organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Amino-2-chloro­benzoic acid

aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, and bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 25 July 2011; accepted 30 July 2011; online 6 August 2011)

The title compound, C7H6ClNO2, crystallizes with two roughly planar mol­ecules in the asymmetric unit (r.m.s. deviations = 0.073 and 0.074 Å). The amine H atoms of the two mol­ecules have opposite orientations. In the crystal, mol­ecules are linked into dimers by pairs of O—H⋯O hydrogen bonds, generating R22(8) loops. N—H⋯N and N—H⋯Cl hydrogen bonds link the dimers into a three-dimensional network. The crystal studied was found to be a racemic twin.

Related literature

For an isomer (2-amino-4-chloro­benzoic acid) of the title compound, see: Farag et al. (2011[Farag, A. M., Teoh, S. G., Osman, H., Yeap, C. S. & Fun, H.-K. (2011). Acta Cryst. E67, o37.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C7H6ClNO2

  • Mr = 171.58

  • Monoclinic, P 21

  • a = 3.9595 (2) Å

  • b = 22.6656 (11) Å

  • c = 8.0285 (4) Å

  • β = 104.257 (2)°

  • V = 698.32 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 296 K

  • 0.28 × 0.13 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 3009 measured reflections

  • 2295 independent reflections

  • 2197 reflections with I > 2σ(I)

  • Rint = 0.011

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.077

  • S = 1.07

  • 2295 reflections

  • 218 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 514 Freidel pairs

  • Flack parameter: 0.50 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—HO1⋯O4i 0.82 (3) 1.84 (3) 2.650 (3) 171 (3)
N1—HN2⋯N2 0.86 (3) 2.60 (3) 3.375 (4) 150 (3)
O3—HO3⋯O2ii 0.81 (3) 1.84 (3) 2.650 (3) 173 (3)
N2—HN3⋯Cl2iii 0.86 (3) 2.81 (3) 3.374 (2) 125 (2)
N2—HN4⋯N1iv 0.86 (3) 2.47 (3) 3.302 (4) 163 (2)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+1]; (ii) [-x, y+{\script{1\over 2}}, -z+1]; (iii) x, y, z+1; (iv) x+1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound, (I), is used as a starting material for the synthesis of various sulphonamides.

As shown in Fig. 1, the asymmetric unit of the title compound contains two independent molecules. Both have the bond lengths and angles as expected for a molecule of this kind (Farag et al., 2011).

The amine H atoms of the two molecules have opposite orientations. In the crystal, the molecules form dimers via intermolecular O—H···O hydrogen bonds, forming a graph-set motif R22(8) (Bernstein et al., 1995; Table 1, Fig. 2). Furthermore, C—H···O, N—H···N and N—H···Cl interactions stabilize the crystal structure.

Related literature top

For an isomer (2-amino-4-chlorobenzoic acid) of the title compound, see: Farag et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

To a 100-ml round bottom flask equipped with a reflux condenser, was placed 0.5 g (2.486 mmol) of 2-chloro-4-amino benzoic acid and 0.447 g m of granulated tin. Then, 30 ml of concentrated HCl in was added in six intervals (5 ml each time with cooling in ice). The reaction is highly exothermic and the reaction mixture is keept under control by keeping it in ice water. When all the HCl was added and the temprature of the reaction mixture was stable, the round bottom flask was placed on water bath for 90 min under reflux.

TLC check after 90 min showed completion of reaction. Reaction mixtures was treated with 60% NaOH solution followed by the addition of NaCl solution and extration with di-ethyl ether.

Diethyl ether was evaporated on rotary evaporator and reddish brown precipates of the required product were obtained. This was recrystallized in methanol to yield reddish brown prisms of (I).

Refinement top

The H atoms of the NH2 and OH groups in the title compound were located in a difference map and refined with the distance restraint N—–H = 0.86 (1) and O—–H = 0.82 (1) Å; their Uiso values were constrained to be 1.5Ueq of the carrier atom for hydroxyl H atoms and 1.2Ueq for amine H atoms. The remaining aromatic H atoms were positioned geometrically with C—H = 0.93 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C). The crystal studied was a racemic twin [Flack parameter = 0.50 (6)].

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecule of the title compound, with displacement ellipsoids for non-H atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. Partial view of the dimers by two O—H···O hydrogen bonds and the packing in the crystal. Hydrogen atoms that not involved in the hydrogen-bonding (dashed lines) have been omitted for clarity.
4-Amino-2-chlorobenzoic acid top
Crystal data top
C7H6ClNO2F(000) = 352
Mr = 171.58Dx = 1.632 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3211 reflections
a = 3.9595 (2) Åθ = 2.8–28.3°
b = 22.6656 (11) ŵ = 0.49 mm1
c = 8.0285 (4) ÅT = 296 K
β = 104.257 (2)°Prism, reddish brown
V = 698.32 (6) Å30.28 × 0.13 × 0.12 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2197 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.011
Graphite monochromatorθmax = 28.3°, θmin = 2.8°
ϕ and ω scansh = 55
3009 measured reflectionsk = 1830
2295 independent reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0454P)2 + 0.092P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2295 reflectionsΔρmax = 0.21 e Å3
218 parametersΔρmin = 0.23 e Å3
7 restraintsAbsolute structure: Flack (1983), 514 Freidel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.50 (6)
Crystal data top
C7H6ClNO2V = 698.32 (6) Å3
Mr = 171.58Z = 4
Monoclinic, P21Mo Kα radiation
a = 3.9595 (2) ŵ = 0.49 mm1
b = 22.6656 (11) ÅT = 296 K
c = 8.0285 (4) Å0.28 × 0.13 × 0.12 mm
β = 104.257 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2197 reflections with I > 2σ(I)
3009 measured reflectionsRint = 0.011
2295 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.077Δρmax = 0.21 e Å3
S = 1.07Δρmin = 0.23 e Å3
2295 reflectionsAbsolute structure: Flack (1983), 514 Freidel pairs
218 parametersAbsolute structure parameter: 0.50 (6)
7 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.23950 (15)0.81998 (3)0.56801 (6)0.0427 (2)
O10.2726 (5)0.65233 (9)0.6710 (2)0.0502 (6)
O20.0913 (6)0.70711 (10)0.4820 (2)0.0577 (7)
N10.5447 (5)0.83421 (11)1.2139 (3)0.0431 (7)
C10.2193 (5)0.78948 (10)0.7631 (3)0.0277 (5)
C20.3803 (5)0.82200 (12)0.9065 (3)0.0316 (5)
C30.3834 (5)0.80158 (10)1.0704 (3)0.0306 (6)
C40.2106 (6)0.74934 (11)1.0871 (3)0.0349 (6)
C50.0515 (6)0.71758 (11)0.9432 (3)0.0338 (6)
C60.0508 (5)0.73617 (10)0.7767 (3)0.0294 (6)
C70.1085 (5)0.69776 (11)0.6301 (3)0.0341 (6)
Cl20.80948 (15)0.96180 (3)0.66956 (7)0.0442 (2)
O30.3027 (6)1.13060 (8)0.7718 (2)0.0511 (6)
O40.4834 (7)1.07555 (10)0.5823 (2)0.0581 (7)
N21.1098 (6)0.94780 (12)1.3131 (3)0.0491 (8)
C80.7883 (5)0.99282 (10)0.8643 (3)0.0293 (5)
C90.9466 (5)0.96044 (12)1.0074 (3)0.0321 (5)
C100.9516 (5)0.98080 (11)1.1714 (3)0.0349 (6)
C110.7808 (6)1.03355 (12)1.1881 (3)0.0356 (6)
C120.6218 (6)1.06497 (11)1.0437 (3)0.0347 (6)
C130.6238 (5)1.04643 (10)0.8776 (3)0.0295 (6)
C140.4640 (5)1.08498 (11)0.7309 (3)0.0336 (6)
HO10.335 (8)0.6315 (13)0.585 (3)0.0640*
H20.487000.857700.893300.0380*
HN10.607 (7)0.8126 (13)1.303 (3)0.0510*
HN20.707 (6)0.8583 (11)1.203 (4)0.0510*
H40.202700.735901.195500.0420*
H50.059900.682400.956900.0410*
HO30.220 (8)1.1532 (14)0.694 (4)0.0660*
HN31.163 (7)0.9675 (13)1.407 (3)0.0530*
HN41.262 (6)0.9232 (11)1.296 (4)0.0530*
H91.051200.924600.994200.0390*
H110.774801.047401.296400.0430*
H120.508201.099901.056900.0420*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0554 (3)0.0449 (3)0.0274 (2)0.0095 (3)0.0097 (2)0.0044 (2)
O10.0723 (11)0.0413 (11)0.0365 (9)0.0205 (9)0.0123 (8)0.0066 (8)
O20.0901 (14)0.0528 (12)0.0312 (8)0.0299 (11)0.0170 (9)0.0109 (9)
N10.0473 (10)0.0514 (15)0.0276 (9)0.0042 (9)0.0033 (8)0.0061 (9)
C10.0280 (8)0.0302 (11)0.0252 (9)0.0023 (8)0.0073 (7)0.0022 (8)
C20.0313 (8)0.0335 (11)0.0290 (9)0.0005 (9)0.0058 (7)0.0018 (10)
C30.0292 (8)0.0340 (12)0.0281 (9)0.0038 (8)0.0061 (7)0.0020 (8)
C40.0407 (10)0.0384 (13)0.0267 (10)0.0060 (9)0.0103 (9)0.0025 (9)
C50.0384 (10)0.0301 (12)0.0332 (11)0.0001 (9)0.0097 (8)0.0019 (9)
C60.0316 (9)0.0288 (11)0.0274 (10)0.0026 (8)0.0068 (7)0.0004 (8)
C70.0355 (9)0.0323 (12)0.0328 (11)0.0013 (8)0.0053 (8)0.0034 (9)
Cl20.0540 (3)0.0475 (3)0.0305 (3)0.0080 (3)0.0091 (2)0.0060 (3)
O30.0750 (12)0.0388 (11)0.0384 (9)0.0208 (10)0.0121 (8)0.0072 (9)
O40.0890 (14)0.0535 (12)0.0324 (9)0.0303 (11)0.0163 (9)0.0112 (9)
N20.0545 (11)0.0603 (17)0.0320 (10)0.0120 (11)0.0095 (9)0.0132 (11)
C80.0304 (8)0.0325 (11)0.0253 (9)0.0041 (8)0.0073 (7)0.0026 (9)
C90.0319 (8)0.0304 (10)0.0335 (9)0.0030 (9)0.0072 (7)0.0026 (10)
C100.0322 (9)0.0419 (13)0.0298 (10)0.0042 (9)0.0062 (8)0.0083 (9)
C110.0419 (10)0.0379 (13)0.0266 (10)0.0022 (9)0.0077 (9)0.0037 (9)
C120.0421 (10)0.0308 (11)0.0314 (10)0.0001 (9)0.0094 (8)0.0029 (9)
C130.0310 (9)0.0290 (11)0.0278 (10)0.0019 (8)0.0057 (8)0.0033 (8)
C140.0391 (10)0.0322 (12)0.0291 (10)0.0004 (9)0.0078 (8)0.0039 (9)
Geometric parameters (Å, º) top
Cl1—C11.732 (2)C3—C41.390 (3)
Cl2—C81.735 (2)C4—C51.375 (3)
O1—C71.302 (3)C5—C61.401 (3)
O2—C71.226 (3)C6—C71.475 (3)
O1—HO10.82 (3)C2—H20.9300
O3—C141.299 (3)C4—H40.9300
O4—C141.233 (3)C5—H50.9300
O3—HO30.81 (3)C8—C91.377 (3)
N1—C31.386 (3)C8—C131.395 (3)
N1—HN10.85 (3)C9—C101.391 (3)
N1—HN20.86 (3)C10—C111.396 (4)
N2—C101.377 (3)C11—C121.374 (3)
N2—HN40.86 (3)C12—C131.400 (3)
N2—HN30.86 (3)C13—C141.478 (3)
C1—C61.398 (3)C9—H90.9300
C1—C21.383 (3)C11—H110.9300
C2—C31.392 (3)C12—H120.9300
C7—O1—HO1108 (2)C5—C4—H4120.00
C14—O3—HO3116 (2)C3—C4—H4120.00
C3—N1—HN1111.7 (19)C4—C5—H5119.00
HN1—N1—HN2112 (3)C6—C5—H5119.00
C3—N1—HN2117 (2)C9—C8—C13121.7 (2)
C10—N2—HN4115 (2)Cl2—C8—C9115.01 (18)
HN3—N2—HN4117 (3)Cl2—C8—C13123.30 (18)
C10—N2—HN3114.0 (19)C8—C9—C10120.7 (2)
Cl1—C1—C2115.19 (18)N2—C10—C11121.2 (2)
Cl1—C1—C6123.03 (18)C9—C10—C11118.7 (2)
C2—C1—C6121.8 (2)N2—C10—C9120.0 (2)
C1—C2—C3120.3 (2)C10—C11—C12119.7 (2)
C2—C3—C4119.0 (2)C11—C12—C13122.6 (2)
N1—C3—C4120.8 (2)C8—C13—C12116.5 (2)
N1—C3—C2120.2 (2)C8—C13—C14124.8 (2)
C3—C4—C5120.0 (2)C12—C13—C14118.7 (2)
C4—C5—C6122.5 (2)O3—C14—C13114.2 (2)
C5—C6—C7118.9 (2)O4—C14—C13123.5 (2)
C1—C6—C7124.5 (2)O3—C14—O4122.3 (2)
C1—C6—C5116.5 (2)C8—C9—H9120.00
O2—C7—C6123.8 (2)C10—C9—H9120.00
O1—C7—C6114.0 (2)C10—C11—H11120.00
O1—C7—O2122.1 (2)C12—C11—H11120.00
C1—C2—H2120.00C11—C12—H12119.00
C3—C2—H2120.00C13—C12—H12119.00
Cl1—C1—C2—C3179.44 (17)Cl2—C8—C9—C10179.22 (17)
C6—C1—C2—C31.1 (3)C13—C8—C9—C100.9 (3)
Cl1—C1—C6—C5179.00 (17)Cl2—C8—C13—C12178.57 (17)
Cl1—C1—C6—C74.2 (3)Cl2—C8—C13—C143.3 (3)
C2—C1—C6—C50.4 (3)C9—C8—C13—C121.3 (3)
C2—C1—C6—C7176.4 (2)C9—C8—C13—C14176.8 (2)
C1—C2—C3—N1180.0 (2)C8—C9—C10—N2179.8 (2)
C1—C2—C3—C42.5 (3)C8—C9—C10—C112.6 (3)
N1—C3—C4—C5179.9 (2)N2—C10—C11—C12179.2 (2)
C2—C3—C4—C52.5 (3)C9—C10—C11—C122.0 (3)
C3—C4—C5—C61.0 (4)C10—C11—C12—C130.2 (4)
C4—C5—C6—C10.5 (3)C11—C12—C13—C81.9 (3)
C4—C5—C6—C7176.5 (2)C11—C12—C13—C14176.4 (2)
C1—C6—C7—O1175.4 (2)C8—C13—C14—O3175.1 (2)
C1—C6—C7—O24.4 (4)C8—C13—C14—O45.7 (4)
C5—C6—C7—O17.8 (3)C12—C13—C14—O36.8 (3)
C5—C6—C7—O2172.3 (2)C12—C13—C14—O4172.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—HO1···O4i0.82 (3)1.84 (3)2.650 (3)171 (3)
N1—HN2···N20.86 (3)2.60 (3)3.375 (4)150 (3)
O3—HO3···O2ii0.81 (3)1.84 (3)2.650 (3)173 (3)
N2—HN3···Cl2iii0.86 (3)2.81 (3)3.374 (2)125 (2)
N2—HN4···N1iv0.86 (3)2.47 (3)3.302 (4)163 (2)
Symmetry codes: (i) x, y1/2, z+1; (ii) x, y+1/2, z+1; (iii) x, y, z+1; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC7H6ClNO2
Mr171.58
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)3.9595 (2), 22.6656 (11), 8.0285 (4)
β (°) 104.257 (2)
V3)698.32 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.28 × 0.13 × 0.12
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3009, 2295, 2197
Rint0.011
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.077, 1.07
No. of reflections2295
No. of parameters218
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.23
Absolute structureFlack (1983), 514 Freidel pairs
Absolute structure parameter0.50 (6)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—HO1···O4i0.82 (3)1.84 (3)2.650 (3)171 (3)
N1—HN2···N20.86 (3)2.60 (3)3.375 (4)150 (3)
O3—HO3···O2ii0.81 (3)1.84 (3)2.650 (3)173 (3)
N2—HN3···Cl2iii0.86 (3)2.81 (3)3.374 (2)125 (2)
N2—HN4···N1iv0.86 (3)2.47 (3)3.302 (4)163 (2)
Symmetry codes: (i) x, y1/2, z+1; (ii) x, y+1/2, z+1; (iii) x, y, z+1; (iv) x+1, y, z.
 

Acknowledgements

The authors are grateful to the Higher Education Commission (HEC), Pakistan, for providing funds for the single-crystal XRD facilities at GC University, Lahore.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarag, A. M., Teoh, S. G., Osman, H., Yeap, C. S. & Fun, H.-K. (2011). Acta Cryst. E67, o37.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds