organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Meth­­oxy­phen­yl)-2-methyl-1H-indole-3-carbo­nitrile

aSchool of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China
*Correspondence e-mail: qxx@zzu.edu.cn

(Received 22 July 2011; accepted 2 August 2011; online 11 August 2011)

In the title compound, C17H14N2O, the dihedral angle between the indole ring system and the benzene ring is 58.41 (4)°. The crystal packing features ππ stacking [shortest centroid–centroid separation = 3.8040 (9) Å] and C—H⋯π inter­actions.

Related literature

For the synthesis of the title compound, see: Du et al. (2006[Du, Y., Liu, R., Linn, G. & Zhao, K. (2006). Org. Lett. 8, 5919-5922.]). For its precursor, see: Jin et al. (2009[Jin, H., Li, P., Liu, B. & Cheng, X. (2009). Acta Cryst. E65, o236.]). For a related structure, see: Yang et al. (2011[Yang, K., Li, P.-F., Liu, Y. & Fang, Z.-Z. (2011). Acta Cryst. E67, o1041.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14N2O

  • Mr = 262.30

  • Triclinic, [P \overline 1]

  • a = 7.7381 (10) Å

  • b = 9.4598 (14) Å

  • c = 9.7976 (16) Å

  • α = 95.983 (2)°

  • β = 95.464 (4)°

  • γ = 106.295 (5)°

  • V = 678.79 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2009[Rigaku (2009). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.984, Tmax = 0.987

  • 8580 measured reflections

  • 3210 independent reflections

  • 2146 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.090

  • S = 1.01

  • 3210 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C2–C7 and C8–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cg3i 0.95 2.83 3.6542 (14) 146
C10—H10⋯Cg2ii 0.95 2.95 3.7133 (14) 138
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+2.

Data collection: CrystalClear (Rigaku, 2009[Rigaku (2009). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2009[Rigaku (2009). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

In the molecular structure of the title compound, (I), (Fig. 1), the indole ring is almost planar with a dihedral angle of 2.66 (6)° between its pyrrole ring and fused benzene ring, which is greater than that [0.85 (6)°] of the 1-(2-chlorophenyl)- 6-fluoro-2-methyl-1H-indole-3-carbonitrile reported by Yang et al. (2011). The indole ring constructs an angle of 58.41 (4) ° with the methoxylbenzene ring, which is much less than that [80.91 (5)°] reported by Yang et al. (2011).

In the crystal packing, π-π stacking interaction and C—H···π interaction help establish the molecular packing. The shortest centroid-centroid separation is 3.8040 (9) Å, which occurs between the benzo part and pyrrole part of the molecules.

Related literature top

For the synthesis of the title compound, see: Du et al. (2006). For its precursor, see: Jin et al. (2009). For a related structure, see: Yang et al. (2011).

Experimental top

The title compound was prepared according to the method of the literature (Du, et al., 2006). Colourless prisms of (I) were grown from a mixture of ethyl actate and petroleum ether.

Refinement top

All H atoms were positioned geometrically (C—H = 0.95 and 0.98 Å)and refined as riding with Uiso(H) = 1.2Ueq(CH) or 1.5Ueq(CH3).

Computing details top

Data collection: CrystalClear (Rigaku, 2009); cell refinement: CrystalClear (Rigaku, 2009); data reduction: CrystalClear (Rigaku, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2009); software used to prepare material for publication: CrystalStructure (Rigaku, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of molecule one of (I) with 50% probability displacement ellipsoids.
1-(4-Methoxyphenyl)-2-methyl-1H-indole-3-carbonitrile top
Crystal data top
C17H14N2OZ = 2
Mr = 262.30F(000) = 276
Triclinic, P1Dx = 1.283 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7381 (10) ÅCell parameters from 2366 reflections
b = 9.4598 (14) Åθ = 2.1–27.9°
c = 9.7976 (16) ŵ = 0.08 mm1
α = 95.983 (2)°T = 113 K
β = 95.464 (4)°Prism, colorless
γ = 106.295 (5)°0.20 × 0.18 × 0.16 mm
V = 678.79 (17) Å3
Data collection top
Rigaku Saturn724 CCD
diffractometer
3210 independent reflections
Radiation source: rotating anode2146 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.035
Detector resolution: 14.22 pixels mm-1θmax = 27.9°, θmin = 2.1°
ω and ϕ scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2009)
k = 1212
Tmin = 0.984, Tmax = 0.987l = 1212
8580 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.038P)2]
where P = (Fo2 + 2Fc2)/3
3210 reflections(Δ/σ)max = 0.001
183 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C17H14N2Oγ = 106.295 (5)°
Mr = 262.30V = 678.79 (17) Å3
Triclinic, P1Z = 2
a = 7.7381 (10) ÅMo Kα radiation
b = 9.4598 (14) ŵ = 0.08 mm1
c = 9.7976 (16) ÅT = 113 K
α = 95.983 (2)°0.20 × 0.18 × 0.16 mm
β = 95.464 (4)°
Data collection top
Rigaku Saturn724 CCD
diffractometer
3210 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2009)
2146 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.987Rint = 0.035
8580 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.01Δρmax = 0.19 e Å3
3210 reflectionsΔρmin = 0.24 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.23428 (10)0.89022 (9)0.06414 (8)0.0300 (2)
N10.63352 (12)0.69683 (10)0.34222 (9)0.0207 (2)
N20.27094 (14)0.77814 (11)0.68887 (10)0.0350 (3)
C11.34704 (16)0.79705 (15)0.03434 (14)0.0386 (3)
H1A1.39900.77320.12110.058*
H1B1.44520.84920.01480.058*
H1C1.27410.70500.02370.058*
C21.08888 (14)0.83382 (12)0.13188 (11)0.0223 (3)
C31.04548 (15)0.69409 (12)0.17549 (11)0.0246 (3)
H31.11730.62930.15730.030*
C40.89572 (14)0.65052 (12)0.24598 (11)0.0241 (3)
H40.86610.55580.27710.029*
C50.78939 (14)0.74363 (12)0.27134 (11)0.0207 (2)
C60.83139 (14)0.88247 (12)0.22493 (11)0.0221 (2)
H60.75700.94570.24000.026*
C70.98146 (14)0.92716 (12)0.15712 (11)0.0226 (2)
H71.01191.02250.12740.027*
C80.48670 (14)0.57024 (11)0.29653 (11)0.0199 (2)
C90.45885 (14)0.46469 (12)0.17956 (11)0.0239 (3)
H90.54820.46950.11860.029*
C100.29541 (15)0.35277 (13)0.15628 (12)0.0279 (3)
H100.27150.27940.07740.033*
C110.16419 (15)0.34554 (12)0.24707 (12)0.0273 (3)
H110.05310.26760.22830.033*
C120.19364 (15)0.44962 (12)0.36305 (12)0.0235 (3)
H120.10510.44290.42480.028*
C130.35650 (14)0.56517 (12)0.38782 (11)0.0205 (2)
C140.42996 (15)0.69530 (12)0.48926 (11)0.0216 (2)
C150.59797 (14)0.77272 (12)0.45929 (11)0.0213 (2)
C160.72912 (15)0.91064 (12)0.53687 (11)0.0293 (3)
H16A0.73110.99430.48520.044*
H16B0.85060.89760.54860.044*
H16C0.69200.93100.62800.044*
C170.34392 (15)0.74071 (12)0.60128 (12)0.0246 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0284 (4)0.0321 (5)0.0346 (5)0.0114 (4)0.0121 (4)0.0123 (4)
N10.0221 (5)0.0197 (5)0.0199 (5)0.0056 (4)0.0027 (4)0.0018 (4)
N20.0394 (6)0.0346 (6)0.0341 (6)0.0142 (5)0.0124 (5)0.0027 (5)
C10.0320 (7)0.0475 (8)0.0473 (8)0.0209 (6)0.0166 (6)0.0203 (7)
C20.0222 (6)0.0251 (6)0.0184 (6)0.0054 (5)0.0012 (5)0.0034 (5)
C30.0247 (6)0.0267 (6)0.0265 (6)0.0128 (5)0.0033 (5)0.0070 (5)
C40.0266 (6)0.0217 (6)0.0255 (6)0.0086 (5)0.0018 (5)0.0073 (5)
C50.0208 (5)0.0225 (6)0.0179 (5)0.0057 (5)0.0006 (4)0.0024 (4)
C60.0259 (6)0.0199 (6)0.0203 (6)0.0085 (5)0.0002 (5)0.0000 (5)
C70.0282 (6)0.0178 (6)0.0200 (6)0.0048 (5)0.0010 (5)0.0019 (4)
C80.0208 (5)0.0183 (5)0.0212 (6)0.0072 (4)0.0000 (4)0.0041 (4)
C90.0268 (6)0.0237 (6)0.0226 (6)0.0098 (5)0.0032 (5)0.0024 (5)
C100.0307 (6)0.0223 (6)0.0287 (7)0.0077 (5)0.0005 (5)0.0022 (5)
C110.0238 (6)0.0201 (6)0.0361 (7)0.0055 (5)0.0001 (5)0.0016 (5)
C120.0234 (6)0.0219 (6)0.0284 (6)0.0098 (5)0.0050 (5)0.0067 (5)
C130.0237 (6)0.0193 (5)0.0209 (6)0.0104 (5)0.0011 (5)0.0039 (4)
C140.0261 (6)0.0216 (6)0.0195 (6)0.0107 (5)0.0027 (4)0.0038 (5)
C150.0262 (6)0.0203 (6)0.0184 (6)0.0091 (5)0.0014 (4)0.0023 (4)
C160.0339 (6)0.0258 (6)0.0243 (6)0.0046 (5)0.0023 (5)0.0006 (5)
C170.0279 (6)0.0213 (6)0.0258 (6)0.0090 (5)0.0028 (5)0.0040 (5)
Geometric parameters (Å, º) top
O1—C21.3675 (12)C7—H70.9500
O1—C11.4317 (13)C8—C91.3965 (14)
N1—C151.3805 (13)C8—C131.4038 (14)
N1—C81.3976 (13)C9—C101.3842 (15)
N1—C51.4342 (13)C9—H90.9500
N2—C171.1497 (13)C10—C111.4045 (15)
C1—H1A0.9800C10—H100.9500
C1—H1B0.9800C11—C121.3799 (15)
C1—H1C0.9800C11—H110.9500
C2—C71.3919 (15)C12—C131.3984 (15)
C2—C31.3923 (15)C12—H120.9500
C3—C41.3905 (15)C13—C141.4391 (15)
C3—H30.9500C14—C151.3770 (15)
C4—C51.3837 (14)C14—C171.4261 (15)
C4—H40.9500C15—C161.4877 (15)
C5—C61.3966 (14)C16—H16A0.9800
C6—C71.3779 (14)C16—H16B0.9800
C6—H60.9500C16—H16C0.9800
C2—O1—C1117.18 (9)N1—C8—C13108.14 (9)
C15—N1—C8109.22 (9)C10—C9—C8117.08 (10)
C15—N1—C5126.23 (9)C10—C9—H9121.5
C8—N1—C5124.42 (9)C8—C9—H9121.5
O1—C1—H1A109.5C9—C10—C11121.28 (10)
O1—C1—H1B109.5C9—C10—H10119.4
H1A—C1—H1B109.5C11—C10—H10119.4
O1—C1—H1C109.5C12—C11—C10121.21 (11)
H1A—C1—H1C109.5C12—C11—H11119.4
H1B—C1—H1C109.5C10—C11—H11119.4
O1—C2—C7115.32 (10)C11—C12—C13118.65 (11)
O1—C2—C3124.61 (10)C11—C12—H12120.7
C7—C2—C3120.07 (10)C13—C12—H12120.7
C4—C3—C2119.16 (10)C12—C13—C8119.40 (10)
C4—C3—H3120.4C12—C13—C14134.75 (10)
C2—C3—H3120.4C8—C13—C14105.80 (10)
C5—C4—C3120.69 (10)C15—C14—C17124.72 (10)
C5—C4—H4119.7C15—C14—C13108.77 (9)
C3—C4—H4119.7C17—C14—C13126.50 (10)
C4—C5—C6119.91 (10)C14—C15—N1108.06 (10)
C4—C5—N1120.31 (10)C14—C15—C16128.79 (10)
C6—C5—N1119.76 (10)N1—C15—C16123.11 (10)
C7—C6—C5119.59 (10)C15—C16—H16A109.5
C7—C6—H6120.2C15—C16—H16B109.5
C5—C6—H6120.2H16A—C16—H16B109.5
C6—C7—C2120.56 (10)C15—C16—H16C109.5
C6—C7—H7119.7H16A—C16—H16C109.5
C2—C7—H7119.7H16B—C16—H16C109.5
C9—C8—N1129.45 (10)N2—C17—C14178.02 (12)
C9—C8—C13122.36 (10)
C1—O1—C2—C7179.16 (9)C9—C10—C11—C120.16 (17)
C1—O1—C2—C31.16 (16)C10—C11—C12—C131.13 (17)
O1—C2—C3—C4178.73 (9)C11—C12—C13—C81.51 (16)
C7—C2—C3—C40.94 (16)C11—C12—C13—C14175.65 (11)
C2—C3—C4—C50.76 (16)C9—C8—C13—C120.98 (16)
C3—C4—C5—C60.52 (16)N1—C8—C13—C12178.74 (9)
C3—C4—C5—N1179.03 (9)C9—C8—C13—C14176.92 (9)
C15—N1—C5—C4125.90 (12)N1—C8—C13—C140.84 (11)
C8—N1—C5—C458.75 (14)C12—C13—C14—C15178.10 (11)
C15—N1—C5—C655.59 (14)C8—C13—C14—C150.67 (12)
C8—N1—C5—C6119.76 (11)C12—C13—C14—C170.6 (2)
C4—C5—C6—C71.62 (15)C8—C13—C14—C17178.00 (10)
N1—C5—C6—C7179.86 (9)C17—C14—C15—N1178.46 (10)
C5—C6—C7—C21.45 (16)C13—C14—C15—N10.24 (12)
O1—C2—C7—C6179.86 (9)C17—C14—C15—C163.84 (18)
C3—C2—C7—C60.16 (16)C13—C14—C15—C16177.46 (10)
C15—N1—C8—C9176.83 (10)C8—N1—C15—C140.29 (12)
C5—N1—C8—C90.80 (17)C5—N1—C15—C14176.23 (9)
C15—N1—C8—C130.72 (12)C8—N1—C15—C16178.15 (9)
C5—N1—C8—C13176.75 (9)C5—N1—C15—C165.91 (16)
N1—C8—C9—C10177.26 (10)C15—C14—C17—N2110 (4)
C13—C8—C9—C100.01 (16)C13—C14—C17—N268 (4)
C8—C9—C10—C110.40 (16)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C2–C7 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg3i0.952.833.6542 (14)146
C10—H10···Cg2ii0.952.953.7133 (14)138
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC17H14N2O
Mr262.30
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)7.7381 (10), 9.4598 (14), 9.7976 (16)
α, β, γ (°)95.983 (2), 95.464 (4), 106.295 (5)
V3)678.79 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerRigaku Saturn724 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2009)
Tmin, Tmax0.984, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
8580, 3210, 2146
Rint0.035
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.090, 1.01
No. of reflections3210
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.24

Computer programs: CrystalClear (Rigaku, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C2–C7 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg3i0.952.833.6542 (14)146
C10—H10···Cg2ii0.952.953.7133 (14)138
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+2.
 

Acknowledgements

XQ is grateful for financial support for this project from the China Postdoctoral Science Foundation (200904507610).

References

First citationDu, Y., Liu, R., Linn, G. & Zhao, K. (2006). Org. Lett. 8, 5919–5922.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJin, H., Li, P., Liu, B. & Cheng, X. (2009). Acta Cryst. E65, o236.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2009). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, K., Li, P.-F., Liu, Y. & Fang, Z.-Z. (2011). Acta Cryst. E67, o1041.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds