metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido­tetra­kis­(diniconazole)nickel(II)

aInstrumental Analysis Center, Nanchang Hangkong University, Nanchang 330063, People's Republic of China, and bCollege of Sciences, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
*Correspondence e-mail: niexuliang1981@163.com

(Received 26 July 2011; accepted 3 August 2011; online 6 August 2011)

In the title compound, [NiCl2(C15H17Cl2N3O)4], the Ni atom lies on an inversion center and has an axially extended trans-NiCl2N4 octa­hedral geometry arising from its coordination by four diniconazole [systematic name: (E)-(RS)-1-(2,4-dichloro­phen­yl)-4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl)pent-1-en-3-ol] ligands and two chloride ions. In the crystal, O—H⋯Cl hydrogen bonds link the mol­ecules into [100] chains.

Related literature

For background to the use of diniconazole as a fungicide, see: Sumitomo Chemical (1984[Sumitomo Chemical. (1984). Jpn Pestic. Soc. 6, 229-236.]); Huang et al. (2003[Huang, X. G., Zhao, A. J., Liu, X. G., Zhou, D. H. & Zeng, B. (2003). Acta Agric. Univ. Jiangxiensis, 25, 277-288.]); Zhou et al. (2008[Zhou, Z. Y., Li, C. C., Gao, T. C. & Tang, G. J. (2008). J. Anhui Agric. Sci. 36, 11842-11844.]). For further synthetic details, see: Fu (2002[Fu, D. Y. (2002). Chin. J. Pestic. 2, 10-12.]); Xia et al. (2001[Xia, H. Y., Duan, Z. X., Tu, Y. M. & Liu, J. H. (2001). Chin. J. Pestic. 40, 12, 12-14.]). For the isotypic zinc complex, see: Gao et al. (2001[Gao, J. S., Ma, D. S., Ma, Z. G. & Chen, G. R. (2001). Chin. J. Mol. Sci. 17, 1, 17-22.]). For our previous work based on diniconazole, see: Xiong et al. (2010[Xiong, Z.-Q., Chen, J.-Z., Wen, S.-H. & Nie, X.-L. (2010). Acta Cryst. E66, o3278.]).

[Scheme 1]

Experimental

Crystal data
  • [NiCl2(C15H17Cl2N3O)4]

  • Mr = 1434.47

  • Triclinic, [P \overline 1]

  • a = 8.7598 (6) Å

  • b = 13.7800 (9) Å

  • c = 15.1344 (10) Å

  • α = 90.672 (1)°

  • β = 98.521 (1)°

  • γ = 106.743 (1)°

  • V = 1727.3 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 296 K

  • 0.25 × 0.22 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.840, Tmax = 0.863

  • 13440 measured reflections

  • 6383 independent reflections

  • 4766 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.104

  • S = 1.02

  • 6383 reflections

  • 402 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—N1 2.091 (2)
Ni1—N4 2.106 (2)
Ni1—Cl1 2.4860 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl1i 0.82 2.36 3.1460 (19) 160
O2—H2A⋯Cl1i 0.82 2.32 3.123 (2) 169
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Diniconazole [(E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2- (1H-1,2,4-triazol-1-yl)-pent-1-en-3-ol] is a highly active triazole fungicide (Sumitomo Chemical, 1984). It is widely used for control of a broad range of fungal diseases in many crops, such as corn, wheat, peanut, grape and apple (Huang et al., 2003; Zhou et al., 2008). Because of its strong antimicrobial activities and its wide applications, the synthesis of diniconazole (Fu et al., 2002; Xia et al., 2001) and its salts (Gao et al., 2001) have attracted much attention. Recently, our group have reported the crystal structure of diniconazole (Xiong et al., 2010). In this paper, we report the synthesis and crystal structure of a new nickel(II) complex, (I), incorporating diniconazole.

The asymmetric unit of the title compound, [Ni(C15H17Cl2N3O) 4Cl2], consists of one nickel(II) ion, two diniconazole ligands and one coordinated chloride ion. The Ni atom lies on an inversion center and has a slightly distorted octahedral geometry. The equatorial positions are occupied by four N atoms from four (E)-(RS)-1-(2,4- dichlorophenyl)-4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl)-pent-1-en-3-ol ligands. The axial sites are occupied by two Cl atoms(Fig. 1). The Ni—N distance are 2.123 (3) and 2.147 (3) Å and Ni—Cl is 2.5222 (9) Å. In the crystal packing, intermolecular O—H···Cl hydrogen bonds (Table 1) link the molecules into chains along the a axis(Fig. 2). The structure of the title compound is isostructural to previously reported zinc (II) complexe constructed by Zn2+ and diniconazole (Gao et al., 2001).

Related literature top

For background to the use of diniconazole as a fungicide, see: Sumitomo Chemical (1984); Huang et al. (2003); Zhou et al. (2008). For further synthetic details, see: Fu et al. (2002); Xia et al. (2001). For the isotypic zinc complex, see: Gao et al. (2001). For our previous work based on diniconazole, see: Xiong et al. (2010).

Experimental top

NiCl2.6H2O (0.024 g, 0.1 mmol) was dissolved in ethanol (10 ml), and diniconazole(0.063 g, 0.2 mmol) was dissolved in ethanol (10 ml). The NiCl2 solution was added to the diniconazole solution slowly under stirring. The mixture were filtered after stirring for 1 h. Green blocks of (I) were obtained by slow concentration of an ethanol solution. Anal. Calcd. For C60H68Cl10NiN12O4 (%) (Mr = 1434.48): C, 50.24; H, 4.78; N, 11.72. Found (%): C, 55.21; H, 4.80; N, 11.70.

Refinement top

All H atoms were included in calculated positions and refined as riding atoms, with C—H = 0.93–0.96 Å, O—H = 0.82 Å, with Uiso(H) = 1.5 Ueq(C) for methyl H atoms and 1.2 Ueq(C) for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 40% probability level.
[Figure 2] Fig. 2. The crystal packing of (I), showing a hydrogen-bonded chain; H-bonds are shown as dashed lines.
Dichloridotetrakis[(E)-(RS)-1-(2,4-dichlorophenyl)-4,4- dimethyl-2-(1H-1,2,4-triazol-1-yl)pent-1-en-3-ol]nickel(II) top
Crystal data top
[NiCl2(C15H17Cl2N3O)4]Z = 1
Mr = 1434.47F(000) = 742
Triclinic, P1Dx = 1.379 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7598 (6) ÅCell parameters from 3863 reflections
b = 13.7800 (9) Åθ = 2.5–26.1°
c = 15.1344 (10) ŵ = 0.72 mm1
α = 90.672 (1)°T = 296 K
β = 98.521 (1)°Block, green
γ = 106.743 (1)°0.25 × 0.22 × 0.21 mm
V = 1727.3 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
6383 independent reflections
Radiation source: fine-focus sealed tube4766 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 1010
Tmin = 0.840, Tmax = 0.863k = 1616
13440 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.4285P]
where P = (Fo2 + 2Fc2)/3
6383 reflections(Δ/σ)max = 0.001
402 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[NiCl2(C15H17Cl2N3O)4]γ = 106.743 (1)°
Mr = 1434.47V = 1727.3 (2) Å3
Triclinic, P1Z = 1
a = 8.7598 (6) ÅMo Kα radiation
b = 13.7800 (9) ŵ = 0.72 mm1
c = 15.1344 (10) ÅT = 296 K
α = 90.672 (1)°0.25 × 0.22 × 0.21 mm
β = 98.521 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
6383 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
4766 reflections with I > 2σ(I)
Tmin = 0.840, Tmax = 0.863Rint = 0.025
13440 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.02Δρmax = 0.35 e Å3
6383 reflectionsΔρmin = 0.42 e Å3
402 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.00000.50000.02802 (13)
Cl10.73567 (8)0.02454 (5)0.60068 (4)0.04154 (18)
Cl50.58239 (9)0.34451 (7)0.02533 (5)0.0630 (2)
Cl21.11706 (10)0.52902 (6)0.24982 (6)0.0638 (2)
Cl31.66829 (9)0.47117 (7)0.18141 (6)0.0634 (2)
Cl41.16064 (13)0.36651 (8)0.03016 (7)0.0854 (3)
N40.6518 (2)0.13360 (16)0.45770 (14)0.0341 (5)
N30.6487 (2)0.12645 (16)0.28494 (13)0.0332 (5)
N10.5419 (2)0.08273 (16)0.39414 (13)0.0347 (5)
N60.8613 (2)0.23450 (15)0.41014 (13)0.0316 (5)
C20.6135 (3)0.2041 (2)0.4058 (2)0.0512 (8)
H20.50840.20810.39260.061*
C120.4329 (3)0.1519 (2)0.33470 (19)0.0498 (8)
H120.32480.17650.34120.060*
C110.6754 (3)0.0703 (2)0.36072 (16)0.0351 (6)
H110.77570.02780.38660.042*
C200.7892 (3)0.3141 (2)0.06064 (17)0.0404 (7)
C161.0225 (3)0.2331 (2)0.16512 (18)0.0419 (7)
H161.07120.19450.21810.050*
N20.4896 (3)0.1819 (2)0.26754 (15)0.0504 (6)
C130.7614 (3)0.1355 (2)0.22698 (15)0.0317 (6)
C140.7522 (3)0.2281 (2)0.19829 (16)0.0374 (6)
H140.67220.28100.21640.045*
C150.8564 (3)0.25637 (19)0.14017 (16)0.0352 (6)
C190.8817 (4)0.3476 (2)0.00823 (19)0.0485 (7)
H190.83410.38630.04480.058*
C171.1169 (4)0.2659 (2)0.1134 (2)0.0478 (7)
H171.22810.24940.13110.057*
C181.0450 (4)0.3230 (2)0.0357 (2)0.0493 (8)
C10.8086 (3)0.15564 (19)0.45978 (16)0.0336 (6)
H10.87410.12110.49140.040*
C271.0189 (3)0.27541 (18)0.38578 (16)0.0298 (5)
C81.4775 (3)0.4233 (2)0.21011 (17)0.0405 (7)
C91.3818 (3)0.4858 (2)0.21392 (17)0.0421 (7)
H91.41530.55250.19730.051*
C51.1815 (3)0.3492 (2)0.26917 (16)0.0342 (6)
C71.4256 (3)0.3228 (2)0.23023 (18)0.0463 (7)
H71.48850.27980.22430.056*
C41.0282 (3)0.31053 (19)0.30519 (17)0.0355 (6)
H40.93290.31100.26900.043*
C61.2785 (3)0.2874 (2)0.25922 (18)0.0426 (7)
H61.24320.21970.27260.051*
N50.7347 (3)0.26722 (19)0.37477 (18)0.0533 (7)
C101.2342 (3)0.4480 (2)0.24291 (17)0.0380 (6)
C281.1612 (3)0.2793 (2)0.45744 (17)0.0352 (6)
H281.25700.29370.42800.042*
C250.8684 (3)0.0378 (2)0.19969 (16)0.0358 (6)
H250.95320.05440.17250.043*
C291.1960 (3)0.3618 (2)0.53325 (18)0.0428 (7)
C260.7828 (4)0.0188 (2)0.13069 (19)0.0500 (8)
O21.1449 (2)0.18368 (14)0.49624 (13)0.0449 (5)
H2A1.17570.14690.46440.067*
O10.9460 (2)0.03079 (14)0.27532 (12)0.0452 (5)
H1A1.02430.01490.30020.068*
C300.6677 (4)0.0650 (3)0.1709 (3)0.0728 (11)
H30A0.63400.11040.13000.109*
H30B0.72200.10190.22640.109*
H30C0.57500.01190.18160.109*
C310.9151 (5)0.1044 (3)0.0990 (3)0.0811 (12)
H31A0.86680.13930.05350.122*
H31B0.98950.07620.07490.122*
H31C0.97160.15130.14860.122*
C321.0688 (4)0.3386 (3)0.5958 (2)0.0628 (9)
H32A1.05680.27190.61710.094*
H32B0.96740.34180.56370.094*
H32C1.10270.38770.64570.094*
C331.3603 (4)0.3659 (3)0.5870 (2)0.0716 (10)
H33A1.39120.42000.63250.107*
H33B1.43970.37750.54780.107*
H33C1.35320.30260.61450.107*
C341.2064 (5)0.4639 (2)0.4925 (2)0.0731 (11)
H34A1.23600.51650.53940.110*
H34B1.10340.46170.45890.110*
H34C1.28630.47770.45360.110*
C350.6923 (5)0.0543 (3)0.0510 (2)0.0822 (12)
H35A0.60150.10350.06870.123*
H35B0.76330.08820.03070.123*
H35C0.65520.01710.00350.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0224 (2)0.0333 (3)0.0295 (2)0.00732 (19)0.00932 (17)0.00260 (19)
Cl10.0324 (3)0.0500 (4)0.0446 (4)0.0167 (3)0.0042 (3)0.0057 (3)
Cl50.0451 (4)0.0772 (6)0.0583 (5)0.0079 (4)0.0038 (4)0.0208 (4)
Cl20.0602 (5)0.0569 (5)0.0886 (6)0.0290 (4)0.0312 (4)0.0276 (4)
Cl30.0354 (4)0.0843 (6)0.0651 (5)0.0013 (4)0.0242 (4)0.0009 (4)
Cl40.0851 (7)0.0949 (8)0.0974 (7)0.0448 (6)0.0457 (6)0.0131 (6)
N40.0270 (11)0.0379 (13)0.0384 (12)0.0075 (10)0.0125 (9)0.0064 (10)
N30.0280 (11)0.0401 (13)0.0317 (11)0.0084 (10)0.0082 (9)0.0035 (9)
N10.0302 (12)0.0422 (14)0.0333 (11)0.0115 (10)0.0088 (9)0.0007 (10)
N60.0273 (11)0.0302 (12)0.0371 (11)0.0058 (9)0.0098 (9)0.0066 (9)
C20.0283 (15)0.055 (2)0.075 (2)0.0145 (14)0.0176 (14)0.0283 (16)
C120.0275 (15)0.066 (2)0.0526 (18)0.0065 (14)0.0116 (13)0.0127 (15)
C110.0291 (14)0.0413 (16)0.0339 (14)0.0077 (12)0.0069 (11)0.0045 (11)
C200.0421 (16)0.0396 (17)0.0404 (15)0.0102 (13)0.0129 (12)0.0014 (12)
C160.0440 (16)0.0460 (17)0.0378 (15)0.0177 (14)0.0044 (12)0.0013 (12)
N20.0315 (13)0.0666 (18)0.0470 (14)0.0047 (12)0.0079 (11)0.0173 (12)
C130.0296 (13)0.0413 (16)0.0248 (12)0.0118 (12)0.0038 (10)0.0022 (11)
C140.0404 (15)0.0387 (16)0.0324 (14)0.0074 (12)0.0123 (11)0.0006 (12)
C150.0451 (16)0.0315 (15)0.0326 (13)0.0129 (12)0.0142 (12)0.0010 (11)
C190.061 (2)0.0440 (18)0.0421 (16)0.0139 (15)0.0161 (14)0.0082 (13)
C170.0461 (17)0.0509 (19)0.0548 (18)0.0239 (15)0.0148 (14)0.0080 (15)
C180.059 (2)0.0460 (19)0.0553 (19)0.0262 (16)0.0273 (16)0.0052 (15)
C10.0273 (13)0.0353 (15)0.0366 (14)0.0048 (11)0.0084 (11)0.0070 (11)
C270.0269 (13)0.0253 (14)0.0364 (13)0.0043 (10)0.0099 (10)0.0022 (10)
C80.0294 (14)0.0551 (19)0.0337 (14)0.0043 (13)0.0105 (11)0.0009 (13)
C90.0400 (16)0.0408 (17)0.0393 (15)0.0006 (13)0.0113 (12)0.0054 (12)
C50.0304 (14)0.0399 (16)0.0308 (13)0.0060 (12)0.0089 (11)0.0051 (11)
C70.0430 (17)0.058 (2)0.0441 (16)0.0196 (15)0.0153 (13)0.0031 (14)
C40.0272 (13)0.0376 (16)0.0386 (14)0.0034 (11)0.0076 (11)0.0067 (12)
C60.0459 (17)0.0371 (16)0.0450 (16)0.0088 (13)0.0146 (13)0.0082 (12)
N50.0329 (13)0.0535 (16)0.0797 (18)0.0164 (12)0.0186 (12)0.0329 (14)
C100.0364 (15)0.0428 (17)0.0353 (14)0.0111 (12)0.0085 (11)0.0072 (12)
C280.0295 (13)0.0389 (16)0.0396 (14)0.0098 (12)0.0128 (11)0.0078 (12)
C250.0342 (14)0.0384 (16)0.0368 (14)0.0118 (12)0.0097 (11)0.0013 (11)
C290.0407 (16)0.0423 (17)0.0405 (15)0.0065 (13)0.0030 (12)0.0013 (13)
C260.062 (2)0.0432 (18)0.0439 (16)0.0164 (15)0.0028 (14)0.0049 (13)
O20.0480 (12)0.0463 (12)0.0510 (12)0.0247 (10)0.0186 (9)0.0152 (9)
O10.0369 (11)0.0462 (12)0.0479 (11)0.0091 (9)0.0006 (9)0.0080 (9)
C300.077 (3)0.068 (3)0.082 (3)0.041 (2)0.002 (2)0.014 (2)
C310.102 (3)0.064 (2)0.078 (3)0.017 (2)0.026 (2)0.028 (2)
C320.065 (2)0.074 (2)0.0489 (18)0.0181 (18)0.0136 (16)0.0163 (16)
C330.049 (2)0.095 (3)0.056 (2)0.0064 (19)0.0071 (16)0.0044 (19)
C340.095 (3)0.040 (2)0.072 (2)0.0069 (18)0.002 (2)0.0093 (17)
C350.116 (3)0.071 (3)0.050 (2)0.029 (2)0.020 (2)0.0037 (18)
Geometric parameters (Å, º) top
Ni1—N1i2.091 (2)C8—C71.380 (4)
Ni1—N12.091 (2)C9—C101.386 (4)
Ni1—N42.106 (2)C9—H90.9300
Ni1—N4i2.106 (2)C5—C61.386 (4)
Ni1—Cl1i2.4860 (6)C5—C101.389 (4)
Ni1—Cl12.4860 (6)C5—C41.481 (3)
Cl5—C201.736 (3)C7—C61.378 (4)
Cl2—C101.732 (3)C7—H70.9300
Cl3—C81.733 (3)C4—H40.9300
Cl4—C181.737 (3)C6—H60.9300
N4—C11.314 (3)C28—O21.426 (3)
N4—C21.343 (3)C28—C291.539 (4)
N3—C111.328 (3)C28—H280.9800
N3—N21.367 (3)C25—O11.428 (3)
N3—C131.444 (3)C25—C261.545 (4)
N1—C111.310 (3)C25—H250.9800
N1—C121.353 (3)C29—C341.527 (4)
N6—C11.338 (3)C29—C331.531 (4)
N6—N51.355 (3)C29—C321.534 (4)
N6—C271.438 (3)C26—C351.525 (4)
C2—N51.315 (3)C26—C301.528 (5)
C2—H20.9300C26—C311.535 (4)
C12—N21.307 (3)O2—H2A0.8200
C12—H120.9300O1—H1A0.8200
C11—H110.9300C30—H30A0.9600
C20—C191.377 (4)C30—H30B0.9600
C20—C151.387 (4)C30—H30C0.9600
C16—C171.378 (4)C31—H31A0.9600
C16—C151.389 (4)C31—H31B0.9600
C16—H160.9300C31—H31C0.9600
C13—C141.319 (4)C32—H32A0.9600
C13—C251.504 (4)C32—H32B0.9600
C14—C151.481 (3)C32—H32C0.9600
C14—H140.9300C33—H33A0.9600
C19—C181.370 (4)C33—H33B0.9600
C19—H190.9300C33—H33C0.9600
C17—C181.368 (4)C34—H34A0.9600
C17—H170.9300C34—H34B0.9600
C1—H10.9300C34—H34C0.9600
C27—C41.323 (3)C35—H35A0.9600
C27—C281.514 (3)C35—H35B0.9600
C8—C91.371 (4)C35—H35C0.9600
N1i—Ni1—N1180.0C6—C7—C8118.7 (3)
N1i—Ni1—N490.43 (8)C6—C7—H7120.7
N1—Ni1—N489.57 (8)C8—C7—H7120.7
N1i—Ni1—N4i89.57 (8)C27—C4—C5123.9 (2)
N1—Ni1—N4i90.43 (8)C27—C4—H4118.1
N4—Ni1—N4i180.00 (9)C5—C4—H4118.1
N1i—Ni1—Cl1i91.80 (6)C7—C6—C5122.4 (3)
N1—Ni1—Cl1i88.20 (6)C7—C6—H6118.8
N4—Ni1—Cl1i90.45 (6)C5—C6—H6118.8
N4i—Ni1—Cl1i89.55 (6)C2—N5—N6102.3 (2)
N1i—Ni1—Cl188.20 (6)C9—C10—C5122.0 (3)
N1—Ni1—Cl191.80 (6)C9—C10—Cl2118.2 (2)
N4—Ni1—Cl189.55 (6)C5—C10—Cl2119.8 (2)
N4i—Ni1—Cl190.45 (6)O2—C28—C27111.6 (2)
Cl1i—Ni1—Cl1180.000 (1)O2—C28—C29108.5 (2)
C1—N4—C2102.5 (2)C27—C28—C29115.3 (2)
C1—N4—Ni1126.49 (17)O2—C28—H28107.0
C2—N4—Ni1129.53 (17)C27—C28—H28107.0
C11—N3—N2109.2 (2)C29—C28—H28107.0
C11—N3—C13129.2 (2)O1—C25—C13111.5 (2)
N2—N3—C13121.6 (2)O1—C25—C26108.0 (2)
C11—N1—C12102.3 (2)C13—C25—C26114.9 (2)
C11—N1—Ni1128.67 (17)O1—C25—H25107.4
C12—N1—Ni1128.40 (17)C13—C25—H25107.4
C1—N6—N5109.0 (2)C26—C25—H25107.4
C1—N6—C27128.9 (2)C34—C29—C33109.3 (3)
N5—N6—C27121.71 (19)C34—C29—C32110.2 (3)
N5—C2—N4115.4 (2)C33—C29—C32109.0 (2)
N5—C2—H2122.3C34—C29—C28109.1 (2)
N4—C2—H2122.3C33—C29—C28106.4 (2)
N2—C12—N1115.6 (2)C32—C29—C28112.7 (2)
N2—C12—H12122.2C35—C26—C30110.5 (3)
N1—C12—H12122.2C35—C26—C31109.0 (3)
N1—C11—N3111.1 (2)C30—C26—C31108.9 (3)
N1—C11—H11124.5C35—C26—C25109.1 (2)
N3—C11—H11124.5C30—C26—C25112.3 (2)
C19—C20—C15122.1 (3)C31—C26—C25107.0 (3)
C19—C20—Cl5118.7 (2)C28—O2—H2A109.5
C15—C20—Cl5119.2 (2)C25—O1—H1A109.5
C17—C16—C15121.6 (3)C26—C30—H30A109.5
C17—C16—H16119.2C26—C30—H30B109.5
C15—C16—H16119.2H30A—C30—H30B109.5
C12—N2—N3101.9 (2)C26—C30—H30C109.5
C14—C13—N3116.9 (2)H30A—C30—H30C109.5
C14—C13—C25126.6 (2)H30B—C30—H30C109.5
N3—C13—C25116.4 (2)C26—C31—H31A109.5
C13—C14—C15126.6 (2)C26—C31—H31B109.5
C13—C14—H14116.7H31A—C31—H31B109.5
C15—C14—H14116.7C26—C31—H31C109.5
C20—C15—C16117.1 (2)H31A—C31—H31C109.5
C20—C15—C14120.6 (2)H31B—C31—H31C109.5
C16—C15—C14122.1 (2)C29—C32—H32A109.5
C18—C19—C20118.7 (3)C29—C32—H32B109.5
C18—C19—H19120.6H32A—C32—H32B109.5
C20—C19—H19120.6C29—C32—H32C109.5
C18—C17—C16119.1 (3)H32A—C32—H32C109.5
C18—C17—H17120.4H32B—C32—H32C109.5
C16—C17—H17120.4C29—C33—H33A109.5
C17—C18—C19121.4 (3)C29—C33—H33B109.5
C17—C18—Cl4120.1 (2)H33A—C33—H33B109.5
C19—C18—Cl4118.5 (2)C29—C33—H33C109.5
N4—C1—N6110.7 (2)H33A—C33—H33C109.5
N4—C1—H1124.6H33B—C33—H33C109.5
N6—C1—H1124.6C29—C34—H34A109.5
C4—C27—N6118.0 (2)C29—C34—H34B109.5
C4—C27—C28125.5 (2)H34A—C34—H34B109.5
N6—C27—C28116.37 (19)C29—C34—H34C109.5
C9—C8—C7121.1 (3)H34A—C34—H34C109.5
C9—C8—Cl3119.7 (2)H34B—C34—H34C109.5
C7—C8—Cl3119.2 (2)C26—C35—H35A109.5
C8—C9—C10118.9 (3)C26—C35—H35B109.5
C8—C9—H9120.6H35A—C35—H35B109.5
C10—C9—H9120.6C26—C35—H35C109.5
C6—C5—C10116.8 (2)H35A—C35—H35C109.5
C6—C5—C4121.2 (2)H35B—C35—H35C109.5
C10—C5—C4122.0 (2)
N1i—Ni1—N4—C1112.5 (2)C20—C19—C18—C170.3 (5)
N1—Ni1—N4—C167.5 (2)C20—C19—C18—Cl4179.4 (2)
N4i—Ni1—N4—C117 (64)C2—N4—C1—N61.0 (3)
Cl1i—Ni1—N4—C1155.7 (2)Ni1—N4—C1—N6166.02 (16)
Cl1—Ni1—N4—C124.3 (2)N5—N6—C1—N41.0 (3)
N1i—Ni1—N4—C284.0 (3)C27—N6—C1—N4172.0 (2)
N1—Ni1—N4—C296.0 (3)C1—N6—C27—C4143.7 (3)
N4i—Ni1—N4—C2146 (65)N5—N6—C27—C428.5 (4)
Cl1i—Ni1—N4—C27.8 (2)C1—N6—C27—C2839.4 (3)
Cl1—Ni1—N4—C2172.2 (2)N5—N6—C27—C28148.4 (2)
N1i—Ni1—N1—C1188 (100)C7—C8—C9—C103.3 (4)
N4—Ni1—N1—C1137.1 (2)Cl3—C8—C9—C10175.63 (19)
N4i—Ni1—N1—C11142.9 (2)C9—C8—C7—C63.6 (4)
Cl1i—Ni1—N1—C11127.5 (2)Cl3—C8—C7—C6175.4 (2)
Cl1—Ni1—N1—C1152.5 (2)N6—C27—C4—C5176.3 (2)
N1i—Ni1—N1—C12103 (100)C28—C27—C4—C57.1 (4)
N4—Ni1—N1—C12131.9 (2)C6—C5—C4—C2760.4 (4)
N4i—Ni1—N1—C1248.1 (2)C10—C5—C4—C27120.3 (3)
Cl1i—Ni1—N1—C1241.4 (2)C8—C7—C6—C50.2 (4)
Cl1—Ni1—N1—C12138.6 (2)C10—C5—C6—C74.1 (4)
C1—N4—C2—N50.8 (4)C4—C5—C6—C7176.6 (2)
Ni1—N4—C2—N5165.7 (2)N4—C2—N5—N60.2 (4)
C11—N1—C12—N20.5 (3)C1—N6—N5—C20.4 (3)
Ni1—N1—C12—N2170.7 (2)C27—N6—N5—C2173.1 (2)
C12—N1—C11—N31.3 (3)C8—C9—C10—C50.8 (4)
Ni1—N1—C11—N3169.85 (16)C8—C9—C10—Cl2178.5 (2)
N2—N3—C11—N11.7 (3)C6—C5—C10—C94.4 (4)
C13—N3—C11—N1179.9 (2)C4—C5—C10—C9176.3 (2)
N1—C12—N2—N30.5 (3)C6—C5—C10—Cl2178.0 (2)
C11—N3—N2—C121.3 (3)C4—C5—C10—Cl21.3 (3)
C13—N3—N2—C12179.6 (2)C4—C27—C28—O2132.6 (3)
C11—N3—C13—C14134.6 (3)N6—C27—C28—O250.7 (3)
N2—N3—C13—C1443.4 (3)C4—C27—C28—C29103.0 (3)
C11—N3—C13—C2550.1 (3)N6—C27—C28—C2973.7 (3)
N2—N3—C13—C25131.9 (2)C14—C13—C25—O1135.0 (3)
N3—C13—C14—C15178.7 (2)N3—C13—C25—O150.2 (3)
C25—C13—C14—C156.6 (4)C14—C13—C25—C26101.7 (3)
C19—C20—C15—C160.2 (4)N3—C13—C25—C2673.1 (3)
Cl5—C20—C15—C16179.4 (2)O2—C28—C29—C34177.5 (2)
C19—C20—C15—C14175.3 (3)C27—C28—C29—C3451.5 (3)
Cl5—C20—C15—C145.1 (4)O2—C28—C29—C3364.7 (3)
C17—C16—C15—C200.1 (4)C27—C28—C29—C33169.3 (2)
C17—C16—C15—C14175.4 (2)O2—C28—C29—C3254.8 (3)
C13—C14—C15—C20124.7 (3)C27—C28—C29—C3271.2 (3)
C13—C14—C15—C1660.0 (4)O1—C25—C26—C35177.4 (3)
C15—C20—C19—C180.1 (4)C13—C25—C26—C3552.2 (3)
Cl5—C20—C19—C18179.5 (2)O1—C25—C26—C3054.5 (3)
C15—C16—C17—C180.3 (4)C13—C25—C26—C3070.7 (3)
C16—C17—C18—C190.4 (4)O1—C25—C26—C3164.9 (3)
C16—C17—C18—Cl4179.3 (2)C13—C25—C26—C31169.9 (3)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl1ii0.822.363.1460 (19)160
O2—H2A···Cl1ii0.822.323.123 (2)169
Symmetry code: (ii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formula[NiCl2(C15H17Cl2N3O)4]
Mr1434.47
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.7598 (6), 13.7800 (9), 15.1344 (10)
α, β, γ (°)90.672 (1), 98.521 (1), 106.743 (1)
V3)1727.3 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.25 × 0.22 × 0.21
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.840, 0.863
No. of measured, independent and
observed [I > 2σ(I)] reflections
13440, 6383, 4766
Rint0.025
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.104, 1.02
No. of reflections6383
No. of parameters402
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.42

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—N12.091 (2)Ni1—Cl12.4860 (6)
Ni1—N42.106 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl1i0.822.363.1460 (19)160
O2—H2A···Cl1i0.822.323.123 (2)169
Symmetry code: (i) x+2, y, z+1.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangxi Agricultural University, China (2964).

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFu, D. Y. (2002). Chin. J. Pestic. 2, 10–12.  Google Scholar
First citationGao, J. S., Ma, D. S., Ma, Z. G. & Chen, G. R. (2001). Chin. J. Mol. Sci. 17, 1, 17–22.  Google Scholar
First citationHuang, X. G., Zhao, A. J., Liu, X. G., Zhou, D. H. & Zeng, B. (2003). Acta Agric. Univ. Jiangxiensis, 25, 277–288.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSumitomo Chemical. (1984). Jpn Pestic. Soc. 6, 229–236.  Google Scholar
First citationXia, H. Y., Duan, Z. X., Tu, Y. M. & Liu, J. H. (2001). Chin. J. Pestic. 40, 12, 12–14.  Google Scholar
First citationXiong, Z.-Q., Chen, J.-Z., Wen, S.-H. & Nie, X.-L. (2010). Acta Cryst. E66, o3278.  CrossRef IUCr Journals Google Scholar
First citationZhou, Z. Y., Li, C. C., Gao, T. C. & Tang, G. J. (2008). J. Anhui Agric. Sci. 36, 11842–11844.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds