organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(4-Chloro­benzyl­­idene)amino]-4,5,6,7-tetra­hydro-1-benzo­thio­phene-3-carbo­nitrile

aThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, PO Box 80203, Saudi Arabia, bDepartment of Chemistry, Faculty of Science, King Abduaziz University, Jeddah 21589, PO Box 80203, Saudi Arabia, and cUniversity of Sargodha, Department of Physics, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 23 July 2011; accepted 30 July 2011; online 6 August 2011)

In the title compound, C16H13ClN2S, the dihedral angle between the 4-chloro­benzaldehyde moiety and the heterocyclic five-membered ring is 7.21 (17)°. In the crystal, mol­ecules are linked by weak C—H⋯π inter­actions, generating [100] chains.

Related literature

For a related structure, see: Asiri et al. (2011[Asiri, A. M., Khan, S. A. & Tahir, M. N. (2011). Acta Cryst. E67, o2162.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13ClN2S

  • Mr = 300.79

  • Orthorhombic, P 21 21 21

  • a = 4.7815 (3) Å

  • b = 16.5670 (13) Å

  • c = 18.1658 (14) Å

  • V = 1439.01 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 296 K

  • 0.35 × 0.15 × 0.12 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.931, Tmax = 0.951

  • 11075 measured reflections

  • 2607 independent reflections

  • 1821 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.099

  • S = 1.02

  • 2607 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1053 Friedel pairs

  • Flack parameter: 0.03 (10)

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C8–C11/S1 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13ACgi 0.97 2.99 3.841 (6) 147
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

We have reported the crystal structure of 2-[(benzo[1,3]dioxol-5-ylmethylene)-amino]-4,5,6,7-tetrahydro-benzo[b]thiophene -3-carbonitrile (Asiri et al., 2011) which is related to the title compound, (I), Fig. 1.

In (I), the group A (C1–C7/CL1) of 4-chlorobenzaldehyde and the five membered ring B (C8—C11/S1) of 2-amino-4,5,6,7-tetrahydro-1-benzothiophene-3- carbonitrile group are almost planar with r. m. s. deviation of 0.0150 and 0.0110 Å, respectively. The dihedral angle between A/B is 7.21 (17)°. A C—H···π interaction (Table 1) occurs in the crystal.

Related literature top

For a related structure, see: Asiri et al. (2011).

Experimental top

A mixture of 4-chloro benzaldehyde (0.46 g, 2.4 mmol) and 2-amino-4,5,6,7-tetrahydro-benzo[b]thiophene-carbonitrile (0.32 g, 3.3 mmol) in ethanol (15 ml) was heated for 3 h. The progress of the reaction was monitored by TLC. The solid that separated from the cooled mixture was collected and recrystallized from a methanol-chloroform mixture (8:2) to give yellow needles of the title compound (I). Yield: 82%, m.p. 504–505 K.

Refinement top

The H-atoms were positioned geometrically (C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) showing 50% displacement ellipsoids.
2-[(4-Chlorobenzylidene)amino]-4,5,6,7-tetrahydro-1-benzothiophene- 3-carbonitrile top
Crystal data top
C16H13ClN2SF(000) = 624
Mr = 300.79Dx = 1.388 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1821 reflections
a = 4.7815 (3) Åθ = 3.3–25.2°
b = 16.5670 (13) ŵ = 0.40 mm1
c = 18.1658 (14) ÅT = 296 K
V = 1439.01 (18) Å3Needle, yellow
Z = 40.35 × 0.15 × 0.12 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2607 independent reflections
Radiation source: fine-focus sealed tube1821 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 8.20 pixels mm-1θmax = 25.2°, θmin = 3.3°
ω scansh = 55
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1917
Tmin = 0.931, Tmax = 0.951l = 2121
11075 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0416P)2 + 0.1311P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2607 reflectionsΔρmax = 0.26 e Å3
181 parametersΔρmin = 0.19 e Å3
0 restraintsAbsolute structure: Flack (1983), 1053 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (10)
Crystal data top
C16H13ClN2SV = 1439.01 (18) Å3
Mr = 300.79Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.7815 (3) ŵ = 0.40 mm1
b = 16.5670 (13) ÅT = 296 K
c = 18.1658 (14) Å0.35 × 0.15 × 0.12 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2607 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1821 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.951Rint = 0.055
11075 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.099Δρmax = 0.26 e Å3
S = 1.02Δρmin = 0.19 e Å3
2607 reflectionsAbsolute structure: Flack (1983), 1053 Friedel pairs
181 parametersAbsolute structure parameter: 0.03 (10)
0 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.7805 (2)0.17259 (7)0.04726 (7)0.0797 (4)
S10.4743 (2)0.20961 (5)0.08062 (4)0.0506 (3)
N10.1842 (6)0.06647 (16)0.10865 (15)0.0453 (10)
N20.4578 (9)0.0048 (2)0.28643 (17)0.0787 (14)
C10.1473 (7)0.0110 (2)0.02527 (17)0.0406 (11)
C20.2345 (8)0.0493 (2)0.07260 (19)0.0503 (12)
C30.4313 (7)0.1048 (2)0.0506 (2)0.0547 (12)
C40.5384 (7)0.1013 (2)0.01982 (19)0.0513 (12)
C50.4597 (8)0.0416 (2)0.06685 (19)0.0560 (12)
C60.2640 (7)0.0135 (2)0.04455 (18)0.0510 (12)
C70.0619 (7)0.06949 (19)0.04718 (19)0.0445 (11)
C80.3759 (7)0.1241 (2)0.12951 (18)0.0443 (12)
C90.5135 (8)0.12209 (18)0.19578 (15)0.0393 (10)
C100.6876 (6)0.19068 (19)0.20924 (17)0.0403 (11)
C110.6880 (7)0.24227 (19)0.15209 (17)0.0417 (12)
C120.8316 (8)0.3222 (2)0.15026 (19)0.0540 (12)
C131.0043 (12)0.3330 (3)0.2182 (3)0.0947 (19)
C140.9144 (12)0.2949 (3)0.2830 (2)0.103 (2)
C150.8375 (7)0.2073 (2)0.27953 (18)0.0527 (12)
C160.4818 (9)0.0573 (2)0.24609 (17)0.0484 (11)
H20.159340.052370.119740.0602*
H30.491920.144490.083090.0652*
H50.537810.038300.113630.0670*
H60.207940.053760.077080.0609*
H70.107710.110830.014720.0534*
H12A0.693500.365000.147160.0649*
H12B0.950530.325460.107110.0649*
H13A1.191830.314040.207490.1138*
H13B1.017510.390430.228110.1138*
H14A0.752910.324210.301180.1240*
H14B1.061350.300810.319400.1240*
H15A1.005170.174490.282310.0631*
H15B0.718530.193600.320920.0631*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0610 (7)0.0690 (7)0.1092 (9)0.0156 (6)0.0022 (6)0.0261 (6)
S10.0612 (6)0.0437 (5)0.0469 (4)0.0018 (5)0.0048 (5)0.0056 (4)
N10.0506 (18)0.0409 (18)0.0444 (16)0.0006 (16)0.0036 (14)0.0047 (13)
N20.105 (3)0.069 (2)0.062 (2)0.014 (2)0.007 (2)0.0196 (19)
C10.0409 (19)0.036 (2)0.045 (2)0.0070 (17)0.0009 (15)0.0040 (16)
C20.057 (2)0.046 (2)0.048 (2)0.0009 (19)0.0022 (19)0.0042 (18)
C30.058 (2)0.044 (2)0.062 (2)0.005 (2)0.011 (2)0.0012 (19)
C40.040 (2)0.046 (2)0.068 (2)0.002 (2)0.001 (2)0.0177 (19)
C50.054 (2)0.060 (2)0.054 (2)0.004 (2)0.009 (2)0.0066 (19)
C60.056 (2)0.048 (2)0.049 (2)0.001 (2)0.001 (2)0.0010 (18)
C70.050 (2)0.038 (2)0.0454 (18)0.0005 (18)0.0050 (19)0.0018 (16)
C80.046 (2)0.040 (2)0.047 (2)0.0011 (18)0.0043 (16)0.0030 (16)
C90.0423 (19)0.0362 (18)0.0394 (17)0.0020 (18)0.0040 (17)0.0007 (14)
C100.0350 (18)0.040 (2)0.0459 (19)0.0040 (18)0.0049 (15)0.0024 (17)
C110.040 (2)0.036 (2)0.049 (2)0.0008 (17)0.0045 (16)0.0023 (17)
C120.056 (2)0.042 (2)0.064 (2)0.001 (2)0.0060 (19)0.0011 (18)
C130.112 (4)0.070 (3)0.102 (3)0.044 (3)0.038 (4)0.007 (3)
C140.154 (5)0.092 (4)0.064 (3)0.063 (4)0.007 (3)0.012 (3)
C150.051 (2)0.056 (2)0.051 (2)0.005 (2)0.0019 (17)0.0042 (19)
C160.055 (2)0.050 (2)0.0403 (18)0.005 (2)0.0030 (19)0.0001 (17)
Geometric parameters (Å, º) top
Cl1—C41.727 (4)C11—C121.492 (5)
S1—C81.737 (3)C12—C131.496 (7)
S1—C111.739 (3)C13—C141.403 (7)
N1—C71.262 (4)C14—C151.499 (6)
N1—C81.377 (4)C2—H20.9300
N2—C161.143 (5)C3—H30.9300
C1—C21.382 (5)C5—H50.9300
C1—C61.386 (5)C6—H60.9300
C1—C71.448 (5)C7—H70.9300
C2—C31.375 (5)C12—H12A0.9700
C3—C41.379 (5)C12—H12B0.9700
C4—C51.360 (5)C13—H13A0.9700
C5—C61.369 (5)C13—H13B0.9700
C8—C91.372 (4)C14—H14A0.9700
C9—C101.430 (4)C14—H14B0.9700
C9—C161.418 (4)C15—H15A0.9700
C10—C111.345 (4)C15—H15B0.9700
C10—C151.490 (4)
C8—S1—C1191.79 (15)C1—C2—H2120.00
C7—N1—C8121.7 (3)C3—C2—H2120.00
C2—C1—C6118.0 (3)C2—C3—H3120.00
C2—C1—C7121.4 (3)C4—C3—H3120.00
C6—C1—C7120.6 (3)C4—C5—H5120.00
C1—C2—C3120.6 (3)C6—C5—H5120.00
C2—C3—C4119.7 (3)C1—C6—H6119.00
Cl1—C4—C3119.2 (3)C5—C6—H6119.00
Cl1—C4—C5120.1 (3)N1—C7—H7119.00
C3—C4—C5120.7 (3)C1—C7—H7119.00
C4—C5—C6119.2 (3)C11—C12—H12A110.00
C1—C6—C5121.7 (3)C11—C12—H12B110.00
N1—C7—C1122.5 (3)C13—C12—H12A110.00
S1—C8—N1127.3 (2)C13—C12—H12B110.00
S1—C8—C9109.8 (2)H12A—C12—H12B108.00
N1—C8—C9123.0 (3)C12—C13—H13A108.00
C8—C9—C10114.2 (3)C12—C13—H13B108.00
C8—C9—C16122.2 (3)C14—C13—H13A108.00
C10—C9—C16123.6 (3)C14—C13—H13B108.00
C9—C10—C11112.0 (3)H13A—C13—H13B107.00
C9—C10—C15125.0 (3)C13—C14—H14A108.00
C11—C10—C15122.9 (3)C13—C14—H14B108.00
S1—C11—C10112.2 (2)C15—C14—H14A108.00
S1—C11—C12122.0 (2)C15—C14—H14B108.00
C10—C11—C12125.6 (3)H14A—C14—H14B107.00
C11—C12—C13110.0 (3)C10—C15—H15A110.00
C12—C13—C14118.0 (5)C10—C15—H15B110.00
C13—C14—C15118.4 (4)C14—C15—H15A110.00
C10—C15—C14109.5 (3)C14—C15—H15B110.00
N2—C16—C9179.5 (4)H15A—C15—H15B108.00
C11—S1—C8—N1176.1 (3)S1—C8—C9—C102.8 (4)
C11—S1—C8—C92.1 (3)S1—C8—C9—C16177.6 (3)
C8—S1—C11—C100.8 (3)N1—C8—C9—C10175.4 (3)
C8—S1—C11—C12174.3 (3)N1—C8—C9—C164.2 (5)
C8—N1—C7—C1177.9 (3)C8—C9—C10—C112.3 (4)
C7—N1—C8—S12.5 (5)C8—C9—C10—C15173.8 (3)
C7—N1—C8—C9179.6 (3)C16—C9—C10—C11178.1 (3)
C6—C1—C2—C30.1 (5)C16—C9—C10—C155.8 (5)
C7—C1—C2—C3179.3 (3)C9—C10—C11—S10.6 (4)
C2—C1—C6—C50.0 (5)C9—C10—C11—C12175.6 (3)
C7—C1—C6—C5179.3 (3)C15—C10—C11—S1175.6 (2)
C2—C1—C7—N13.4 (5)C15—C10—C11—C120.6 (5)
C6—C1—C7—N1175.9 (3)C9—C10—C15—C14160.7 (3)
C1—C2—C3—C41.4 (5)C11—C10—C15—C1415.0 (5)
C2—C3—C4—Cl1178.8 (3)S1—C11—C12—C13178.9 (3)
C2—C3—C4—C52.6 (5)C10—C11—C12—C136.6 (5)
Cl1—C4—C5—C6178.9 (3)C11—C12—C13—C1429.9 (6)
C3—C4—C5—C62.5 (5)C12—C13—C14—C1549.0 (7)
C4—C5—C6—C11.2 (5)C13—C14—C15—C1038.8 (6)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C8–C11/S1 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13A···Cgi0.972.993.841 (6)147
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H13ClN2S
Mr300.79
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)4.7815 (3), 16.5670 (13), 18.1658 (14)
V3)1439.01 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.35 × 0.15 × 0.12
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.931, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
11075, 2607, 1821
Rint0.055
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.099, 1.02
No. of reflections2607
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.19
Absolute structureFlack (1983), 1053 Friedel pairs
Absolute structure parameter0.03 (10)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C8–C11/S1 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13A···Cgi0.972.993.841 (6)147
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors thank the Chemistry Department, King Abdul Aziz University, Jeddah, Saudi Arabia, for providing the research facilities and for the financial support of this work via grant No. (3–045/430).

References

First citationAsiri, A. M., Khan, S. A. & Tahir, M. N. (2011). Acta Cryst. E67, o2162.  CrossRef IUCr Journals Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds