4) | 0.0191 (4) |
O2 | 0.0303 (4) | 0.0890 (7) | 0.0425 (5) | −0.0035 (4) | 0.0115 (4) | 0.0008 (5) |
C1 | 0.0234 (4) | 0.0247 (4) | 0.0305 (5) | 0.0028 (3) | −0.0006 (4) | −0.0009 (4) |
C2 | 0.0228 (4) | 0.0243 (4) | 0.0307 (5) | 0.0014 (3) | −0.0005 (4) | −0.0021 (4) |
C3 | 0.0241 (5) | 0.0278 (5) | 0.0338 (5) | 0.0032 (4) | 0.0029 (4) | −0.0005 (4) |
C4 | 0.0251 (5) | 0.0303 (5) | 0.0448 (6) | −0.0021 (4) | 0.0041 (4) | −0.0002 (4) |
C5 | 0.0273 (5) | 0.0323 (5) | 0.0444 (6) | −0.0034 (4) | −0.0023 (4) | −0.0075 (4) |
C6 | 0.0268 (5) | 0.0308 (5) | 0.0336 (5) | 0.0027 (4) | −0.0029 (4) | −0.0049 (4) |
C7 | 0.0290 (5) | 0.0301 (5) | 0.0287 (5) | −0.0004 (4) | −0.0017 (4) | 0.0011 (4) |
C8 | 0.0283 (5) | 0.0387 (5) | 0.0344 (5) | 0.0019 (4) | 0.0063 (4) | 0.0018 (4) |
C11 | 0.0256 (5) | 0.0274 (4) | 0.0273 (4) | 0.0014 (4) | 0.0024 (3) | −0.0031 (4) |
C12 | 0.0285 (5) | 0.0316 (5) | 0.0310 (5) | 0.0020 (4) | 0.0018 (4) | 0.0003 (4) |
C13 | 0.0298 (5) | 0.0404 (6) | 0.0393 (6) | 0.0054 (4) | −0.0045 (4) | −0.0026 (5) |
C14 | 0.0268 (5) | 0.0412 (6) | 0.0520 (7) | −0.0019 (4) | −0.0020 (5) | −0.0085 (5) |
C15 | 0.0321 (5) | 0.0326 (5) | 0.0487 (6) | −0.0049 (4) | 0.0081 (5) | −0.0024 (5) |
C16 | 0.0311 (5) | 0.0285 (5) | 0.0340 (5) | 0.0014 (4) | 0.0039 (4) | 0.0002 (4) |
C21 | 0.0314 (5) | 0.0305 (5) | 0.0282 (5) | −0.0004 (4) | 0.0046 (4) | 0.0032 (4) |
C22 | 0.0315 (5) | 0.0325 (5) | 0.0299 (5) | 0.0023 (4) | 0.0019 (4) | 0.0011 (4) |
C23 | 0.0328 (5) | 0.0389 (6) | 0.0394 (6) | −0.0002 (4) | −0.0020 (4) | 0.0079 (5) |
C24 | 0.0467 (7) | 0.0364 (6) | 0.0369 (5) | −0.0107 (5) | −0.0092 (5) | 0.0086 (5) |
C25 | 0.0601 (8) | 0.0362 (6) | 0.0278 (5) | −0.0078 (5) | 0.0007 (5) | 0.0007 (4) |
C26 | 0.0435 (6) | 0.0388 (6) | 0.0302 (5) | 0.0000 (5) | 0.0097 (4) | 0.0011 (4) |
O1—C7 | 1.2242 (12) | C12—H12 | 0.9500 |
O2—C8 | 1.2227 (13) | C13—C14 | 1.3870 (17) |
C1—C6 | 1.3989 (14) | C13—H13 | 0.9500 |
C1—C2 | 1.3995 (13) | C14—C15 | 1.3847 (17) |
C1—C7 | 1.4990 (14) | C14—H14 | 0.9500 |
C2—C3 | 1.3969 (14) | C15—C16 | 1.3844 (15) |
C2—H2 | 0.9500 | C15—H15 | 0.9500 |
C3—C4 | 1.3993 (15) | C16—H16 | 0.9500 |
C3—C8 | 1.5009 (15) | C21—C26 | 1.3958 (15) |
C4—C5 | 1.3857 (16) | C21—C22 | 1.3975 (14) |
C4—H4 | 0.9500 | C22—C23 | 1.3913 (16) |
C5—C6 | 1.3861 (15) | C22—H22 | 0.9500 |
C5—H5 | 0.9500 | C23—C24 | 1.3852 (17) |
C6—H6 | 0.9500 | C23—H23 | 0.9500 |
C7—C11 | 1.4923 (14) | C24—C25 | 1.3870 (19) |
C8—C21 | 1.4942 (15) | C24—H24 | 0.9500 |
C11—C12 | 1.3970 (14) | C25—C26 | 1.3851 (18) |
C11—C16 | 1.4002 (14) | C25—H25 | 0.9500 |
C12—C13 | 1.3937 (15) | C26—H26 | 0.9500 |
C6—C1—C2 | 119.36 (9) | C14—C13—C12 | 119.83 (10) |
C6—C1—C7 | 117.45 (9) | C14—C13—H13 | 120.1 |
C2—C1—C7 | 123.09 (9) | C12—C13—H13 | 120.1 |
C3—C2—C1 | 120.13 (9) | C15—C14—C13 | 120.31 (10) |
C3—C2—H2 | 119.9 | C15—C14—H14 | 119.8 |
C1—C2—H2 | 119.9 | C13—C14—H14 | 119.8 |
C2—C3—C4 | 119.54 (9) | C16—C15—C14 | 120.09 (10) |
C2—C3—C8 | 122.32 (9) | C16—C15—H15 | 120.0 |
C4—C3—C8 | 118.09 (9) | C14—C15—H15 | 120.0 |
C5—C4—C3 | 120.44 (10) | C15—C16—C11 | 120.49 (10) |
C5—C4—H4 | 119.8 | C15—C16—H16 | 119.8 |
C3—C4—H4 | 119.8 | C11—C16—H16 | 119.8 |
C4—C5—C6 | 119.95 (10) | C26—C21—C22 | 119.12 (10) |
C4—C5—H5 | 120.0 | C26—C21—C8 | 118.65 (10) |
C6—C5—H5 | 120.0 | C22—C21—C8 | 122.17 (9) |
C5—C6—C1 | 120.57 (10) | C23—C22—C21 | 120.23 (10) |
C5—C6—H6 | 119.7 | C23—C22—H22 | 119.9 |
C1—C6—H6 | 119.7 | C21—C22—H22 | 119.9 |
O1—C7—C11 | 120.32 (9) | C24—C23—C22 | 119.88 (11) |
O1—C7—C1 | 118.25 (9) | C24—C23—H23 | 120.1 |
C11—C7—C1 | 121.42 (8) | C22—C23—H23 | 120.1 |
O2—C8—C21 | 120.79 (10) | C23—C24—C25 | 120.34 (11) |
O2—C8—C3 | 119.38 (10) | C23—C24—H24 | 119.8 |
C21—C8—C3 | 119.83 (9) | C25—C24—H24 | 119.8 |
C12—C11—C16 | 118.95 (9) | C26—C25—C24 | 119.91 (10) |
C12—C11—C7 | 123.07 (9) | C26—C25—H25 | 120.0 |
C16—C11—C7 | 117.95 (9) | C24—C25—H25 | 120.0 |
C13—C12—C11 | 120.33 (10) | C25—C26—C21 | 120.50 (11) |
C13—C12—H12 | 119.8 | C25—C26—H26 | 119.8 |
C11—C12—H12 | 119.8 | C21—C26—H26 | 119.8 |
C6—C1—C2—C3 | −0.02 (14) | C1—C7—C11—C16 | 163.41 (9) |
C7—C1—C2—C3 | −176.19 (9) | C16—C11—C12—C13 | −0.95 (15) |
C1—C2—C3—C4 | 0.26 (14) | C7—C11—C12—C13 | −178.93 (10) |
C1—C2—C3—C8 | 177.63 (9) | C11—C12—C13—C14 | 0.51 (16) |
C2—C3—C4—C5 | −0.73 (15) | C12—C13—C14—C15 | −0.12 (17) |
C8—C3—C4—C5 | −178.22 (9) | C13—C14—C15—C16 | 0.18 (17) |
C3—C4—C5—C6 | 0.96 (16) | C14—C15—C16—C11 | −0.63 (16) |
C4—C5—C6—C1 | −0.72 (16) | C12—C11—C16—C15 | 1.01 (15) |
C2—C1—C6—C5 | 0.25 (15) | C7—C11—C16—C15 | 179.09 (10) |
C7—C1—C6—C5 | 176.64 (9) | O2—C8—C21—C26 | 27.69 (16) |
C6—C1—C7—O1 | −32.33 (14) | C3—C8—C21—C26 | −151.99 (10) |
C2—C1—C7—O1 | 143.91 (11) | O2—C8—C21—C22 | −149.55 (12) |
C6—C1—C7—C11 | 147.13 (9) | C3—C8—C21—C22 | 30.77 (15) |
C2—C1—C7—C11 | −36.62 (14) | C26—C21—C22—C23 | 0.87 (15) |
C2—C3—C8—O2 | −149.63 (11) | C8—C21—C22—C23 | 178.10 (10) |
C4—C3—C8—O2 | 27.79 (16) | C21—C22—C23—C24 | −0.48 (16) |
C2—C3—C8—C21 | 30.05 (15) | C22—C23—C24—C25 | −0.01 (17) |
C4—C3—C8—C21 | −152.53 (10) | C23—C24—C25—C26 | 0.11 (17) |
O1—C7—C11—C12 | 160.85 (11) | C24—C25—C26—C21 | 0.30 (17) |
C1—C7—C11—C12 | −18.60 (15) | C22—C21—C26—C25 | −0.78 (16) |
O1—C7—C11—C16 | −17.14 (15) | C8—C21—C26—C25 | −178.11 (10) |
Experimental details
Crystal data | |
Chemical formula | C20H14O2 |
Mr | 286.31 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 173 |
a, b, c (Å) | 16.2029 (5), 7.8648 (4), 22.8422 (8) |
V (Å3) | 2910.8 (2) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.45 × 0.45 × 0.43 |
Data collection | |
Diffractometer | Stoe IPDS II two-circle diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 40513, 3653, 3095 |
Rint | 0.050 |
(sin θ/λ)max (Å−1) | 0.670 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.101, 1.05 |
No. of reflections | 3653 |
No. of parameters | 200 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.28, −0.15 |
Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008).
Acknowledgements
The authors are grateful to the Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan.
References
Baggett, S., Protiva, P., Mazzola, E. P., Yang, H., Ressler, E. T., Basile, M. J., Weinstein, I. B. & Kennelly, E. J. (2005). J. Nat. Prod. 68, 354–360. CrossRef CAS Google Scholar
Bagheri, H., Lhiaubet, V., Montastruc, J. L. & Chouini-Lalanne, N. (2000). Drug. Saf. 22, 339–349. CrossRef CAS Google Scholar
Bernardi, A. P. M., Ferraz, A. B. F., Albring, D. V., Bordignon, S. A. L., Schripsema, J., Bridi, R., Dutra-Filho, C. S., Henriques, A. T. & Poser, G. L. (2005). J. Nat. Prod. 68, 784–786. CrossRef CAS Google Scholar
Bohm, M., Mitsch, A., Wissner, P., Sattler, I. & Schlitzer, M. (2001). J. Med. Chem. 44, 3117–3124. CAS Google Scholar
Chan, J. H., Freeman, G. A., Tidwell, J. H., Romines, K. R., Schaller, L. T., Cowan, J. R., Gonzales, S. S., Lowell, G. S., Andrews, C. W., Reynolds, D. J., St Clair, M., Hazen, R. J., Ferris, R. G., Creech, K. L., Roberts, G. B., Short, S. A., Weaver, K., Koszalka, G. W. & Boone, L. R. (2004). J. Med. Chem. 47, 1175–1182. CrossRef CAS Google Scholar
Chiang, Y. M., Kuo, Y. H., Oota, S. & Fukuyama, Y. (2003). J. Nat. Prod. 66, 1070–1073. CrossRef CAS Google Scholar
Husain, S. S., Nirthanan, S., Ruesch, D., Solt, K., Cheng, Q., Li, G. D., Arevalo, E., Olsen, R. W., Raines, D. E., Forman, S. A., Cohen, J. B. & Miller, K. W. (2006). J. Med. Chem. 49, 4818–4825. CrossRef CAS Google Scholar
Iijima, D., Tanaka, D., Hamada, M., Ogamino, T., Ishikawa, Y. & Nishiyama, S. (2004). Tetrahedron Lett. 45, 5469–5471. CrossRef CAS Google Scholar
Karrer, F., Meier, H. & Pascual, A. (2000). J. Fluorine Chem. 103, 81–84. CrossRef CAS Google Scholar
Kowalski, K., Zakrzewski, J. & Jerzykiewicz, L. (2005). J. Organomet. Chem. 690, 1474–1477. CrossRef CAS Google Scholar
Kulanthaivel, P., Hallock, Y. F., Boros, C., Hamilton, S. M., Janzen, W. P., Ballas, L. M., Loomis, C. R., Jiang, J. B., Steiner, J. R. & Clardy, J. (1993). J. Am. Chem. Soc. 115, 6452–6453. CrossRef CAS Google Scholar
March, J. (1992). Advanced Organic Chemistry, 4th ed. New York: Wiley. Google Scholar
Olah, G. A. (1964). Friedel–Crafts and Related Reaction, Vol. III, Part I. New York: Interscience. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Szmant, H. (1989). Organic Building Blocks of the Chemical Industry. New York: Wiley. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Dibenzoylbenzene represents the class of diarylketones in which a carbonyl group is present between two phenyl rings. The parent diarylketone is benzoylbenzene, which is also known as benzophenone and is a widely used as a building block in organic synthesis. Benzoylbenzene and its derivatives are important chemicals or intermediates in the dyes, pharmaceutical, pesticide and other chemical industries (Olah, 1964; Szmant, 1989; March, 1992). In the pharmaceutical industry, these are used as farnesyltransferase inhibitors (Bohm et al., 2001) and non-nucleoside reverse transcriptase inhibitors of HIV-1 (Chan et al., 2004) and are renowned to be effective anesthetics (Husain et al., 2006) and the strongest photosensitizer among non-steroidal anti-inflammatory drugs (Bagheri et al., 2000). In the fragrance industry, benzoylbenzene is a useful additive in perfumes, colognes and scented soaps. Symmetrical and unsymmetrical benzoylbenzenes functionalized with electron-donating or withdrawing groups are found in a large number of plants of the Guttiferae family (Baggett et al., 2005; Chiang et al., 2003). In the past few decades, numerous natural products bearing a benzoylbenzene architecture have been reported such as cariphenones A and B (Bernardi et al., 2005), balanol (Kulanthaivel et al., 1993), and pestalone (Iijima et al., 2004). The chemistry of symmetrical and unsymmetrical benzoylbenzene includes many synthetic methods. Generally benzoylbenzene and its derivatives are prepared via Friedel–Crafts acylation of aromatic compounds catalyzed by Lewis acids, such as AlCl3, BF3, TiCl4, or ZnCl2 (Karrer et al., 2000; Kowalski et al., 2005). The title compound was synthesized successfully in an attempt to prepare dibenzoylbenzene compounds.