organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Chloro-3-cyclo­hexyl­sulfinyl-2,7-di­methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 24 May 2011; accepted 15 August 2011; online 27 August 2011)

In the title compound, C16H19ClO2S, the cyclo­hexyl ring adopts a chair conformation and the aryl­sulfinyl unit is positioned equatorial relative to the cyclo­hexyl group. The least-squares plane through all six C atoms of the cyclo­hexyl ring makes a dihedral angle of 74.80 (6)° with the mean plane of the benzofuran fragment. In the crystal, mol­ecules are linked through inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2009[Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191-195.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For structural studies of related 3-cyclo­hexyl­sulfinyl-5-halo-2-methyl-1-benzofuran derivatives, see: Choi et al. (2011a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011a). Acta Cryst. E67, o804.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011b). Acta Cryst. E67, o1026.],c[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011c). Acta Cryst. E67, o1039.]).

[Scheme 1]

Experimental

Crystal data
  • C16H19ClO2S

  • Mr = 310.82

  • Triclinic, [P \overline 1]

  • a = 5.7480 (3) Å

  • b = 11.6838 (5) Å

  • c = 12.2551 (5) Å

  • α = 70.076 (3)°

  • β = 77.244 (2)°

  • γ = 83.413 (3)°

  • V = 753.98 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 173 K

  • 0.33 × 0.18 × 0.14 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.883, Tmax = 0.948

  • 13573 measured reflections

  • 3487 independent reflections

  • 2752 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.116

  • S = 1.06

  • 3487 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O2i 1.00 2.31 3.276 (2) 163
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, many compounds containing a benzofuran skeleton have drawn much attention owing to their significant pharmacological properties such as antibacterial and antifungal, antitumor and antiviral, and antimicrobial activities (Aslam et al., 2009, Galal et al., 2009, Khan et al., 2005). These compounds occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing study of the substituent effect on the solid state structures of 3-cyclohexylsulfinyl-5-halo-2-methyl-1-benzofuran analogues (Choi et al., 2011a,b,c), we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.009 (1) Å from the least-squares plane defined by the nine constituent atoms. The cyclohexyl ring is in the chair form. The least-squares plane through all six C atoms of the cyclohexyl ring makes a dihedral angle of 74.80 (6)°° with the mean plane of the benzofuran fragment. The molecular packing (Fig. 2) is stabilized by intermolecular C—H···O hydrogen bonds between a cyclohexyl H atom and the O atom of the sulfinyl group (Table 1; C11—H11···O2i).

Related literature top

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2009); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For structural studies of related 3-cyclohexylsulfinyl-5-halo-2-methyl-1-benzofuran derivatives, see: Choi et al. (2011a,b,c).

Experimental top

77% 3-chloroperoxybenzoic acid (247 mg, 1.1 mmol) was added in small portions to a stirred solution of 5-chloro-3-cyclohexylsulfanyl-2,7-dimethyl-1-benzofuran (324 mg, 1.1 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 73%, m.p. 405–406 K; Rf = 0.45 (hexane–ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl, 1.00 Å for methine, 0.99 Å for methylene and 0.98 Å for methyl H atoms, respectively. Uiso(H) = 1.2Ueq(C) for aryl, methine, methylene, and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z.]
5-Chloro-3-cyclohexylsulfinyl-2,7-dimethyl-1-benzofuran top
Crystal data top
C16H19ClO2SZ = 2
Mr = 310.82F(000) = 328
Triclinic, P1Dx = 1.369 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.7480 (3) ÅCell parameters from 4179 reflections
b = 11.6838 (5) Åθ = 3.0–27.4°
c = 12.2551 (5) ŵ = 0.39 mm1
α = 70.076 (3)°T = 173 K
β = 77.244 (2)°Block, colourless
γ = 83.413 (3)°0.33 × 0.18 × 0.14 mm
V = 753.98 (6) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3487 independent reflections
Radiation source: rotating anode2752 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.049
Detector resolution: 10.0 pixels mm-1θmax = 27.7°, θmin = 1.8°
ϕ and ω scansh = 76
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1515
Tmin = 0.883, Tmax = 0.948l = 1515
13573 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: difference Fourier map
wR(F2) = 0.116H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0491P)2 + 0.2498P]
where P = (Fo2 + 2Fc2)/3
3487 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C16H19ClO2Sγ = 83.413 (3)°
Mr = 310.82V = 753.98 (6) Å3
Triclinic, P1Z = 2
a = 5.7480 (3) ÅMo Kα radiation
b = 11.6838 (5) ŵ = 0.39 mm1
c = 12.2551 (5) ÅT = 173 K
α = 70.076 (3)°0.33 × 0.18 × 0.14 mm
β = 77.244 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3487 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2752 reflections with I > 2σ(I)
Tmin = 0.883, Tmax = 0.948Rint = 0.049
13573 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.06Δρmax = 0.44 e Å3
3487 reflectionsΔρmin = 0.27 e Å3
183 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.26205 (10)0.19475 (6)0.06775 (5)0.05045 (18)
S10.47811 (9)0.36573 (4)0.41383 (4)0.03095 (15)
O10.3493 (2)0.05713 (11)0.37764 (11)0.0314 (3)
O20.7264 (3)0.40766 (12)0.37025 (14)0.0415 (4)
C10.4738 (4)0.23324 (15)0.37493 (16)0.0288 (4)
C20.6529 (3)0.18767 (16)0.29578 (16)0.0288 (4)
C30.8708 (4)0.22616 (17)0.22279 (17)0.0333 (4)
H30.93630.29950.21710.040*
C40.9868 (4)0.15224 (19)0.15917 (17)0.0365 (5)
C50.8937 (4)0.04503 (18)0.16450 (17)0.0368 (5)
H50.98140.00190.11800.044*
C60.6771 (4)0.00549 (17)0.23564 (17)0.0338 (4)
C70.5656 (4)0.07938 (16)0.30115 (16)0.0295 (4)
C80.2989 (4)0.15212 (15)0.42236 (16)0.0296 (4)
C90.5649 (4)0.10708 (18)0.2428 (2)0.0449 (5)
H9A0.66280.14320.18550.067*
H9B0.40450.08580.22480.067*
H9C0.55390.16590.32280.067*
C100.0724 (4)0.14949 (17)0.50709 (17)0.0347 (4)
H10A0.06250.21730.53810.052*
H10B0.06530.07220.57250.052*
H10C0.06140.15730.46710.052*
C110.2917 (3)0.46699 (15)0.31664 (15)0.0271 (4)
H110.13190.43060.33810.033*
C120.3878 (4)0.48526 (18)0.18677 (17)0.0365 (5)
H12A0.39850.40620.17260.044*
H12B0.55030.51680.16400.044*
C130.2246 (5)0.5751 (2)0.11125 (18)0.0458 (6)
H13A0.29560.59050.02650.055*
H13B0.06800.53880.12750.055*
C140.1878 (5)0.69445 (19)0.13643 (18)0.0436 (5)
H14A0.07340.74840.08990.052*
H14B0.34140.73540.11170.052*
C150.0929 (4)0.67408 (17)0.26706 (18)0.0374 (5)
H15A0.06790.64050.28990.045*
H15B0.07770.75310.28180.045*
C160.2574 (4)0.58673 (16)0.34240 (17)0.0337 (4)
H16A0.41390.62340.32500.040*
H16B0.18760.57170.42720.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0289 (3)0.0773 (4)0.0411 (3)0.0036 (3)0.0002 (3)0.0178 (3)
S10.0310 (3)0.0328 (2)0.0332 (3)0.0023 (2)0.0108 (2)0.01293 (18)
O10.0281 (8)0.0294 (6)0.0369 (7)0.0023 (6)0.0058 (6)0.0110 (5)
O20.0292 (8)0.0430 (7)0.0580 (9)0.0037 (7)0.0144 (8)0.0194 (7)
C10.0275 (10)0.0299 (8)0.0300 (9)0.0001 (8)0.0086 (9)0.0095 (7)
C20.0259 (10)0.0321 (8)0.0301 (9)0.0006 (8)0.0111 (9)0.0092 (7)
C30.0290 (11)0.0382 (9)0.0328 (10)0.0039 (9)0.0088 (9)0.0092 (8)
C40.0253 (11)0.0504 (11)0.0307 (10)0.0004 (9)0.0069 (9)0.0088 (8)
C50.0347 (12)0.0458 (11)0.0327 (10)0.0108 (10)0.0116 (10)0.0169 (8)
C60.0338 (12)0.0351 (9)0.0351 (10)0.0058 (9)0.0129 (10)0.0132 (8)
C70.0251 (10)0.0323 (8)0.0305 (9)0.0005 (8)0.0071 (9)0.0084 (7)
C80.0292 (11)0.0296 (8)0.0311 (9)0.0002 (8)0.0095 (9)0.0097 (7)
C90.0470 (14)0.0391 (10)0.0557 (13)0.0044 (10)0.0139 (12)0.0239 (10)
C100.0303 (11)0.0391 (10)0.0339 (10)0.0053 (9)0.0029 (9)0.0116 (8)
C110.0227 (10)0.0315 (8)0.0293 (9)0.0021 (8)0.0060 (8)0.0118 (7)
C120.0382 (12)0.0432 (10)0.0306 (9)0.0054 (9)0.0069 (10)0.0174 (8)
C130.0556 (16)0.0515 (12)0.0327 (10)0.0089 (11)0.0156 (11)0.0160 (9)
C140.0481 (15)0.0425 (11)0.0357 (11)0.0048 (10)0.0107 (11)0.0074 (8)
C150.0389 (13)0.0337 (9)0.0399 (11)0.0027 (9)0.0060 (10)0.0146 (8)
C160.0378 (12)0.0337 (9)0.0329 (10)0.0010 (9)0.0061 (9)0.0157 (8)
Geometric parameters (Å, º) top
Cl1—C41.739 (2)C10—H10A0.9800
S1—O21.4860 (15)C10—H10B0.9800
S1—C11.7723 (18)C10—H10C0.9800
S1—C111.8107 (19)C11—C121.514 (3)
O1—C71.373 (2)C11—C161.519 (2)
O1—C81.374 (2)C11—H111.0000
C1—C81.354 (3)C12—C131.528 (3)
C1—C21.438 (3)C12—H12A0.9900
C2—C71.390 (2)C12—H12B0.9900
C2—C31.390 (3)C13—C141.510 (3)
C3—C41.377 (3)C13—H13A0.9900
C3—H30.9500C13—H13B0.9900
C4—C51.394 (3)C14—C151.517 (3)
C5—C61.379 (3)C14—H14A0.9900
C5—H50.9500C14—H14B0.9900
C6—C71.385 (3)C15—C161.520 (3)
C6—C91.498 (3)C15—H15A0.9900
C8—C101.471 (3)C15—H15B0.9900
C9—H9A0.9800C16—H16A0.9900
C9—H9B0.9800C16—H16B0.9900
C9—H9C0.9800
O2—S1—C1106.29 (9)H10A—C10—H10C109.5
O2—S1—C11108.27 (9)H10B—C10—H10C109.5
C1—S1—C1198.88 (8)C12—C11—C16111.89 (15)
C7—O1—C8106.36 (14)C12—C11—S1113.85 (13)
C8—C1—C2107.62 (16)C16—C11—S1107.54 (12)
C8—C1—S1124.13 (15)C12—C11—H11107.8
C2—C1—S1128.16 (14)C16—C11—H11107.8
C7—C2—C3119.49 (17)S1—C11—H11107.8
C7—C2—C1104.58 (17)C11—C12—C13110.31 (17)
C3—C2—C1135.92 (17)C11—C12—H12A109.6
C4—C3—C2116.40 (18)C13—C12—H12A109.6
C4—C3—H3121.8C11—C12—H12B109.6
C2—C3—H3121.8C13—C12—H12B109.6
C3—C4—C5123.1 (2)H12A—C12—H12B108.1
C3—C4—Cl1118.46 (16)C14—C13—C12111.64 (18)
C5—C4—Cl1118.48 (17)C14—C13—H13A109.3
C6—C5—C4121.56 (19)C12—C13—H13A109.3
C6—C5—H5119.2C14—C13—H13B109.3
C4—C5—H5119.2C12—C13—H13B109.3
C5—C6—C7114.61 (18)H13A—C13—H13B108.0
C5—C6—C9124.04 (19)C13—C14—C15110.96 (17)
C7—C6—C9121.34 (19)C13—C14—H14A109.4
O1—C7—C6124.32 (17)C15—C14—H14A109.4
O1—C7—C2110.81 (16)C13—C14—H14B109.4
C6—C7—C2124.84 (19)C15—C14—H14B109.4
C1—C8—O1110.61 (17)H14A—C14—H14B108.0
C1—C8—C10132.59 (17)C14—C15—C16111.22 (17)
O1—C8—C10116.78 (15)C14—C15—H15A109.4
C6—C9—H9A109.5C16—C15—H15A109.4
C6—C9—H9B109.5C14—C15—H15B109.4
H9A—C9—H9B109.5C16—C15—H15B109.4
C6—C9—H9C109.5H15A—C15—H15B108.0
H9A—C9—H9C109.5C11—C16—C15110.08 (16)
H9B—C9—H9C109.5C11—C16—H16A109.6
C8—C10—H10A109.5C15—C16—H16A109.6
C8—C10—H10B109.5C11—C16—H16B109.6
H10A—C10—H10B109.5C15—C16—H16B109.6
C8—C10—H10C109.5H16A—C16—H16B108.2
O2—S1—C1—C8163.69 (16)C3—C2—C7—O1179.98 (16)
C11—S1—C1—C884.21 (17)C1—C2—C7—O10.2 (2)
O2—S1—C1—C212.42 (19)C3—C2—C7—C61.9 (3)
C11—S1—C1—C299.67 (18)C1—C2—C7—C6177.87 (18)
C8—C1—C2—C70.8 (2)C2—C1—C8—O11.2 (2)
S1—C1—C2—C7177.46 (14)S1—C1—C8—O1177.97 (13)
C8—C1—C2—C3179.5 (2)C2—C1—C8—C10179.5 (2)
S1—C1—C2—C32.8 (3)S1—C1—C8—C103.7 (3)
C7—C2—C3—C40.2 (3)C7—O1—C8—C11.0 (2)
C1—C2—C3—C4179.4 (2)C7—O1—C8—C10179.65 (16)
C2—C3—C4—C50.9 (3)O2—S1—C11—C1251.25 (15)
C2—C3—C4—Cl1179.20 (14)C1—S1—C11—C1259.27 (15)
C3—C4—C5—C60.5 (3)O2—S1—C11—C1673.30 (14)
Cl1—C4—C5—C6179.60 (15)C1—S1—C11—C16176.18 (13)
C4—C5—C6—C71.0 (3)C16—C11—C12—C1355.8 (2)
C4—C5—C6—C9178.37 (19)S1—C11—C12—C13178.01 (14)
C8—O1—C7—C6178.57 (18)C11—C12—C13—C1455.1 (2)
C8—O1—C7—C20.5 (2)C12—C13—C14—C1555.6 (3)
C5—C6—C7—O1179.95 (17)C13—C14—C15—C1656.4 (3)
C9—C6—C7—O10.6 (3)C12—C11—C16—C1556.7 (2)
C5—C6—C7—C22.2 (3)S1—C11—C16—C15177.55 (14)
C9—C6—C7—C2177.18 (19)C14—C15—C16—C1156.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O2i1.002.313.276 (2)163
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC16H19ClO2S
Mr310.82
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)5.7480 (3), 11.6838 (5), 12.2551 (5)
α, β, γ (°)70.076 (3), 77.244 (2), 83.413 (3)
V3)753.98 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.33 × 0.18 × 0.14
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.883, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
13573, 3487, 2752
Rint0.049
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.116, 1.06
No. of reflections3487
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.27

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O2i1.002.313.276 (2)162.7
Symmetry code: (i) x1, y, z.
 

Acknowledgements

This work was supported by a Dong-eui University grant (2011AA096).

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191–195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011a). Acta Cryst. E67, o804.  CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011b). Acta Cryst. E67, o1026.  CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011c). Acta Cryst. E67, o1039.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds