metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Ferrocenyl-2-(4-nitro­phen­yl)acrylo­nitrile

aSchool of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
*Correspondence e-mail: nyamori@ukzn.ac.za

(Received 5 July 2011; accepted 15 August 2011; online 27 August 2011)

In the title compound, [Fe(C5H5)(C14H9N2O2)], the ferrocenyl rings exhibit an eclipsed conformation with a staggering angle of 15.9°, which is quite large compared to similar compounds.

Related literature

For background to ferrocene chemistry, see: Štěpnička (2008[Štěpnička, P. (2008). Ferrocenes: Ligands, Materials and Biomolecules. Chichester: John Wiley and Sons.]); Gooding et al. (1983[Gooding, R., Lillya, C. P. & Chiene, C. W. (1983). J. Chem. Soc. Chem. Commun. pp. 151-153.]); Togni & Hayashi (1995[Togni, A. & Hayashi, T. (1995). Ferrocenes. Weinheim: VCH.]). For related ferrocenylacrylonitrile structures, see: Cao & Ye (2008[Cao, L.-Y. & Ye, H.-Y. (2008). Acta Cryst. E64, m822.]); Imrie et al. (2007[Imrie, C., Kleyi, P., Nyamori, V. O., Gerber, I. A., Levendis, D. C. & Look, J. (2007). J. Organomet. Chem. 692, 3443-3453.]). For the synthesis of acrylonitriles, see: Liu et al. (2001[Liu, W.-Y., Xu, Q.-H., Ma, Y.-X., Liang, Y.-M., Dong, N.-L. & Guan, D.-P. (2001). J. Organomet. Chem. 625, 128-131.]); Jeffery (1999[Jeffery, T. (1999). Tetrahedron Lett. 31, 6641-6644.]); El-Tammany et al. (1983[El-Tammany, S., Raulfs, F.-W. & Hopf, H. (1983). Angew. Chem. Int. Ed. Engl. 22, 633-634.]); Imrie et al. (2007[Imrie, C., Kleyi, P., Nyamori, V. O., Gerber, I. A., Levendis, D. C. & Look, J. (2007). J. Organomet. Chem. 692, 3443-3453.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C14H9N2O2)]

  • Mr = 358.17

  • Monoclinic, P 21 /n

  • a = 6.7186 (14) Å

  • b = 28.036 (6) Å

  • c = 8.4165 (18) Å

  • β = 90.108 (6)°

  • V = 1585.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.96 mm−1

  • T = 173 K

  • 0.53 × 0.05 × 0.02 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.629, Tmax = 0.981

  • 9108 measured reflections

  • 2672 independent reflections

  • 1437 reflections with I > 2σ(I)

  • Rint = 0.112

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.114

  • S = 0.90

  • 2672 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.65 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The synthesis of acrylonitrile compounds has previously been achieved by the use of Wittig reactions (Liu et al., 2001), Heck reactions (Jeffery et al., 1999) and McMurry coupling reactions (El-Tammany et al., 1983). The growing interest in their synthesis and of their related derivatives, especially those with ferrocenyl moiety incorporated, is due to the fact that they are known to be important substrates for applications in material science (Štěpnička, 2008 and Togni & Hayashi, 1995). One of the major driving forces into their research is due to their ability to generate new materials with large second-order non-linear optical (NLO) features which in turn makes them useful in the field such application as photoactive semiconductors (Gooding, et al. 1983). The solvent-free reaction involved adding equimolar quantities of ferrocenecarboxaldehyde and 4-nitrophenylacetonitrile into a Pyrex tube. A catalytic amount of piperidine was added to act as a base. The reagents were thoroughly mixed, ground and then allowed to dry in the open air before being analysed by use of IR spectroscopy, 1H- and 13 C-NMR spectroscopy to determine the reaction progress. This reaction occurred readily and was characterized by the formation of a dark purple melt. The favourable reaction is due to the strong inductive effect of the nitro group which contributes to the activation of the methylene group taking part in the reaction. This could be explained by the kind of mechanism that operates in the Knoevenagel reaction where the strong electron withdrawing group (NO2 and CN) is expected to stabilize the intermediate. The molecule is characterized by two planes i.e. nitrile-ethylene and nitro-phenyl moieties which are almost coplanar with the torsion angles of C19–C12–C13–C14 being -8.8 (7) while C19–C12–C13–C18 is 6.0 (7)°. The nitro group of the nitrophenyl moiety is slightly twisted from the plane of the phenyl ring, with the torsion angles of C17–C16–N2–O1 and C15–C16–N2–O2 being 6.9 (7) and 6.5 (7) respectively. The ferrocenyl rings have an eclipsed conformation with a staggering angle of 15.9° which is quite large compared to a similar compound such as 3-ferrocenyl-2-(4-cyanophenyl)acrylonitrile (Imrie et al., 2007) with an angle of 1.9°. The single C–C bonds around the ethylene group have a bond distance of 1.427 (7) Å for the C10–C11, which is shorter than C12–C14, 1.475 (7) Å. This difference in bond lengths has also been observed by Cao et al. (2008) and Imrie et al. (2007).

Related literature top

For background to ferrocene chemistry, see: Štěpnička (2008); Gooding et al. (1983); Togni & Hayashi (1995). For related ferrocenylacrylonitrile structures, see: Cao & Ye (2008); Imrie et al. (2007). For the synthesis of acrylonitriles, see: Liu et al. (2001); Jeffery (1999); El-Tammany et al. (1983); Imrie et al. (2007).

Experimental top

Into a Pyrex tube fitted with a ground glass joint, was added an equimolar quantity of ferrocenecarboxaldehyde (200.2 mg, 0.9353 mmol) and 4-nitrophenylacetonitrile (150.7 mg, 0.9294 mmol). The compounds were thoroughly mixed and ground. Thereafter, two drops of piperidine was added to the solid mixture. The reaction mixture rapidly changed into a purple melt which was allowed to dry into a dark purple solid as a crude product. The product was further subjected to column chromatography using hexane/diethyl ether (4:1) as the eluting solvent to achieve purple crystals (330 mg, 99%) m.p. 195°C; IR (KBr cm-1) 3096, 3056, 2218, 1602, 1579, 1511, 1456, 1371, 1253, 1199, 1199, 1049, 1032, 1001, 847, 823, 752, 689; 1H-NMR (CDCl3) 8.29 (2H, d, J 8.9, ArH), 7.77 (2H, d, J 8.9, ArH), 7.61 (1H, s, CH), 5.05 (2H, t, J 1.8, C5H4), 4.68 (2H, t, J 1.8, C5H4), 4.29 (5H, s, C5H5); 13 C-NMR (CDCl3) 147.87, 147.31, 141.35, 125.89, 124.87, 118.77, 104.41, 76.90, 73.21, 71.21, 70.59; m/z (EI) 359 (M+ +1, 12%), 358 (M+, 55%), 312 (7), 191 (6), 190 (12), 165 (6), 121 (25), 56 (6), 32 (19), 28 (100); Anal. Calc for C19H14N2O2Fe: C, 63.7; H, 3.9; N, 7.8; [M+], 358.040467; Found: C, 64.2; H, 4.3; N, 7.5; [M+], 358.040422.

Refinement top

The aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids).
3-Ferrocenyl-2-(4-nitrophenyl)acrylonitrile top
Crystal data top
[Fe(C5H5)(C14H9N2O2)]F(000) = 736
Mr = 358.17Dx = 1.501 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1007 reflections
a = 6.7186 (14) Åθ = 2.5–22.0°
b = 28.036 (6) ŵ = 0.96 mm1
c = 8.4165 (18) ÅT = 173 K
β = 90.108 (6)°Needle, brown
V = 1585.3 (6) Å30.53 × 0.05 × 0.02 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1437 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.112
ϕ and ω scansθmax = 25°, θmin = 0.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 77
Tmin = 0.629, Tmax = 0.981k = 2433
9108 measured reflectionsl = 109
2672 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.041P)2]
where P = (Fo2 + 2Fc2)/3
2672 reflections(Δ/σ)max = 0.001
218 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
[Fe(C5H5)(C14H9N2O2)]V = 1585.3 (6) Å3
Mr = 358.17Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.7186 (14) ŵ = 0.96 mm1
b = 28.036 (6) ÅT = 173 K
c = 8.4165 (18) Å0.53 × 0.05 × 0.02 mm
β = 90.108 (6)°
Data collection top
Bruker APEXII CCD
diffractometer
2672 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1437 reflections with I > 2σ(I)
Tmin = 0.629, Tmax = 0.981Rint = 0.112
9108 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 0.90Δρmax = 0.36 e Å3
2672 reflectionsΔρmin = 0.65 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ······. 0.962

Noted PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ··· 3.1 Ratio

No atoms missing from model. Structure complete. R factor = 5%. PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C3 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Fe1

Noted. PLAT341_ALERT_3_C Low Bond Precision on C—C Bonds ··············· 0.0081 A ng PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.595 105

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7532 (9)0.1921 (2)0.2707 (7)0.0432 (16)
H10.72780.17020.18710.052*
C20.6179 (11)0.2232 (3)0.3360 (8)0.063 (2)
H20.48230.2260.30520.075*
C30.7118 (13)0.2501 (2)0.4554 (8)0.071 (2)
H30.65230.2740.51990.086*
C40.9119 (12)0.2348 (3)0.4607 (7)0.062 (2)
H41.01280.24710.52850.074*
C50.9355 (9)0.1985 (2)0.3497 (7)0.0461 (17)
H51.05440.18110.33060.055*
C60.4953 (8)0.13772 (19)0.5817 (7)0.0342 (15)
H60.36970.1350.53040.041*
C70.5441 (9)0.1706 (2)0.7033 (7)0.0426 (16)
H70.45610.19330.74870.051*
C80.7447 (10)0.16392 (19)0.7455 (7)0.0430 (16)
H80.81620.18150.82340.052*
C90.8213 (8)0.1265 (2)0.6515 (7)0.0355 (15)
H90.95370.11470.65560.043*
C100.6672 (7)0.10918 (18)0.5490 (6)0.0276 (14)
C110.6982 (7)0.07124 (18)0.4387 (6)0.0244 (13)
H110.83380.06360.41990.029*
C120.5657 (7)0.04438 (18)0.3566 (6)0.0235 (13)
C130.6178 (7)0.00500 (18)0.2482 (6)0.0233 (13)
C140.4696 (8)0.02564 (19)0.1894 (6)0.0285 (14)
H140.33450.01990.21620.034*
C150.5161 (8)0.0640 (2)0.0932 (6)0.0322 (15)
H150.41460.08410.05190.039*
C160.7119 (8)0.07241 (18)0.0592 (6)0.0292 (13)
C170.8631 (8)0.0431 (2)0.1144 (7)0.0391 (16)
H170.99810.04970.08890.047*
C180.8141 (7)0.0042 (2)0.2070 (6)0.0312 (14)
H180.91620.01660.24320.037*
C190.3559 (8)0.05321 (19)0.3775 (7)0.0304 (14)
N10.1881 (7)0.05873 (18)0.3927 (6)0.0506 (15)
N20.7683 (9)0.11443 (17)0.0399 (6)0.0459 (14)
O10.9458 (7)0.12327 (16)0.0540 (6)0.0688 (15)
O20.6336 (7)0.13769 (15)0.0995 (5)0.0585 (13)
Fe10.72165 (11)0.17982 (3)0.50931 (10)0.0325 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.061 (4)0.035 (4)0.034 (3)0.000 (4)0.006 (3)0.003 (3)
C20.081 (5)0.059 (5)0.048 (5)0.016 (5)0.008 (4)0.023 (4)
C30.133 (8)0.034 (4)0.047 (5)0.009 (5)0.038 (6)0.007 (4)
C40.096 (6)0.061 (5)0.029 (4)0.050 (5)0.004 (4)0.002 (4)
C50.050 (4)0.052 (4)0.036 (4)0.015 (3)0.007 (3)0.002 (3)
C60.033 (3)0.030 (4)0.040 (4)0.005 (3)0.008 (3)0.003 (3)
C70.057 (4)0.031 (4)0.040 (4)0.001 (3)0.022 (3)0.005 (3)
C80.065 (4)0.026 (4)0.038 (4)0.014 (3)0.004 (4)0.005 (3)
C90.030 (3)0.032 (4)0.044 (4)0.005 (3)0.007 (3)0.002 (3)
C100.032 (3)0.024 (3)0.027 (3)0.000 (3)0.006 (3)0.005 (3)
C110.015 (3)0.025 (3)0.032 (3)0.001 (2)0.002 (2)0.002 (3)
C120.015 (3)0.024 (3)0.032 (3)0.004 (2)0.001 (3)0.003 (3)
C130.020 (3)0.023 (3)0.026 (3)0.002 (3)0.002 (2)0.003 (3)
C140.022 (3)0.030 (4)0.033 (3)0.002 (3)0.002 (3)0.002 (3)
C150.032 (4)0.033 (4)0.032 (3)0.008 (3)0.006 (3)0.001 (3)
C160.041 (4)0.021 (3)0.026 (3)0.003 (3)0.001 (3)0.000 (2)
C170.033 (3)0.049 (4)0.035 (4)0.005 (3)0.005 (3)0.007 (3)
C180.020 (3)0.035 (4)0.039 (4)0.005 (3)0.003 (3)0.015 (3)
C190.025 (3)0.031 (4)0.035 (3)0.004 (3)0.001 (3)0.007 (3)
N10.024 (3)0.055 (4)0.073 (4)0.001 (3)0.001 (3)0.025 (3)
N20.061 (4)0.037 (3)0.040 (4)0.012 (3)0.007 (3)0.004 (3)
O10.061 (3)0.072 (4)0.073 (4)0.026 (3)0.013 (3)0.029 (3)
O20.075 (3)0.041 (3)0.060 (3)0.004 (3)0.008 (3)0.018 (2)
Fe10.0451 (5)0.0244 (4)0.0280 (4)0.0026 (5)0.0043 (4)0.0007 (4)
Geometric parameters (Å, º) top
C1—C21.375 (8)C8—H80.95
C1—C51.405 (8)C9—C101.431 (7)
C1—Fe12.049 (6)C9—Fe12.028 (5)
C1—H10.95C9—H90.95
C2—C31.405 (9)C10—C111.427 (7)
C2—Fe12.022 (6)C10—Fe12.041 (5)
C2—H20.95C11—C121.355 (6)
C3—C41.412 (9)C11—H110.95
C3—Fe12.024 (7)C12—C191.442 (7)
C3—H30.95C12—C131.475 (7)
C4—C51.390 (8)C13—C181.388 (7)
C4—Fe12.044 (6)C13—C141.405 (6)
C4—H40.95C14—C151.383 (7)
C5—Fe12.037 (6)C14—H140.95
C5—H50.95C15—C161.367 (7)
C6—C71.414 (7)C15—H150.95
C6—C101.433 (7)C16—C171.386 (7)
C6—Fe12.020 (5)C16—N21.493 (7)
C6—H60.95C17—C181.381 (7)
C7—C81.406 (8)C17—H170.95
C7—Fe12.040 (6)C18—H180.95
C7—H70.95C19—N11.145 (6)
C8—C91.412 (7)N2—O21.222 (6)
C8—Fe12.043 (6)N2—O11.224 (6)
C2—C1—C5107.8 (6)C18—C13—C12121.4 (4)
C2—C1—Fe169.2 (4)C14—C13—C12120.5 (4)
C5—C1—Fe169.5 (3)C15—C14—C13121.4 (5)
C2—C1—H1126.1C15—C14—H14119.3
C5—C1—H1126.1C13—C14—H14119.3
Fe1—C1—H1126.8C16—C15—C14118.4 (5)
C1—C2—C3109.3 (7)C16—C15—H15120.8
C1—C2—Fe171.3 (4)C14—C15—H15120.8
C3—C2—Fe169.7 (4)C15—C16—C17122.2 (5)
C1—C2—H2125.4C15—C16—N2119.9 (5)
C3—C2—H2125.4C17—C16—N2118.0 (5)
Fe1—C2—H2125.2C18—C17—C16118.8 (5)
C2—C3—C4106.6 (7)C18—C17—H17120.6
C2—C3—Fe169.6 (4)C16—C17—H17120.6
C4—C3—Fe170.4 (4)C17—C18—C13121.0 (5)
C2—C3—H3126.7C17—C18—H18119.5
C4—C3—H3126.7C13—C18—H18119.5
Fe1—C3—H3124.8N1—C19—C12177.8 (6)
C5—C4—C3108.2 (6)O2—N2—O1125.0 (5)
C5—C4—Fe169.9 (4)O2—N2—C16117.5 (5)
C3—C4—Fe168.9 (4)O1—N2—C16117.5 (5)
C5—C4—H4125.9C6—Fe1—C2108.1 (3)
C3—C4—H4125.9C6—Fe1—C3127.8 (3)
Fe1—C4—H4126.9C2—Fe1—C340.7 (3)
C4—C5—C1108.1 (6)C6—Fe1—C968.8 (2)
C4—C5—Fe170.3 (4)C2—Fe1—C9169.1 (3)
C1—C5—Fe170.3 (3)C3—Fe1—C9149.4 (3)
C4—C5—H5125.9C6—Fe1—C5151.8 (2)
C1—C5—H5125.9C2—Fe1—C567.2 (3)
Fe1—C5—H5125C3—Fe1—C567.9 (3)
C7—C6—C10108.4 (5)C9—Fe1—C5110.3 (2)
C7—C6—Fe170.4 (3)C6—Fe1—C740.8 (2)
C10—C6—Fe170.1 (3)C2—Fe1—C7116.9 (3)
C7—C6—H6125.8C3—Fe1—C7106.5 (3)
C10—C6—H6125.8C9—Fe1—C768.1 (2)
Fe1—C6—H6125.3C5—Fe1—C7167.0 (2)
C8—C7—C6108.5 (5)C6—Fe1—C1041.30 (19)
C8—C7—Fe170.0 (3)C2—Fe1—C10129.8 (3)
C6—C7—Fe168.9 (3)C3—Fe1—C10167.4 (3)
C8—C7—H7125.7C9—Fe1—C1041.16 (19)
C6—C7—H7125.7C5—Fe1—C10119.0 (2)
Fe1—C7—H7127C7—Fe1—C1068.9 (2)
C7—C8—C9107.9 (5)C6—Fe1—C868.6 (2)
C7—C8—Fe169.8 (3)C2—Fe1—C8149.2 (3)
C9—C8—Fe169.1 (3)C3—Fe1—C8115.7 (3)
C7—C8—H8126.1C9—Fe1—C840.6 (2)
C9—C8—H8126.1C5—Fe1—C8130.2 (3)
Fe1—C8—H8126.6C7—Fe1—C840.3 (2)
C8—C9—C10109.0 (5)C10—Fe1—C869.1 (2)
C8—C9—Fe170.3 (3)C6—Fe1—C4166.5 (3)
C10—C9—Fe169.9 (3)C2—Fe1—C467.5 (3)
C8—C9—H9125.5C3—Fe1—C440.6 (3)
C10—C9—H9125.5C9—Fe1—C4117.9 (3)
Fe1—C9—H9125.9C5—Fe1—C439.8 (2)
C11—C10—C9122.6 (5)C7—Fe1—C4128.5 (3)
C11—C10—C6131.3 (5)C10—Fe1—C4151.2 (3)
C9—C10—C6106.1 (4)C8—Fe1—C4108.2 (2)
C11—C10—Fe1126.2 (4)C6—Fe1—C1118.2 (2)
C9—C10—Fe168.9 (3)C2—Fe1—C139.5 (2)
C6—C10—Fe168.6 (3)C3—Fe1—C167.7 (3)
C12—C11—C10130.5 (5)C9—Fe1—C1131.9 (2)
C12—C11—H11114.7C5—Fe1—C140.2 (2)
C10—C11—H11114.7C7—Fe1—C1150.2 (3)
C11—C12—C19118.9 (5)C10—Fe1—C1110.0 (2)
C11—C12—C13125.1 (4)C8—Fe1—C1169.3 (2)
C19—C12—C13115.9 (4)C4—Fe1—C167.1 (2)
C18—C13—C14118.1 (5)
C5—C1—C2—C30.7 (7)C10—C9—Fe1—C5111.2 (3)
Fe1—C1—C2—C359.6 (5)C8—C9—Fe1—C737.4 (3)
C5—C1—C2—Fe158.9 (4)C10—C9—Fe1—C782.6 (3)
C1—C2—C3—C40.5 (8)C8—C9—Fe1—C10120.0 (5)
Fe1—C2—C3—C461.1 (5)C10—C9—Fe1—C8120.0 (5)
C1—C2—C3—Fe160.6 (5)C8—C9—Fe1—C485.8 (4)
C2—C3—C4—C51.6 (7)C10—C9—Fe1—C4154.3 (3)
Fe1—C3—C4—C559.0 (4)C8—C9—Fe1—C1169.1 (3)
C2—C3—C4—Fe160.6 (5)C10—C9—Fe1—C170.9 (4)
C3—C4—C5—C12.0 (7)C4—C5—Fe1—C6167.6 (5)
Fe1—C4—C5—C160.4 (4)C1—C5—Fe1—C648.9 (7)
C3—C4—C5—Fe158.4 (5)C4—C5—Fe1—C281.7 (5)
C2—C1—C5—C41.7 (7)C1—C5—Fe1—C236.9 (4)
Fe1—C1—C5—C460.4 (4)C4—C5—Fe1—C337.6 (4)
C2—C1—C5—Fe158.8 (4)C1—C5—Fe1—C381.0 (4)
C10—C6—C7—C81.2 (6)C4—C5—Fe1—C9109.7 (5)
Fe1—C6—C7—C858.9 (4)C1—C5—Fe1—C9131.7 (4)
C10—C6—C7—Fe160.1 (4)C4—C5—Fe1—C729.4 (14)
C6—C7—C8—C90.7 (7)C1—C5—Fe1—C7148.0 (10)
Fe1—C7—C8—C958.8 (4)C4—C5—Fe1—C10154.2 (4)
C6—C7—C8—Fe158.2 (4)C1—C5—Fe1—C1087.2 (4)
C7—C8—C9—C100.1 (6)C4—C5—Fe1—C868.1 (5)
Fe1—C8—C9—C1059.4 (4)C1—C5—Fe1—C8173.3 (4)
C7—C8—C9—Fe159.2 (4)C1—C5—Fe1—C4118.6 (6)
C8—C9—C10—C11179.9 (5)C4—C5—Fe1—C1118.6 (6)
Fe1—C9—C10—C11120.3 (5)C8—C7—Fe1—C6120.3 (5)
C8—C9—C10—C60.9 (6)C8—C7—Fe1—C2152.9 (4)
Fe1—C9—C10—C658.7 (4)C6—C7—Fe1—C286.8 (4)
C8—C9—C10—Fe159.6 (4)C8—C7—Fe1—C3110.4 (4)
C7—C6—C10—C11179.8 (5)C6—C7—Fe1—C3129.3 (4)
Fe1—C6—C10—C11119.9 (6)C8—C7—Fe1—C937.7 (3)
C7—C6—C10—C91.3 (6)C6—C7—Fe1—C982.6 (4)
Fe1—C6—C10—C958.9 (4)C8—C7—Fe1—C547.6 (13)
C7—C6—C10—Fe160.2 (4)C6—C7—Fe1—C5167.8 (10)
C9—C10—C11—C12165.5 (5)C8—C7—Fe1—C1082.1 (4)
C6—C10—C11—C1215.8 (10)C6—C7—Fe1—C1038.2 (3)
Fe1—C10—C11—C12108.0 (6)C6—C7—Fe1—C8120.3 (5)
C10—C11—C12—C190.2 (9)C8—C7—Fe1—C471.3 (5)
C10—C11—C12—C13178.3 (5)C6—C7—Fe1—C4168.5 (4)
C11—C12—C13—C187.7 (8)C8—C7—Fe1—C1175.8 (4)
C19—C12—C13—C18174.0 (5)C6—C7—Fe1—C155.6 (6)
C11—C12—C13—C14169.4 (5)C11—C10—Fe1—C6126.2 (6)
C19—C12—C13—C148.8 (7)C9—C10—Fe1—C6118.1 (4)
C18—C13—C14—C150.1 (8)C11—C10—Fe1—C255.9 (6)
C12—C13—C14—C15177.1 (5)C9—C10—Fe1—C2171.5 (4)
C13—C14—C15—C161.6 (8)C6—C10—Fe1—C270.4 (4)
C14—C15—C16—C171.6 (8)C11—C10—Fe1—C392.9 (12)
C14—C15—C16—N2178.0 (5)C9—C10—Fe1—C3151.5 (11)
C15—C16—C17—C180.1 (8)C6—C10—Fe1—C333.3 (13)
N2—C16—C17—C18179.6 (5)C11—C10—Fe1—C9115.7 (6)
C16—C17—C18—C131.6 (8)C6—C10—Fe1—C9118.1 (4)
C14—C13—C18—C171.7 (8)C11—C10—Fe1—C527.5 (5)
C12—C13—C18—C17175.5 (5)C9—C10—Fe1—C588.2 (4)
C11—C12—C19—N1154 (17)C6—C10—Fe1—C5153.7 (3)
C13—C12—C19—N124 (17)C11—C10—Fe1—C7163.9 (5)
C15—C16—N2—O26.5 (7)C9—C10—Fe1—C780.4 (3)
C17—C16—N2—O2173.8 (5)C6—C10—Fe1—C737.7 (3)
C15—C16—N2—O1172.8 (5)C11—C10—Fe1—C8152.8 (5)
C17—C16—N2—O16.9 (7)C9—C10—Fe1—C837.1 (3)
C7—C6—Fe1—C2110.5 (4)C6—C10—Fe1—C881.0 (3)
C10—C6—Fe1—C2130.4 (4)C11—C10—Fe1—C462.8 (7)
C7—C6—Fe1—C369.7 (5)C9—C10—Fe1—C452.8 (6)
C10—C6—Fe1—C3171.2 (4)C6—C10—Fe1—C4170.9 (5)
C7—C6—Fe1—C980.6 (4)C11—C10—Fe1—C115.8 (5)
C10—C6—Fe1—C938.5 (3)C9—C10—Fe1—C1131.5 (3)
C7—C6—Fe1—C5174.2 (5)C6—C10—Fe1—C1110.4 (3)
C10—C6—Fe1—C555.2 (6)C7—C8—Fe1—C637.3 (3)
C10—C6—Fe1—C7119.1 (5)C9—C8—Fe1—C682.1 (3)
C7—C6—Fe1—C10119.1 (5)C7—C8—Fe1—C252.3 (7)
C7—C6—Fe1—C836.9 (3)C9—C8—Fe1—C2171.7 (5)
C10—C6—Fe1—C882.2 (3)C7—C8—Fe1—C385.5 (4)
C7—C6—Fe1—C442.0 (12)C9—C8—Fe1—C3155.2 (4)
C10—C6—Fe1—C4161.0 (10)C7—C8—Fe1—C9119.4 (5)
C7—C6—Fe1—C1152.2 (4)C7—C8—Fe1—C5167.4 (4)
C10—C6—Fe1—C188.7 (4)C9—C8—Fe1—C573.2 (4)
C1—C2—Fe1—C6112.7 (4)C9—C8—Fe1—C7119.4 (5)
C3—C2—Fe1—C6127.5 (4)C7—C8—Fe1—C1081.7 (4)
C1—C2—Fe1—C3119.8 (6)C9—C8—Fe1—C1037.6 (3)
C1—C2—Fe1—C941.0 (16)C7—C8—Fe1—C4128.7 (4)
C3—C2—Fe1—C9160.7 (13)C9—C8—Fe1—C4111.9 (4)
C1—C2—Fe1—C537.6 (4)C7—C8—Fe1—C1168.7 (12)
C3—C2—Fe1—C582.2 (4)C9—C8—Fe1—C149.4 (14)
C1—C2—Fe1—C7156.0 (4)C5—C4—Fe1—C6154.2 (9)
C3—C2—Fe1—C784.2 (5)C3—C4—Fe1—C634.4 (13)
C1—C2—Fe1—C1071.9 (5)C5—C4—Fe1—C280.9 (4)
C3—C2—Fe1—C10168.3 (4)C3—C4—Fe1—C238.9 (4)
C1—C2—Fe1—C8168.9 (4)C5—C4—Fe1—C3119.8 (6)
C3—C2—Fe1—C849.2 (7)C5—C4—Fe1—C988.7 (4)
C1—C2—Fe1—C480.9 (4)C3—C4—Fe1—C9151.5 (4)
C3—C2—Fe1—C438.9 (4)C3—C4—Fe1—C5119.8 (6)
C3—C2—Fe1—C1119.8 (6)C5—C4—Fe1—C7171.9 (4)
C2—C3—Fe1—C672.6 (5)C3—C4—Fe1—C768.3 (5)
C4—C3—Fe1—C6170.4 (4)C5—C4—Fe1—C1052.3 (7)
C4—C3—Fe1—C2117.0 (6)C3—C4—Fe1—C10172.1 (5)
C2—C3—Fe1—C9173.0 (5)C5—C4—Fe1—C8131.7 (4)
C4—C3—Fe1—C955.9 (7)C3—C4—Fe1—C8108.4 (4)
C2—C3—Fe1—C580.2 (4)C5—C4—Fe1—C138.0 (4)
C4—C3—Fe1—C536.8 (4)C3—C4—Fe1—C181.8 (4)
C2—C3—Fe1—C7112.3 (5)C2—C1—Fe1—C684.4 (5)
C4—C3—Fe1—C7130.7 (4)C5—C1—Fe1—C6156.2 (4)
C2—C3—Fe1—C1045.3 (13)C5—C1—Fe1—C2119.5 (6)
C4—C3—Fe1—C10162.3 (10)C2—C1—Fe1—C337.7 (4)
C2—C3—Fe1—C8154.5 (4)C5—C1—Fe1—C381.8 (4)
C4—C3—Fe1—C888.4 (4)C2—C1—Fe1—C9170.4 (4)
C2—C3—Fe1—C4117.0 (6)C5—C1—Fe1—C970.1 (5)
C2—C3—Fe1—C136.6 (4)C2—C1—Fe1—C5119.5 (6)
C4—C3—Fe1—C180.4 (4)C2—C1—Fe1—C746.7 (7)
C8—C9—Fe1—C681.4 (4)C5—C1—Fe1—C7166.2 (5)
C10—C9—Fe1—C638.6 (3)C2—C1—Fe1—C10129.0 (4)
C8—C9—Fe1—C2156.9 (13)C5—C1—Fe1—C10111.6 (4)
C10—C9—Fe1—C236.9 (15)C2—C1—Fe1—C8148.0 (12)
C8—C9—Fe1—C348.1 (6)C5—C1—Fe1—C828.6 (15)
C10—C9—Fe1—C3168.1 (5)C2—C1—Fe1—C481.9 (5)
C8—C9—Fe1—C5128.8 (4)C5—C1—Fe1—C437.6 (4)

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C14H9N2O2)]
Mr358.17
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)6.7186 (14), 28.036 (6), 8.4165 (18)
β (°) 90.108 (6)
V3)1585.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.53 × 0.05 × 0.02
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.629, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
9108, 2672, 1437
Rint0.112
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.114, 0.90
No. of reflections2672
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.65

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We thank Dr Manuel Fernandez for the data collection, Dr Benard Owaga for advice during the preparation of the manuscript and the University of KwaZulu-Natal and the NRF for financial support.

References

First citationBruker (2005). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, L.-Y. & Ye, H.-Y. (2008). Acta Cryst. E64, m822.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEl-Tammany, S., Raulfs, F.-W. & Hopf, H. (1983). Angew. Chem. Int. Ed. Engl. 22, 633–634.  Google Scholar
First citationGooding, R., Lillya, C. P. & Chiene, C. W. (1983). J. Chem. Soc. Chem. Commun. pp. 151–153.  Google Scholar
First citationImrie, C., Kleyi, P., Nyamori, V. O., Gerber, I. A., Levendis, D. C. & Look, J. (2007). J. Organomet. Chem. 692, 3443–3453.  Google Scholar
First citationJeffery, T. (1999). Tetrahedron Lett. 31, 6641–6644.  Google Scholar
First citationLiu, W.-Y., Xu, Q.-H., Ma, Y.-X., Liang, Y.-M., Dong, N.-L. & Guan, D.-P. (2001). J. Organomet. Chem. 625, 128–131.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationŠtěpnička, P. (2008). Ferrocenes: Ligands, Materials and Biomolecules. Chichester: John Wiley and Sons.  Google Scholar
First citationTogni, A. & Hayashi, T. (1995). Ferrocenes. Weinheim: VCH.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds