organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(guanidinium) cyananilate

aSteacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex, Ottawa, Ontario, Canada K1A 0R6, and bCenter of Excellence for Research in Engineering Materials, Faculty of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
*Correspondence e-mail: Kostia.Oudatchin@nrc-cnrc.gc.ca

(Received 6 May 2011; accepted 14 July 2011; online 11 August 2011)

The asymmetric unit of the title compound, 2CH6N3+·C8N2O42−, contains one half of a centrosymmetric 2,5-di­cyano-3,6-dioxocyclo­hexa-1,4-diene-1,4-diolate (cyananil­ate) anion and one guanidinium cation, which are connected by N—H⋯O and N—H⋯N hydrogen bonds into a three-dimensional network.

Related literature

For the synthesis and structure of 2,5-dihy­droxy-3,6-dicyano-1,4-benzoquinone (cyananilic acid), see: Zaman et al. (1996[Zaman, M. B., Morita, Y., Toyoda, J., Yamochi, H., Sekizaki, S. & Nakasuji, K. (1996). Mol. Cryst. Liq. Cryst. 287, 249-257.]). For related cyananilic acid structures and background references, see: Zaman & Ripmeester (2010[Zaman, M. B. & Ripmeester, J. A. (2010). Supramol. Chem. 22, 582-585.]).

[Scheme 1]

Experimental

Crystal data
  • 2CH6N3+·C8N2O42−

  • Mr = 308.28

  • Monoclinic, C 2/c

  • a = 19.4873 (17) Å

  • b = 3.6611 (3) Å

  • c = 20.2452 (18) Å

  • β = 112.887 (2)°

  • V = 1330.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 173 K

  • 0.35 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.958, Tmax = 0.976

  • 7261 measured reflections

  • 1704 independent reflections

  • 1379 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.131

  • S = 1.08

  • 1704 reflections

  • 124 parameters

  • 61 restraints

  • All H-atom parameters refined

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.95 (2) 2.20 (2) 3.000 (2) 142 (2)
N2—H2⋯O1i 0.95 (2) 2.21 (2) 3.020 (2) 143 (2)
N2—H1⋯O2 0.95 (2) 2.27 (2) 3.062 (2) 140 (2)
N3—H4⋯N1ii 0.92 (2) 2.14 (2) 3.025 (2) 160 (2)
N3—H3⋯O2 0.93 (2) 2.02 (2) 2.900 (2) 156 (2)
N4—H6⋯N1ii 0.92 (2) 2.38 (2) 3.199 (2) 148 (3)
N4—H5⋯O1i 0.95 (2) 1.95 (2) 2.826 (2) 151 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y+1, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ATOMS (Dowty, 1999[Dowty, E. (1999). ATOMS. Shape Software, Kingsport, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The reaction between cyananilic acid and guanidinium carbonate in methanol leads to the title compound. Since 1997, cyananilic acid (2,5-dicyano-3,6-dihydroxy-1,4-benzoquinone) has been explored due to its valuable physicochemical features. It is an organic acid that has Mott-insulator properties, and organic ferroelectricity (Zaman & Ripmeester, 2010). It forms three dimensional network through N-H···O and N-H···N hydrogen bonds (Fig. 2).

Related literature top

For the synthesis and structure of 2,5-dihydroxy-3,6-dicyano-1,4-benzoquinone (cyananilic acid), see: Zaman et al. (1996). For related cyananilic acid structures and background references, see: Zaman & Ripmeester (2010).

Experimental top

Cyananilic acid has been synthesized according to our published method (Zaman et al., 1996) and purified by recrystallization from benzene. Light yellow compound was grown by slow evaporation of a methanol solution containing a 1:1 stoichiometric quantity of guanidinium carbonate (Aldrich, 98%) and cyananilic acid under ambient conditions. Compound decomposes at 593K.

Refinement top

N-H distances were restrained to 0.95 (2) Å and all H atoms were refined isotropically. Non- hydrogen atoms were restrained to have the same Uij components with SHELXL97 (Sheldrick, 2008) instruction 'SIMU C1 < N4'.

Computing details top

Data collection: SMART (Bruker 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Fragments generated by symmetry codes: (a) 1/2 - x, 1,5 - y, 1 - z; (b) 1/2 - x, 1/2 + y, 1/2 - z; (c) 1/2 + x, 2.5 - y, 1/2 + z. Hydrogen bonds are shown with dashed lines.
[Figure 2] Fig. 2. Packing diagram of the hydrogen-bonded framework structure of the title compound viewed down the b axial direction of the unit cell, showing hydrogen-bonding associations as thin lines.
bis(guanidinium) 2,5-dicyano-3,6-dioxocyclohexa-1,4-diene-1,4-diolate top
Crystal data top
2CH6N3+·C8N2O42F(000) = 640
Mr = 308.28Dx = 1.539 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -C 2ycCell parameters from 280 reflections
a = 19.4873 (17) Åθ = 5.0–26°
b = 3.6611 (3) ŵ = 0.12 mm1
c = 20.2452 (18) ÅT = 173 K
β = 112.887 (2)°Block, colourless
V = 1330.7 (2) Å30.35 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
1704 independent reflections
Radiation source: fine-focus sealed tube1379 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 28.7°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2626
Tmin = 0.958, Tmax = 0.976k = 44
7261 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131All H-atom parameters refined
S = 1.08 w = 1/[σ2(Fo2) + (0.078P)2 + 0.709P]
where P = (Fo2 + 2Fc2)/3
1704 reflections(Δ/σ)max < 0.001
124 parametersΔρmax = 0.44 e Å3
61 restraintsΔρmin = 0.42 e Å3
Crystal data top
2CH6N3+·C8N2O42V = 1330.7 (2) Å3
Mr = 308.28Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.4873 (17) ŵ = 0.12 mm1
b = 3.6611 (3) ÅT = 173 K
c = 20.2452 (18) Å0.35 × 0.30 × 0.20 mm
β = 112.887 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
1704 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1379 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.976Rint = 0.026
7261 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04461 restraints
wR(F2) = 0.131All H-atom parameters refined
S = 1.08Δρmax = 0.44 e Å3
1704 reflectionsΔρmin = 0.42 e Å3
124 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.30409 (9)0.9359 (5)0.47852 (9)0.0199 (4)
C20.23212 (9)0.7966 (5)0.42334 (8)0.0194 (4)
C30.18096 (9)0.6179 (5)0.44716 (9)0.0193 (4)
C40.11214 (10)0.4852 (5)0.39572 (9)0.0213 (4)
C50.11254 (10)0.8997 (5)0.17992 (9)0.0221 (4)
O10.34792 (8)1.0991 (4)0.45742 (7)0.0288 (4)
O20.22010 (7)0.8452 (4)0.35861 (7)0.0254 (3)
N10.05680 (9)0.3773 (5)0.35458 (9)0.0297 (4)
N20.17845 (9)0.7347 (5)0.19774 (8)0.0255 (4)
H20.1912 (16)0.640 (8)0.1606 (13)0.044 (7)*
H10.2039 (15)0.661 (8)0.2463 (11)0.046 (7)*
N30.08938 (9)1.0023 (5)0.23049 (9)0.0279 (4)
H40.0455 (12)1.133 (7)0.2154 (13)0.039 (7)*
H30.1219 (15)0.963 (8)0.2780 (11)0.051 (8)*
N40.07052 (10)0.9652 (5)0.11139 (9)0.0294 (4)
H60.0260 (13)1.086 (8)0.1016 (16)0.057 (9)*
H50.0886 (17)0.897 (8)0.0757 (14)0.048 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0204 (8)0.0214 (9)0.0206 (8)0.0006 (6)0.0110 (7)0.0004 (6)
C20.0201 (8)0.0210 (8)0.0184 (8)0.0008 (6)0.0088 (6)0.0004 (6)
C30.0172 (8)0.0214 (8)0.0192 (8)0.0015 (6)0.0071 (6)0.0006 (6)
C40.0209 (8)0.0229 (9)0.0218 (8)0.0001 (7)0.0102 (7)0.0003 (7)
C50.0223 (9)0.0237 (9)0.0218 (8)0.0009 (7)0.0103 (7)0.0002 (6)
O10.0267 (7)0.0376 (8)0.0259 (7)0.0090 (6)0.0145 (6)0.0012 (6)
O20.0250 (7)0.0345 (8)0.0173 (6)0.0013 (5)0.0089 (5)0.0023 (5)
N10.0226 (8)0.0345 (10)0.0293 (8)0.0045 (7)0.0072 (7)0.0028 (7)
N20.0234 (8)0.0307 (9)0.0236 (8)0.0043 (6)0.0104 (6)0.0008 (7)
N30.0248 (8)0.0394 (10)0.0214 (8)0.0070 (7)0.0110 (7)0.0005 (7)
N40.0261 (8)0.0421 (10)0.0206 (8)0.0089 (7)0.0099 (7)0.0007 (7)
Geometric parameters (Å, º) top
C1—O11.246 (2)C5—N41.330 (2)
C1—C3i1.431 (2)C5—N21.336 (2)
C1—C21.502 (2)N2—H20.95 (2)
C2—O21.251 (2)N2—H10.95 (2)
C2—C31.424 (2)N3—H40.923 (19)
C3—C41.426 (2)N3—H30.93 (2)
C4—N11.146 (2)N4—H60.92 (2)
C5—N31.324 (2)N4—H50.95 (2)
O1—C1—C3i122.71 (15)N3—C5—N2120.05 (17)
O1—C1—C2118.30 (15)N4—C5—N2120.02 (17)
C3i—C1—C2118.99 (14)C5—N2—H2118.3 (18)
O2—C2—C3123.33 (15)C5—N2—H1117.9 (17)
O2—C2—C1118.10 (15)H2—N2—H1122 (2)
C3—C2—C1118.57 (14)C5—N3—H4116.2 (16)
C2—C3—C4119.52 (15)C5—N3—H3117.0 (18)
C2—C3—C1i122.44 (14)H4—N3—H3126 (2)
C4—C3—C1i118.04 (15)C5—N4—H6117.1 (19)
N1—C4—C3179.7 (2)C5—N4—H5119.0 (19)
N3—C5—N4119.93 (17)H6—N4—H5124 (3)
Symmetry code: (i) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2ii0.95 (2)2.20 (2)3.000 (2)142 (2)
N2—H2···O1ii0.95 (2)2.21 (2)3.020 (2)143 (2)
N2—H1···O20.95 (2)2.27 (2)3.062 (2)140 (2)
N2—H1···N2ii0.95 (2)2.64 (3)3.319 (3)129 (2)
N3—H4···N1iii0.92 (2)2.14 (2)3.025 (2)160 (2)
N3—H3···O20.93 (2)2.02 (2)2.900 (2)156 (2)
N4—H6···N1iii0.92 (2)2.38 (2)3.199 (2)148 (3)
N4—H5···O1ii0.95 (2)1.95 (2)2.826 (2)151 (3)
Symmetry codes: (ii) x+1/2, y1/2, z+1/2; (iii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula2CH6N3+·C8N2O42
Mr308.28
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)19.4873 (17), 3.6611 (3), 20.2452 (18)
β (°) 112.887 (2)
V3)1330.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.35 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.958, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
7261, 1704, 1379
Rint0.026
(sin θ/λ)max1)0.677
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.131, 1.08
No. of reflections1704
No. of parameters124
No. of restraints61
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.44, 0.42

Computer programs: SMART (Bruker 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ATOMS (Dowty, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.95 (2)2.20 (2)3.000 (2)142 (2)
N2—H2···O1i0.95 (2)2.21 (2)3.020 (2)143 (2)
N2—H1···O20.95 (2)2.27 (2)3.062 (2)140 (2)
N3—H4···N1ii0.923 (19)2.14 (2)3.025 (2)160 (2)
N3—H3···O20.93 (2)2.02 (2)2.900 (2)156 (2)
N4—H6···N1ii0.92 (2)2.38 (2)3.199 (2)148 (3)
N4—H5···O1i0.95 (2)1.95 (2)2.826 (2)151 (3)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y+1, z+1/2.
 

References

First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDowty, E. (1999). ATOMS. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZaman, M. B., Morita, Y., Toyoda, J., Yamochi, H., Sekizaki, S. & Nakasuji, K. (1996). Mol. Cryst. Liq. Cryst. 287, 249–257.  CrossRef CAS Google Scholar
First citationZaman, M. B. & Ripmeester, J. A. (2010). Supramol. Chem. 22, 582–585.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds