organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(5-Bromo-2-meth­­oxy­benzyl­­idene)-2-chloro­benzohydrazide

aZibo Vocational Institute, Zibo 255314, People's Republic of China
*Correspondence e-mail: lixiaoyan_zb@126.com

(Received 27 July 2011; accepted 23 August 2011; online 27 August 2011)

In the title compound, C15H12BrClN2O2, the dihedral angle between the two substituted aromatic rings is 77.8 (3)°. The mol­ecule exists in a trans conformation with respect to the methyl­idene unit. In the crystal structure, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R28(8) loops.

Related literature

For the crystal structures of some related hydrazone compounds, see: Li (2011a[Li, H.-B. (2011a). Acta Cryst. E67, o1532.],b[Li, X.-Y. (2011b). Acta Cryst. E67, o1798.]); Hashemian et al. (2011[Hashemian, S., Ghaeinee, V. & Notash, B. (2011). Acta Cryst. E67, o171.]); Lei (2011[Lei, Y. (2011). Acta Cryst. E67, o162.]); Shalash et al. (2010[Shalash, M., Salhin, A., Adnan, R., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o3126-o3127.]). For hydrogen-bond notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12BrClN2O2

  • Mr = 367.63

  • Monoclinic, P 21 /c

  • a = 11.312 (2) Å

  • b = 7.374 (2) Å

  • c = 17.979 (3) Å

  • β = 91.972 (3)°

  • V = 1499.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.93 mm−1

  • T = 298 K

  • 0.12 × 0.10 × 0.07 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.720, Tmax = 0.821

  • 5249 measured reflections

  • 2451 independent reflections

  • 1877 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.094

  • S = 1.04

  • 2451 reflections

  • 194 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.89 (1) 1.99 (1) 2.882 (4) 175 (4)
Symmetry code: (i) -x, -y+1, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the last few years, hydrazones have been attracted much attention for their crystal structures (e.g. Li, 2011a; Hashemian et al., 2011; Lei, 2011; Shalash et al., 2010). The author reports herein the crystal structure of the title new hydrazone compound, (I).

In the title compound, Fig. 1, the dihedral angle between the two substituted aromatic rings is 77.8 (3)°. The molecule exists in a trans configuration with respect to the methylidene unit. The bond values are comparable to those observed in a similar compound the author reported recently (Li, 2011b). In the crystal structure, adjacent two molecules are linked through two intermolecular N—H···O hydrogen bonds (Table 1), forming a dimer (Fig. 2).

Related literature top

For the crystal structures of some related hydrazone compounds, see: Li (2011a); Hashemian et al. (2011); Lei (2011); Shalash et al. (2010); Li (2011b). For hydrogen-bond notation, see: Bernstein et al. (1995).

Experimental top

A mixture of 2-chlorobenzhydrazide (0.171 g, 1 mmol) and 5-bromo-2-methoxybenzaldehyde (0.215 g, 1 mmol) in 30 ml of ethanol containing few drops of acetic acid was refluxed for about 1 h. On cooling to room temperature, a solid precipitate was formed. The solid was filtered and then recrystallized from methanol. Colorless blocks of (I) were obtained by slow evaporation of the solution.

Refinement top

The N-bound H atom was located from a difference Fourier map and refined isotropically. The rest of H atoms were positioned geometrically [C—H = 0.93 and 0.96 Å] and refined using a riding model [Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C15)]. A rotating-group model was applied for the methyl group.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) at 30% probability level. Hydrogen bonds are indicated by dashed lines.
[Figure 2] Fig. 2. The packing of (I), viewed along the c axis. Intermolecular hydrogen bonds are drawn as dashed lines.
(E)-N'-(5-Bromo-2-methoxybenzylidene)-2-chlorobenzohydrazide top
Crystal data top
C15H12BrClN2O2F(000) = 736
Mr = 367.63Dx = 1.629 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.312 (2) ÅCell parameters from 1972 reflections
b = 7.374 (2) Åθ = 3.1–24.9°
c = 17.979 (3) ŵ = 2.93 mm1
β = 91.972 (3)°T = 298 K
V = 1499.0 (5) Å3Block, colourless
Z = 40.12 × 0.10 × 0.07 mm
Data collection top
Bruker SMART CCD
diffractometer
2451 independent reflections
Radiation source: fine-focus sealed tube1877 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω scansθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.720, Tmax = 0.821k = 86
5249 measured reflectionsl = 2018
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0429P)2 + 0.678P]
where P = (Fo2 + 2Fc2)/3
2451 reflections(Δ/σ)max = 0.001
194 parametersΔρmax = 0.46 e Å3
1 restraintΔρmin = 0.46 e Å3
Crystal data top
C15H12BrClN2O2V = 1499.0 (5) Å3
Mr = 367.63Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.312 (2) ŵ = 2.93 mm1
b = 7.374 (2) ÅT = 298 K
c = 17.979 (3) Å0.12 × 0.10 × 0.07 mm
β = 91.972 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2451 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1877 reflections with I > 2σ(I)
Tmin = 0.720, Tmax = 0.821Rint = 0.050
5249 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.46 e Å3
2451 reflectionsΔρmin = 0.46 e Å3
194 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.68536 (3)0.08870 (6)0.13010 (2)0.05792 (18)
Cl10.20872 (10)0.35802 (17)0.20909 (7)0.0738 (4)
N10.2386 (2)0.2805 (4)0.03030 (15)0.0362 (6)
N20.1252 (2)0.3513 (4)0.02797 (16)0.0405 (7)
O10.4312 (2)0.3783 (4)0.14532 (14)0.0534 (7)
O20.05797 (18)0.3567 (3)0.07125 (14)0.0533 (7)
C10.4308 (2)0.2898 (4)0.02015 (18)0.0358 (7)
C20.4949 (3)0.3117 (5)0.08532 (19)0.0402 (8)
C30.6132 (3)0.2662 (5)0.0855 (2)0.0484 (9)
H30.65520.28110.12870.058*
C40.6700 (3)0.1984 (5)0.0217 (2)0.0468 (9)
H40.74960.16680.02210.056*
C50.6074 (3)0.1783 (5)0.04254 (19)0.0401 (8)
C60.4885 (3)0.2236 (4)0.04331 (19)0.0390 (8)
H60.44720.20930.08680.047*
C70.3058 (3)0.3422 (4)0.01972 (19)0.0375 (8)
H70.27520.42080.05600.045*
C80.0425 (2)0.2909 (4)0.07350 (18)0.0362 (7)
C90.0717 (2)0.1349 (4)0.12478 (18)0.0348 (8)
C100.1435 (3)0.1509 (5)0.1879 (2)0.0445 (9)
C110.1611 (3)0.0055 (7)0.2367 (2)0.0578 (11)
H110.20780.01940.27990.069*
C120.1087 (4)0.1580 (6)0.2202 (3)0.0627 (12)
H120.12150.25600.25210.075*
C130.0377 (4)0.1789 (6)0.1573 (3)0.0613 (11)
H130.00370.29100.14650.074*
C140.0166 (3)0.0332 (5)0.1098 (2)0.0476 (9)
H140.03380.04640.06820.057*
C150.4912 (4)0.4085 (6)0.2124 (2)0.0649 (12)
H15A0.55090.49950.20420.097*
H15B0.43570.44880.25050.097*
H15C0.52760.29770.22780.097*
H20.109 (4)0.444 (4)0.0024 (19)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0437 (2)0.0720 (3)0.0575 (3)0.00185 (18)0.00739 (17)0.0012 (2)
Cl10.0748 (7)0.0728 (8)0.0728 (8)0.0254 (6)0.0124 (6)0.0101 (6)
N10.0305 (12)0.0354 (16)0.0430 (17)0.0034 (11)0.0047 (11)0.0041 (13)
N20.0293 (13)0.0413 (17)0.051 (2)0.0057 (11)0.0055 (12)0.0133 (14)
O10.0489 (14)0.0648 (18)0.0473 (16)0.0000 (12)0.0109 (12)0.0140 (13)
O20.0318 (12)0.0558 (16)0.0728 (19)0.0101 (11)0.0087 (11)0.0244 (14)
C10.0330 (15)0.0330 (18)0.042 (2)0.0017 (13)0.0054 (14)0.0016 (15)
C20.0435 (18)0.035 (2)0.042 (2)0.0066 (15)0.0062 (15)0.0031 (16)
C30.0410 (18)0.051 (2)0.054 (2)0.0043 (16)0.0197 (17)0.0017 (19)
C40.0323 (16)0.048 (2)0.061 (3)0.0004 (15)0.0104 (16)0.0026 (19)
C50.0356 (16)0.0345 (19)0.050 (2)0.0040 (14)0.0011 (15)0.0035 (16)
C60.0347 (16)0.0371 (19)0.046 (2)0.0060 (14)0.0086 (15)0.0037 (16)
C70.0392 (17)0.0310 (18)0.042 (2)0.0000 (13)0.0045 (15)0.0010 (15)
C80.0312 (15)0.0343 (19)0.043 (2)0.0012 (13)0.0012 (13)0.0042 (15)
C90.0285 (15)0.0348 (19)0.042 (2)0.0046 (12)0.0089 (14)0.0051 (15)
C100.0339 (16)0.050 (2)0.049 (2)0.0010 (15)0.0013 (16)0.0007 (18)
C110.047 (2)0.075 (3)0.051 (3)0.014 (2)0.0002 (17)0.017 (2)
C120.056 (2)0.062 (3)0.071 (3)0.012 (2)0.012 (2)0.031 (2)
C130.067 (3)0.039 (2)0.079 (3)0.0035 (19)0.017 (2)0.010 (2)
C140.0476 (19)0.044 (2)0.051 (2)0.0011 (16)0.0098 (17)0.0049 (18)
C150.066 (2)0.079 (3)0.050 (3)0.011 (2)0.014 (2)0.012 (2)
Geometric parameters (Å, º) top
Br1—C51.897 (3)C5—C61.386 (4)
Cl1—C101.733 (4)C6—H60.9300
N1—C71.282 (4)C7—H70.9300
N1—N21.384 (3)C8—C91.504 (4)
N2—C81.340 (4)C9—C101.377 (5)
N2—H20.893 (10)C9—C141.409 (5)
O1—C21.368 (4)C10—C111.395 (5)
O1—C151.422 (4)C11—C121.371 (6)
O2—C81.235 (3)C11—H110.9300
C1—C61.384 (5)C12—C131.373 (6)
C1—C21.408 (4)C12—H120.9300
C1—C71.466 (4)C13—C141.388 (5)
C2—C31.380 (5)C13—H130.9300
C3—C41.390 (5)C14—H140.9300
C3—H30.9300C15—H15A0.9600
C4—C51.384 (5)C15—H15B0.9600
C4—H40.9300C15—H15C0.9600
C7—N1—N2114.6 (3)O2—C8—C9120.2 (3)
C8—N2—N1121.5 (3)N2—C8—C9119.0 (3)
C8—N2—H2120 (3)C10—C9—C14118.5 (3)
N1—N2—H2119 (3)C10—C9—C8123.4 (3)
C2—O1—C15118.1 (3)C14—C9—C8118.0 (3)
C6—C1—C2119.0 (3)C9—C10—C11121.3 (4)
C6—C1—C7121.1 (3)C9—C10—Cl1119.4 (3)
C2—C1—C7119.9 (3)C11—C10—Cl1119.2 (3)
O1—C2—C3124.7 (3)C12—C11—C10119.3 (4)
O1—C2—C1115.2 (3)C12—C11—H11120.4
C3—C2—C1120.1 (3)C10—C11—H11120.4
C2—C3—C4120.4 (3)C11—C12—C13120.8 (4)
C2—C3—H3119.8C11—C12—H12119.6
C4—C3—H3119.8C13—C12—H12119.6
C5—C4—C3119.5 (3)C12—C13—C14120.2 (4)
C5—C4—H4120.2C12—C13—H13119.9
C3—C4—H4120.2C14—C13—H13119.9
C4—C5—C6120.5 (3)C13—C14—C9119.9 (4)
C4—C5—Br1119.5 (2)C13—C14—H14120.1
C6—C5—Br1120.0 (3)C9—C14—H14120.1
C1—C6—C5120.5 (3)O1—C15—H15A109.5
C1—C6—H6119.8O1—C15—H15B109.5
C5—C6—H6119.8H15A—C15—H15B109.5
N1—C7—C1120.4 (3)O1—C15—H15C109.5
N1—C7—H7119.8H15A—C15—H15C109.5
C1—C7—H7119.8H15B—C15—H15C109.5
O2—C8—N2120.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.89 (1)1.99 (1)2.882 (4)175 (4)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H12BrClN2O2
Mr367.63
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.312 (2), 7.374 (2), 17.979 (3)
β (°) 91.972 (3)
V3)1499.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.93
Crystal size (mm)0.12 × 0.10 × 0.07
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.720, 0.821
No. of measured, independent and
observed [I > 2σ(I)] reflections
5249, 2451, 1877
Rint0.050
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.094, 1.04
No. of reflections2451
No. of parameters194
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.46

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.893 (10)1.992 (12)2.882 (4)175 (4)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The author acknowledges the Zibo Vocational Institute for supporting this work.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHashemian, S., Ghaeinee, V. & Notash, B. (2011). Acta Cryst. E67, o171.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLei, Y. (2011). Acta Cryst. E67, o162.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLi, H.-B. (2011a). Acta Cryst. E67, o1532.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, X.-Y. (2011b). Acta Cryst. E67, o1798.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShalash, M., Salhin, A., Adnan, R., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o3126–o3127.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds