organic compounds
Bis(guanidinium) cyananilate
aSteacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex, Ottawa, Ontario, Canada K1A 0R6, and bCenter of Excellence for Research in Engineering Materials, Faculty of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
*Correspondence e-mail: Kostia.Oudatchin@nrc-cnrc.gc.ca
The 6N3+·C8N2O42−, contains one half of a centrosymmetric 2,5-dicyano-3,6-dioxocyclohexa-1,4-diene-1,4-diolate (cyananilate) anion and one guanidinium cation, which are connected by N—H⋯O and N—H⋯N hydrogen bonds into a three-dimensional network.
of the title compound, 2CHRelated literature
For the synthesis and structure of 2,5-dihydroxy-3,6-dicyano-1,4-benzoquinone (cyananilic acid), see: Zaman et al. (1996). For related cyananilic acid structures and background references, see: Zaman & Ripmeester (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker 2003); cell SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 1999); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811028340/gk2374sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811028340/gk2374Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811028340/gk2374Isup3.cml
Cyananilic acid has been synthesized according to our published method (Zaman et al., 1996) and purified by recrystallization from benzene. Light yellow compound was grown by slow evaporation of a methanol solution containing a 1:1 stoichiometric quantity of guanidinium carbonate (Aldrich, 98%) and cyananilic acid under ambient conditions. Compound decomposes at 593K.
N-H distances were restrained to 0.95 (2) Å and all H atoms were refined isotropically. Non- hydrogen atoms were restrained to have the same Uij components with SHELXL97 (Sheldrick, 2008) instruction 'SIMU C1 < N4'.
Data collection: SMART (Bruker 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Fragments generated by symmetry codes: (a) 1/2 - x, 1,5 - y, 1 - z; (b) 1/2 - x, 1/2 + y, 1/2 - z; (c) 1/2 + x, 2.5 - y, 1/2 + z. Hydrogen bonds are shown with dashed lines. | |
Fig. 2. Packing diagram of the hydrogen-bonded framework structure of the title compound viewed down the b axial direction of the unit cell, showing hydrogen-bonding associations as thin lines. |
2CH6N3+·C8N2O42− | F(000) = 640 |
Mr = 308.28 | Dx = 1.539 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71070 Å |
Hall symbol: -C 2yc | Cell parameters from 280 reflections |
a = 19.4873 (17) Å | θ = 5.0–26° |
b = 3.6611 (3) Å | µ = 0.12 mm−1 |
c = 20.2452 (18) Å | T = 173 K |
β = 112.887 (2)° | Block, colourless |
V = 1330.7 (2) Å3 | 0.35 × 0.30 × 0.20 mm |
Z = 4 |
Bruker SMART 1000 CCD diffractometer | 1704 independent reflections |
Radiation source: fine-focus sealed tube | 1379 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
ω scans | θmax = 28.7°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −26→26 |
Tmin = 0.958, Tmax = 0.976 | k = −4→4 |
7261 measured reflections | l = −27→27 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.131 | All H-atom parameters refined |
S = 1.08 | w = 1/[σ2(Fo2) + (0.078P)2 + 0.709P] where P = (Fo2 + 2Fc2)/3 |
1704 reflections | (Δ/σ)max < 0.001 |
124 parameters | Δρmax = 0.44 e Å−3 |
61 restraints | Δρmin = −0.42 e Å−3 |
2CH6N3+·C8N2O42− | V = 1330.7 (2) Å3 |
Mr = 308.28 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 19.4873 (17) Å | µ = 0.12 mm−1 |
b = 3.6611 (3) Å | T = 173 K |
c = 20.2452 (18) Å | 0.35 × 0.30 × 0.20 mm |
β = 112.887 (2)° |
Bruker SMART 1000 CCD diffractometer | 1704 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1379 reflections with I > 2σ(I) |
Tmin = 0.958, Tmax = 0.976 | Rint = 0.026 |
7261 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 61 restraints |
wR(F2) = 0.131 | All H-atom parameters refined |
S = 1.08 | Δρmax = 0.44 e Å−3 |
1704 reflections | Δρmin = −0.42 e Å−3 |
124 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.30409 (9) | 0.9359 (5) | 0.47852 (9) | 0.0199 (4) | |
C2 | 0.23212 (9) | 0.7966 (5) | 0.42334 (8) | 0.0194 (4) | |
C3 | 0.18096 (9) | 0.6179 (5) | 0.44716 (9) | 0.0193 (4) | |
C4 | 0.11214 (10) | 0.4852 (5) | 0.39572 (9) | 0.0213 (4) | |
C5 | 0.11254 (10) | 0.8997 (5) | 0.17992 (9) | 0.0221 (4) | |
O1 | 0.34792 (8) | 1.0991 (4) | 0.45742 (7) | 0.0288 (4) | |
O2 | 0.22010 (7) | 0.8452 (4) | 0.35861 (7) | 0.0254 (3) | |
N1 | 0.05680 (9) | 0.3773 (5) | 0.35458 (9) | 0.0297 (4) | |
N2 | 0.17845 (9) | 0.7347 (5) | 0.19774 (8) | 0.0255 (4) | |
H2 | 0.1912 (16) | 0.640 (8) | 0.1606 (13) | 0.044 (7)* | |
H1 | 0.2039 (15) | 0.661 (8) | 0.2463 (11) | 0.046 (7)* | |
N3 | 0.08938 (9) | 1.0023 (5) | 0.23049 (9) | 0.0279 (4) | |
H4 | 0.0455 (12) | 1.133 (7) | 0.2154 (13) | 0.039 (7)* | |
H3 | 0.1219 (15) | 0.963 (8) | 0.2780 (11) | 0.051 (8)* | |
N4 | 0.07052 (10) | 0.9652 (5) | 0.11139 (9) | 0.0294 (4) | |
H6 | 0.0260 (13) | 1.086 (8) | 0.1016 (16) | 0.057 (9)* | |
H5 | 0.0886 (17) | 0.897 (8) | 0.0757 (14) | 0.048 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0204 (8) | 0.0214 (9) | 0.0206 (8) | −0.0006 (6) | 0.0110 (7) | 0.0004 (6) |
C2 | 0.0201 (8) | 0.0210 (8) | 0.0184 (8) | 0.0008 (6) | 0.0088 (6) | 0.0004 (6) |
C3 | 0.0172 (8) | 0.0214 (8) | 0.0192 (8) | −0.0015 (6) | 0.0071 (6) | −0.0006 (6) |
C4 | 0.0209 (8) | 0.0229 (9) | 0.0218 (8) | −0.0001 (7) | 0.0102 (7) | 0.0003 (7) |
C5 | 0.0223 (9) | 0.0237 (9) | 0.0218 (8) | −0.0009 (7) | 0.0103 (7) | −0.0002 (6) |
O1 | 0.0267 (7) | 0.0376 (8) | 0.0259 (7) | −0.0090 (6) | 0.0145 (6) | 0.0012 (6) |
O2 | 0.0250 (7) | 0.0345 (8) | 0.0173 (6) | −0.0013 (5) | 0.0089 (5) | 0.0023 (5) |
N1 | 0.0226 (8) | 0.0345 (10) | 0.0293 (8) | −0.0045 (7) | 0.0072 (7) | −0.0028 (7) |
N2 | 0.0234 (8) | 0.0307 (9) | 0.0236 (8) | 0.0043 (6) | 0.0104 (6) | −0.0008 (7) |
N3 | 0.0248 (8) | 0.0394 (10) | 0.0214 (8) | 0.0070 (7) | 0.0110 (7) | 0.0005 (7) |
N4 | 0.0261 (8) | 0.0421 (10) | 0.0206 (8) | 0.0089 (7) | 0.0099 (7) | 0.0007 (7) |
C1—O1 | 1.246 (2) | C5—N4 | 1.330 (2) |
C1—C3i | 1.431 (2) | C5—N2 | 1.336 (2) |
C1—C2 | 1.502 (2) | N2—H2 | 0.95 (2) |
C2—O2 | 1.251 (2) | N2—H1 | 0.95 (2) |
C2—C3 | 1.424 (2) | N3—H4 | 0.923 (19) |
C3—C4 | 1.426 (2) | N3—H3 | 0.93 (2) |
C4—N1 | 1.146 (2) | N4—H6 | 0.92 (2) |
C5—N3 | 1.324 (2) | N4—H5 | 0.95 (2) |
O1—C1—C3i | 122.71 (15) | N3—C5—N2 | 120.05 (17) |
O1—C1—C2 | 118.30 (15) | N4—C5—N2 | 120.02 (17) |
C3i—C1—C2 | 118.99 (14) | C5—N2—H2 | 118.3 (18) |
O2—C2—C3 | 123.33 (15) | C5—N2—H1 | 117.9 (17) |
O2—C2—C1 | 118.10 (15) | H2—N2—H1 | 122 (2) |
C3—C2—C1 | 118.57 (14) | C5—N3—H4 | 116.2 (16) |
C2—C3—C4 | 119.52 (15) | C5—N3—H3 | 117.0 (18) |
C2—C3—C1i | 122.44 (14) | H4—N3—H3 | 126 (2) |
C4—C3—C1i | 118.04 (15) | C5—N4—H6 | 117.1 (19) |
N1—C4—C3 | 179.7 (2) | C5—N4—H5 | 119.0 (19) |
N3—C5—N4 | 119.93 (17) | H6—N4—H5 | 124 (3) |
Symmetry code: (i) −x+1/2, −y+3/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O2ii | 0.95 (2) | 2.20 (2) | 3.000 (2) | 142 (2) |
N2—H2···O1ii | 0.95 (2) | 2.21 (2) | 3.020 (2) | 143 (2) |
N2—H1···O2 | 0.95 (2) | 2.27 (2) | 3.062 (2) | 140 (2) |
N2—H1···N2ii | 0.95 (2) | 2.64 (3) | 3.319 (3) | 129 (2) |
N3—H4···N1iii | 0.92 (2) | 2.14 (2) | 3.025 (2) | 160 (2) |
N3—H3···O2 | 0.93 (2) | 2.02 (2) | 2.900 (2) | 156 (2) |
N4—H6···N1iii | 0.92 (2) | 2.38 (2) | 3.199 (2) | 148 (3) |
N4—H5···O1ii | 0.95 (2) | 1.95 (2) | 2.826 (2) | 151 (3) |
Symmetry codes: (ii) −x+1/2, y−1/2, −z+1/2; (iii) −x, y+1, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | 2CH6N3+·C8N2O42− |
Mr | 308.28 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 173 |
a, b, c (Å) | 19.4873 (17), 3.6611 (3), 20.2452 (18) |
β (°) | 112.887 (2) |
V (Å3) | 1330.7 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.35 × 0.30 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.958, 0.976 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7261, 1704, 1379 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.677 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.131, 1.08 |
No. of reflections | 1704 |
No. of parameters | 124 |
No. of restraints | 61 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.44, −0.42 |
Computer programs: SMART (Bruker 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ATOMS (Dowty, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O2i | 0.95 (2) | 2.20 (2) | 3.000 (2) | 142 (2) |
N2—H2···O1i | 0.95 (2) | 2.21 (2) | 3.020 (2) | 143 (2) |
N2—H1···O2 | 0.95 (2) | 2.27 (2) | 3.062 (2) | 140 (2) |
N3—H4···N1ii | 0.923 (19) | 2.14 (2) | 3.025 (2) | 160 (2) |
N3—H3···O2 | 0.93 (2) | 2.02 (2) | 2.900 (2) | 156 (2) |
N4—H6···N1ii | 0.92 (2) | 2.38 (2) | 3.199 (2) | 148 (3) |
N4—H5···O1i | 0.95 (2) | 1.95 (2) | 2.826 (2) | 151 (3) |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x, y+1, −z+1/2. |
References
Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dowty, E. (1999). ATOMS. Shape Software, Kingsport, Tennessee, USA. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zaman, M. B., Morita, Y., Toyoda, J., Yamochi, H., Sekizaki, S. & Nakasuji, K. (1996). Mol. Cryst. Liq. Cryst. 287, 249–257. CrossRef CAS Google Scholar
Zaman, M. B. & Ripmeester, J. A. (2010). Supramol. Chem. 22, 582–585. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The reaction between cyananilic acid and guanidinium carbonate in methanol leads to the title compound. Since 1997, cyananilic acid (2,5-dicyano-3,6-dihydroxy-1,4-benzoquinone) has been explored due to its valuable physicochemical features. It is an organic acid that has Mott-insulator properties, and organic ferroelectricity (Zaman & Ripmeester, 2010). It forms three dimensional network through N-H···O and N-H···N hydrogen bonds (Fig. 2).