organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3-Benzoyl­phen­yl)(phen­yl)methanone

aDepartment of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan, and bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: zareenakhter@yahoo.com

(Received 4 August 2011; accepted 16 August 2011; online 27 August 2011)

Mol­ecules of the title compound, C20H14O2, show approximate Cs symmetry with the approximate mirror plane perpendicular to the central ring. The torsion angles about the acyclic bonds are 30.05 (15) and 30.77 (15)° in one half compared to −36.62 (14) and −18.60 (15)° in the other half of the mol­ecule. The central aromatic ring makes dihedral angles of 47.78 (4) and 51.68 (3)° with the two terminal rings.

Related literature

For background to diaryl­ketones, see: Olah (1964[Olah, G. A. (1964). Friedel-Crafts and Related Reaction, Vol. III, Part I. New York: Interscience.]); Szmant (1989[Szmant, H. (1989). Organic Building Blocks of the Chemical Industry. New York: Wiley.]); March (1992[March, J. (1992). Advanced Organic Chemistry, 4th ed. New York: Wiley.]). For the synthesis of benzoyl­benzene and its derivatives, see: Karrer et al. (2000[Karrer, F., Meier, H. & Pascual, A. (2000). J. Fluorine Chem. 103, 81-84.]); Kowalski et al. (2005[Kowalski, K., Zakrzewski, J. & Jerzykiewicz, L. (2005). J. Organomet. Chem. 690, 1474-1477.]). For its natural occurrence, see: Baggett et al. (2005[Baggett, S., Protiva, P., Mazzola, E. P., Yang, H., Ressler, E. T., Basile, M. J., Weinstein, I. B. & Kennelly, E. J. (2005). J. Nat. Prod. 68, 354-360.]); Chiang et al. (2003[Chiang, Y. M., Kuo, Y. H., Oota, S. & Fukuyama, Y. (2003). J. Nat. Prod. 66, 1070-1073.]); Bernardi, et al. (2005[Bernardi, A. P. M., Ferraz, A. B. F., Albring, D. V., Bordignon, S. A. L., Schripsema, J., Bridi, R., Dutra-Filho, C. S., Henriques, A. T. & Poser, G. L. (2005). J. Nat. Prod. 68, 784-786.]); Kulanthaivel et al. (1993[Kulanthaivel, P., Hallock, Y. F., Boros, C., Hamilton, S. M., Janzen, W. P., Ballas, L. M., Loomis, C. R., Jiang, J. B., Steiner, J. R. & Clardy, J. (1993). J. Am. Chem. Soc. 115, 6452-6453.]); Iijima et al. (2004[Iijima, D., Tanaka, D., Hamada, M., Ogamino, T., Ishikawa, Y. & Nishiyama, S. (2004). Tetrahedron Lett. 45, 5469-5471.]). For applications of these compounds, see: Bohm et al. (2001[Bohm, M., Mitsch, A., Wissner, P., Sattler, I. & Schlitzer, M. (2001). J. Med. Chem. 44, 3117-3124.]); Chan et al. (2004[Chan, J. H., Freeman, G. A., Tidwell, J. H., Romines, K. R., Schaller, L. T., Cowan, J. R., Gonzales, S. S., Lowell, G. S., Andrews, C. W., Reynolds, D. J., St Clair, M., Hazen, R. J., Ferris, R. G., Creech, K. L., Roberts, G. B., Short, S. A., Weaver, K., Koszalka, G. W. & Boone, L. R. (2004). J. Med. Chem. 47, 1175-1182.]); Bagheri et al. (2000[Bagheri, H., Lhiaubet, V., Montastruc, J. L. & Chouini-Lalanne, N. (2000). Drug. Saf. 22, 339-349.]); Husain et al. (2006[Husain, S. S., Nirthanan, S., Ruesch, D., Solt, K., Cheng, Q., Li, G. D., Arevalo, E., Olsen, R. W., Raines, D. E., Forman, S. A., Cohen, J. B. & Miller, K. W. (2006). J. Med. Chem. 49, 4818-4825.]).

[Scheme 1]

Experimental

Crystal data
  • C20H14O2

  • Mr = 286.31

  • Orthorhombic, P b c a

  • a = 16.2029 (5) Å

  • b = 7.8648 (4) Å

  • c = 22.8422 (8) Å

  • V = 2910.8 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.45 × 0.45 × 0.43 mm

Data collection
  • Stoe IPDS II two-circle diffractometer

  • 40513 measured reflections

  • 3653 independent reflections

  • 3095 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.101

  • S = 1.05

  • 3653 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Dibenzoylbenzene represents the class of diarylketones in which a carbonyl group is present between two phenyl rings. The parent diarylketone is benzoylbenzene, which is also known as benzophenone and is a widely used as a building block in organic synthesis. Benzoylbenzene and its derivatives are important chemicals or intermediates in the dyes, pharmaceutical, pesticide and other chemical industries (Olah, 1964; Szmant, 1989; March, 1992). In the pharmaceutical industry, these are used as farnesyltransferase inhibitors (Bohm et al., 2001) and non-nucleoside reverse transcriptase inhibitors of HIV-1 (Chan et al., 2004) and are renowned to be effective anesthetics (Husain et al., 2006) and the strongest photosensitizer among non-steroidal anti-inflammatory drugs (Bagheri et al., 2000). In the fragrance industry, benzoylbenzene is a useful additive in perfumes, colognes and scented soaps. Symmetrical and unsymmetrical benzoylbenzenes functionalized with electron-donating or withdrawing groups are found in a large number of plants of the Guttiferae family (Baggett et al., 2005; Chiang et al., 2003). In the past few decades, numerous natural products bearing a benzoylbenzene architecture have been reported such as cariphenones A and B (Bernardi et al., 2005), balanol (Kulanthaivel et al., 1993), and pestalone (Iijima et al., 2004). The chemistry of symmetrical and unsymmetrical benzoylbenzene includes many synthetic methods. Generally benzoylbenzene and its derivatives are prepared via Friedel–Crafts acylation of aromatic compounds catalyzed by Lewis acids, such as AlCl3, BF3, TiCl4, or ZnCl2 (Karrer et al., 2000; Kowalski et al., 2005). The title compound was synthesized successfully in an attempt to prepare dibenzoylbenzene compounds.

Related literature top

For background to diarylketones, see: Olah (1964); Szmant (1989); March (1992). For the synthesis of benzoylbenzene and its derivatives, see: Karrer et al. (2000); Kowalski et al. (2005). For its natural occurrence, see: Baggett et al. (2005); Chiang et al. (2003); Bernardi, et al. (2005); Kulanthaivel et al. (1993); Iijima et al. (2004). For applications of these compounds, see: Bohm et al. (2001); Chan et al. (2004); Bagheri et al. (2000); Husain et al. (2006).

Experimental top

For the synthesis of 1,3-dibenzoylbenzene, a 250 ml three-necked round bottomed flask equipped with a thermometer and a magnetic stirrer was charged with 20 milliliters of benzene and 19 g (0.15 mole) of anhydrous aluminium chloride (AlCl3). Then 9 g (0.044 mole) of isophathaloyl chloride was gradually added into the flask over a period of 2 h. During this addition, the temperature of the reaction mixture was maintained at 285–291 K. After the addition was complete, the reaction was continued at 291 K for another 4 h. The mixture was slowly heated to 313 K and kept at that temperature for 2h. Finally, the reaction mixture was cooled and poured into 200 ml of aqueous HCl solution. Some white solid precipitated out, which was filtered, washed with ethanol and the crude product obtained was recrystallized from petroleum ether (b.p. 333–363 K). The related yield is 80% and melting point of the product is 378 K. For the growth of single crystals the compound was dissolved in petroleum ether (b.p. 333–363 K) and set aside for crystallization.

Refinement top

H atoms were geometrically positioned and refined using a riding model with C—H = 0.95Å and U(H) set to 1.2Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of title compound. Displacement ellipsoids are drawn at the 50% probability level.
(3-Benzoylphenyl)(phenyl)methanone top
Crystal data top
C20H14O2F(000) = 1200
Mr = 286.31Dx = 1.307 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 32870 reflections
a = 16.2029 (5) Åθ = 2.7–28.7°
b = 7.8648 (4) ŵ = 0.08 mm1
c = 22.8422 (8) ÅT = 173 K
V = 2910.8 (2) Å3Block, colourless
Z = 80.45 × 0.45 × 0.43 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
3095 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
Graphite monochromatorθmax = 28.4°, θmin = 3.0°
ω scansh = 2121
40513 measured reflectionsk = 1010
3653 independent reflectionsl = 2930
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0547P)2 + 0.4425P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3653 reflectionsΔρmax = 0.28 e Å3
200 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0128 (12)
Crystal data top
C20H14O2V = 2910.8 (2) Å3
Mr = 286.31Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 16.2029 (5) ŵ = 0.08 mm1
b = 7.8648 (4) ÅT = 173 K
c = 22.8422 (8) Å0.45 × 0.45 × 0.43 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
3095 reflections with I > 2σ(I)
40513 measured reflectionsRint = 0.050
3653 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.05Δρmax = 0.28 e Å3
3653 reflectionsΔρmin = 0.15 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.57553 (5)0.26790 (13)0.50072 (4)0.0480 (2)
O20.72489 (5)0.52781 (15)0.23112 (4)0.0539 (3)
C10.60337 (6)0.42835 (12)0.41666 (4)0.0262 (2)
C20.60051 (6)0.42295 (12)0.35545 (4)0.0259 (2)
H20.55970.35640.33630.031*
C30.65756 (6)0.51526 (13)0.32241 (4)0.0286 (2)
C40.71769 (6)0.61245 (13)0.35094 (5)0.0334 (2)
H40.75700.67430.32860.040*
C50.72029 (7)0.61901 (13)0.41153 (5)0.0347 (2)
H50.76070.68660.43060.042*
C60.66382 (6)0.52687 (13)0.44426 (5)0.0304 (2)
H60.66620.53060.48580.036*
C70.54757 (6)0.32464 (13)0.45492 (4)0.0293 (2)
C80.65929 (7)0.50879 (14)0.25675 (5)0.0338 (2)
C110.45990 (6)0.29171 (12)0.43842 (4)0.0268 (2)
C120.41725 (6)0.38926 (13)0.39722 (4)0.0303 (2)
H120.44450.48020.37780.036*
C130.33493 (7)0.35381 (15)0.38441 (5)0.0365 (2)
H130.30630.41980.35610.044*
C140.29496 (7)0.22188 (15)0.41305 (6)0.0400 (3)
H140.23880.19780.40440.048*
C150.33652 (7)0.12507 (14)0.45422 (5)0.0378 (3)
H150.30890.03470.47360.045*
C160.41827 (6)0.15987 (13)0.46714 (5)0.0312 (2)
H160.44630.09380.49570.037*
C210.58125 (6)0.47839 (13)0.22351 (4)0.0300 (2)
C220.50446 (7)0.53230 (13)0.24428 (5)0.0313 (2)
H220.50060.58730.28120.038*
C230.43365 (7)0.50573 (15)0.21107 (5)0.0371 (2)
H230.38150.54170.22540.044*
C240.43937 (8)0.42670 (15)0.15702 (5)0.0400 (3)
H240.39100.40860.13440.048*
C250.51537 (9)0.37388 (15)0.13580 (5)0.0414 (3)
H250.51900.31990.09870.050*
C260.58596 (8)0.39992 (15)0.16880 (5)0.0375 (3)
H260.63800.36410.15410.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0428 (5)0.0614 (6)0.0398 (5)0.0123 (4)0.0126 (4)0.0191 (4)
O20.0303 (4)0.0890 (7)0.0425 (5)0.0035 (4)0.0115 (4)0.0008 (5)
C10.0234 (4)0.0247 (4)0.0305 (5)0.0028 (3)0.0006 (4)0.0009 (4)
C20.0228 (4)0.0243 (4)0.0307 (5)0.0014 (3)0.0005 (4)0.0021 (4)
C30.0241 (5)0.0278 (5)0.0338 (5)0.0032 (4)0.0029 (4)0.0005 (4)
C40.0251 (5)0.0303 (5)0.0448 (6)0.0021 (4)0.0041 (4)0.0002 (4)
C50.0273 (5)0.0323 (5)0.0444 (6)0.0034 (4)0.0023 (4)0.0075 (4)
C60.0268 (5)0.0308 (5)0.0336 (5)0.0027 (4)0.0029 (4)0.0049 (4)
C70.0290 (5)0.0301 (5)0.0287 (5)0.0004 (4)0.0017 (4)0.0011 (4)
C80.0283 (5)0.0387 (5)0.0344 (5)0.0019 (4)0.0063 (4)0.0018 (4)
C110.0256 (5)0.0274 (4)0.0273 (4)0.0014 (4)0.0024 (3)0.0031 (4)
C120.0285 (5)0.0316 (5)0.0310 (5)0.0020 (4)0.0018 (4)0.0003 (4)
C130.0298 (5)0.0404 (6)0.0393 (6)0.0054 (4)0.0045 (4)0.0026 (5)
C140.0268 (5)0.0412 (6)0.0520 (7)0.0019 (4)0.0020 (5)0.0085 (5)
C150.0321 (5)0.0326 (5)0.0487 (6)0.0049 (4)0.0081 (5)0.0024 (5)
C160.0311 (5)0.0285 (5)0.0340 (5)0.0014 (4)0.0039 (4)0.0002 (4)
C210.0314 (5)0.0305 (5)0.0282 (5)0.0004 (4)0.0046 (4)0.0032 (4)
C220.0315 (5)0.0325 (5)0.0299 (5)0.0023 (4)0.0019 (4)0.0011 (4)
C230.0328 (5)0.0389 (6)0.0394 (6)0.0002 (4)0.0020 (4)0.0079 (5)
C240.0467 (7)0.0364 (6)0.0369 (5)0.0107 (5)0.0092 (5)0.0086 (5)
C250.0601 (8)0.0362 (6)0.0278 (5)0.0078 (5)0.0007 (5)0.0007 (4)
C260.0435 (6)0.0388 (6)0.0302 (5)0.0000 (5)0.0097 (4)0.0011 (4)
Geometric parameters (Å, º) top
O1—C71.2242 (12)C12—H120.9500
O2—C81.2227 (13)C13—C141.3870 (17)
C1—C61.3989 (14)C13—H130.9500
C1—C21.3995 (13)C14—C151.3847 (17)
C1—C71.4990 (14)C14—H140.9500
C2—C31.3969 (14)C15—C161.3844 (15)
C2—H20.9500C15—H150.9500
C3—C41.3993 (15)C16—H160.9500
C3—C81.5009 (15)C21—C261.3958 (15)
C4—C51.3857 (16)C21—C221.3975 (14)
C4—H40.9500C22—C231.3913 (16)
C5—C61.3861 (15)C22—H220.9500
C5—H50.9500C23—C241.3852 (17)
C6—H60.9500C23—H230.9500
C7—C111.4923 (14)C24—C251.3870 (19)
C8—C211.4942 (15)C24—H240.9500
C11—C121.3970 (14)C25—C261.3851 (18)
C11—C161.4002 (14)C25—H250.9500
C12—C131.3937 (15)C26—H260.9500
C6—C1—C2119.36 (9)C14—C13—C12119.83 (10)
C6—C1—C7117.45 (9)C14—C13—H13120.1
C2—C1—C7123.09 (9)C12—C13—H13120.1
C3—C2—C1120.13 (9)C15—C14—C13120.31 (10)
C3—C2—H2119.9C15—C14—H14119.8
C1—C2—H2119.9C13—C14—H14119.8
C2—C3—C4119.54 (9)C16—C15—C14120.09 (10)
C2—C3—C8122.32 (9)C16—C15—H15120.0
C4—C3—C8118.09 (9)C14—C15—H15120.0
C5—C4—C3120.44 (10)C15—C16—C11120.49 (10)
C5—C4—H4119.8C15—C16—H16119.8
C3—C4—H4119.8C11—C16—H16119.8
C4—C5—C6119.95 (10)C26—C21—C22119.12 (10)
C4—C5—H5120.0C26—C21—C8118.65 (10)
C6—C5—H5120.0C22—C21—C8122.17 (9)
C5—C6—C1120.57 (10)C23—C22—C21120.23 (10)
C5—C6—H6119.7C23—C22—H22119.9
C1—C6—H6119.7C21—C22—H22119.9
O1—C7—C11120.32 (9)C24—C23—C22119.88 (11)
O1—C7—C1118.25 (9)C24—C23—H23120.1
C11—C7—C1121.42 (8)C22—C23—H23120.1
O2—C8—C21120.79 (10)C23—C24—C25120.34 (11)
O2—C8—C3119.38 (10)C23—C24—H24119.8
C21—C8—C3119.83 (9)C25—C24—H24119.8
C12—C11—C16118.95 (9)C26—C25—C24119.91 (10)
C12—C11—C7123.07 (9)C26—C25—H25120.0
C16—C11—C7117.95 (9)C24—C25—H25120.0
C13—C12—C11120.33 (10)C25—C26—C21120.50 (11)
C13—C12—H12119.8C25—C26—H26119.8
C11—C12—H12119.8C21—C26—H26119.8
C6—C1—C2—C30.02 (14)C1—C7—C11—C16163.41 (9)
C7—C1—C2—C3176.19 (9)C16—C11—C12—C130.95 (15)
C1—C2—C3—C40.26 (14)C7—C11—C12—C13178.93 (10)
C1—C2—C3—C8177.63 (9)C11—C12—C13—C140.51 (16)
C2—C3—C4—C50.73 (15)C12—C13—C14—C150.12 (17)
C8—C3—C4—C5178.22 (9)C13—C14—C15—C160.18 (17)
C3—C4—C5—C60.96 (16)C14—C15—C16—C110.63 (16)
C4—C5—C6—C10.72 (16)C12—C11—C16—C151.01 (15)
C2—C1—C6—C50.25 (15)C7—C11—C16—C15179.09 (10)
C7—C1—C6—C5176.64 (9)O2—C8—C21—C2627.69 (16)
C6—C1—C7—O132.33 (14)C3—C8—C21—C26151.99 (10)
C2—C1—C7—O1143.91 (11)O2—C8—C21—C22149.55 (12)
C6—C1—C7—C11147.13 (9)C3—C8—C21—C2230.77 (15)
C2—C1—C7—C1136.62 (14)C26—C21—C22—C230.87 (15)
C2—C3—C8—O2149.63 (11)C8—C21—C22—C23178.10 (10)
C4—C3—C8—O227.79 (16)C21—C22—C23—C240.48 (16)
C2—C3—C8—C2130.05 (15)C22—C23—C24—C250.01 (17)
C4—C3—C8—C21152.53 (10)C23—C24—C25—C260.11 (17)
O1—C7—C11—C12160.85 (11)C24—C25—C26—C210.30 (17)
C1—C7—C11—C1218.60 (15)C22—C21—C26—C250.78 (16)
O1—C7—C11—C1617.14 (15)C8—C21—C26—C25178.11 (10)

Experimental details

Crystal data
Chemical formulaC20H14O2
Mr286.31
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)173
a, b, c (Å)16.2029 (5), 7.8648 (4), 22.8422 (8)
V3)2910.8 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.45 × 0.45 × 0.43
Data collection
DiffractometerStoe IPDS II two-circle
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
40513, 3653, 3095
Rint0.050
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.101, 1.05
No. of reflections3653
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.15

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008).

 

Acknowledgements

The authors are grateful to the Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan.

References

First citationBaggett, S., Protiva, P., Mazzola, E. P., Yang, H., Ressler, E. T., Basile, M. J., Weinstein, I. B. & Kennelly, E. J. (2005). J. Nat. Prod. 68, 354–360.  CrossRef CAS Google Scholar
First citationBagheri, H., Lhiaubet, V., Montastruc, J. L. & Chouini-Lalanne, N. (2000). Drug. Saf. 22, 339–349.  CrossRef CAS Google Scholar
First citationBernardi, A. P. M., Ferraz, A. B. F., Albring, D. V., Bordignon, S. A. L., Schripsema, J., Bridi, R., Dutra-Filho, C. S., Henriques, A. T. & Poser, G. L. (2005). J. Nat. Prod. 68, 784–786.  CrossRef CAS Google Scholar
First citationBohm, M., Mitsch, A., Wissner, P., Sattler, I. & Schlitzer, M. (2001). J. Med. Chem. 44, 3117–3124.  CAS Google Scholar
First citationChan, J. H., Freeman, G. A., Tidwell, J. H., Romines, K. R., Schaller, L. T., Cowan, J. R., Gonzales, S. S., Lowell, G. S., Andrews, C. W., Reynolds, D. J., St Clair, M., Hazen, R. J., Ferris, R. G., Creech, K. L., Roberts, G. B., Short, S. A., Weaver, K., Koszalka, G. W. & Boone, L. R. (2004). J. Med. Chem. 47, 1175–1182.  CrossRef CAS Google Scholar
First citationChiang, Y. M., Kuo, Y. H., Oota, S. & Fukuyama, Y. (2003). J. Nat. Prod. 66, 1070–1073.  CrossRef CAS Google Scholar
First citationHusain, S. S., Nirthanan, S., Ruesch, D., Solt, K., Cheng, Q., Li, G. D., Arevalo, E., Olsen, R. W., Raines, D. E., Forman, S. A., Cohen, J. B. & Miller, K. W. (2006). J. Med. Chem. 49, 4818–4825.  CrossRef CAS Google Scholar
First citationIijima, D., Tanaka, D., Hamada, M., Ogamino, T., Ishikawa, Y. & Nishiyama, S. (2004). Tetrahedron Lett. 45, 5469–5471.  CrossRef CAS Google Scholar
First citationKarrer, F., Meier, H. & Pascual, A. (2000). J. Fluorine Chem. 103, 81–84.  CrossRef CAS Google Scholar
First citationKowalski, K., Zakrzewski, J. & Jerzykiewicz, L. (2005). J. Organomet. Chem. 690, 1474–1477.  CrossRef CAS Google Scholar
First citationKulanthaivel, P., Hallock, Y. F., Boros, C., Hamilton, S. M., Janzen, W. P., Ballas, L. M., Loomis, C. R., Jiang, J. B., Steiner, J. R. & Clardy, J. (1993). J. Am. Chem. Soc. 115, 6452–6453.  CrossRef CAS Google Scholar
First citationMarch, J. (1992). Advanced Organic Chemistry, 4th ed. New York: Wiley.  Google Scholar
First citationOlah, G. A. (1964). Friedel–Crafts and Related Reaction, Vol. III, Part I. New York: Interscience.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSzmant, H. (1989). Organic Building Blocks of the Chemical Industry. New York: Wiley.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds