organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Benzyl-2,7-di­aza­spiro­[4.4]nonan-1-one

aMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: huanmeiguo@163.com

(Received 27 July 2011; accepted 21 August 2011; online 27 August 2011)

In the title compound, C14H18N2O, both the spiro-linked five-membered rings adopt envelope conformations, with a C atom as the flap in one ring and an N atom in the other. The dihedral angle between the two four-atom planes is 80.46 (8)°. In the crystal, the mol­ecules are linked by N—H⋯O hydrogen bonds to generate C(4) chains propagating in [010].

Related literature

For background to pyrrolidine derivatives, see: Kuroki et al. (1999[Kuroki, Y. & Iseki, K. (1999). Tetrahedron Lett. 40, 8231-8234.]); Hale et al. (2001[Hale, J. J., Budhu, R. J., Mills, S. G., MacCoss, M., Malkowitz, L., Siciliano, S., Gould, S. L., DeMartino, J. A. & Springer, M. S. (2001). Bioorg. Med. Chem. Lett. 11, 1437-1440.]); Shen et al. (2004[Shen, D. M., et al. (2004). Bioorg. Med. Chem. Lett. 14, 953-957.]).

[Scheme 1]

Experimental

Crystal data
  • C14H18N2O

  • Mr = 230.30

  • Orthorhombic, P b c a

  • a = 9.630 (2) Å

  • b = 8.4322 (18) Å

  • c = 29.848 (7) Å

  • V = 2423.8 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.21 × 0.18 × 0.17 mm

Data collection
  • MM007-HF CCD (Saturn 724+) diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.983, Tmax = 0.986

  • 9156 measured reflections

  • 2761 independent reflections

  • 2495 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.120

  • S = 1.16

  • 2761 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1i 0.88 2.14 2.9839 (19) 160
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

While a great number of pyrrolidines and their derivatives with specific substitution pattern are of particular interest, new methods for their preparation are needed; e.g. Kuroki et al., (1999); Hale et al., (2001); Shen et al., (2004). As part of our research work in this area, the title compound, (I), was synthesized, and herein we report the structure of it.

In the molecule (Fig. 1), all bond lengths and angles are within normal ranges. Atoms C8, C9, C10, and C11 lie in a plane (p1),with a maximum deviation of 0.01102 (11)Å for C10; atoms C10, C13, C14, and N3 lie in a plane (p2) too, the maximum deviation is 0.0045 (10)Å for N3. The dihedral angle between the two plans is 80.46 (8)°. The dihedral angles made by the phenyl ring with p1anes p1 and p2 are 53.56 (9)° and 50.21 (6)°, respectively. The structure exhibits intermolecular N3—H···O1 hydrogen bonding interactions (Table 1), which link the molecules into chains.

Related literature top

For background to pyrrolidine derivatives, see: Kuroki et al. (1999); Hale et al. (2001); Shen et al., (2004).

Experimental top

The title molecule, C14H18N2O1, was synthesized from methyl 1-benzyl-3-(cyanomethyl) pyrrolidine-3-carboxylate and Raney Ni (w/w = 4: 1) in methanol under H2 (50 Psi) atmosphere at room temperature. Colourless blocks of (I) were obtained by recrystallization from ethanol at room temperature.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their attached atoms, the C—H distances is in the range 0.95–0.98 Å, and with Uiso(H) = 1.2Ueq(C); the N—H distances is 0.88 Å, with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
7-Benzyl-2,7-diazaspiro[4.4]nonan-1-one top
Crystal data top
C14H18N2OF(000) = 992
Mr = 230.30Dx = 1.262 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 6994 reflections
a = 9.630 (2) Åθ = 1.4–27.5°
b = 8.4322 (18) ŵ = 0.08 mm1
c = 29.848 (7) ÅT = 173 K
V = 2423.8 (9) Å3Block, colorless
Z = 80.21 × 0.18 × 0.17 mm
Data collection top
MM007-HF CCD (Saturn 724+)
diffractometer
2761 independent reflections
Radiation source: rotating anode2495 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.046
ω scans at fixed χ = 45°θmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
h = 712
Tmin = 0.983, Tmax = 0.986k = 710
9156 measured reflectionsl = 3838
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.030P)2 + 1.3429P]
where P = (Fo2 + 2Fc2)/3
2761 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C14H18N2OV = 2423.8 (9) Å3
Mr = 230.30Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.630 (2) ŵ = 0.08 mm1
b = 8.4322 (18) ÅT = 173 K
c = 29.848 (7) Å0.21 × 0.18 × 0.17 mm
Data collection top
MM007-HF CCD (Saturn 724+)
diffractometer
2761 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
2495 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.986Rint = 0.046
9156 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.16Δρmax = 0.22 e Å3
2761 reflectionsΔρmin = 0.19 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27133 (12)0.12904 (14)0.47500 (4)0.0295 (3)
N10.48470 (14)0.35120 (16)0.37041 (4)0.0226 (3)
N30.39956 (15)0.08606 (16)0.45320 (5)0.0265 (3)
H30.34850.15890.46640.032*
C10.39718 (18)0.6967 (2)0.29710 (6)0.0279 (4)
H10.30100.67770.29240.033*
C20.4556 (2)0.8372 (2)0.28234 (6)0.0324 (4)
H20.39960.91350.26750.039*
C30.5953 (2)0.8667 (2)0.28919 (6)0.0319 (4)
H3A0.63520.96360.27930.038*
C40.67658 (19)0.7545 (2)0.31053 (6)0.0305 (4)
H40.77260.77410.31530.037*
C50.61789 (17)0.61353 (19)0.32491 (6)0.0255 (4)
H50.67460.53650.33920.031*
C60.47727 (17)0.58284 (19)0.31871 (5)0.0228 (3)
C70.41177 (18)0.4289 (2)0.33361 (6)0.0259 (4)
H7B0.31490.45010.34300.031*
H7A0.40850.35540.30780.031*
C80.48226 (19)0.4420 (2)0.41228 (5)0.0266 (4)
H8A0.38890.48700.41780.032*
H8B0.55080.52940.41150.032*
C90.5201 (2)0.3210 (2)0.44804 (6)0.0315 (4)
H9A0.46800.34170.47600.038*
H9B0.62070.32480.45470.038*
C100.47966 (17)0.15873 (19)0.42824 (5)0.0237 (4)
C110.41627 (19)0.2024 (2)0.38238 (5)0.0264 (4)
H11B0.43580.11910.35990.032*
H11A0.31450.21690.38480.032*
C120.59701 (18)0.0370 (2)0.42444 (6)0.0310 (4)
H12A0.64710.04870.39570.037*
H12B0.66400.04890.44940.037*
C130.52313 (19)0.1232 (2)0.42691 (6)0.0317 (4)
H13A0.49810.16220.39670.038*
H13B0.58140.20360.44210.038*
C140.37117 (16)0.06900 (19)0.45541 (5)0.0220 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0269 (6)0.0299 (7)0.0317 (6)0.0042 (5)0.0045 (5)0.0012 (5)
N10.0255 (7)0.0193 (7)0.0231 (7)0.0027 (6)0.0004 (5)0.0010 (5)
N30.0277 (7)0.0197 (7)0.0321 (8)0.0019 (6)0.0035 (6)0.0033 (6)
C10.0259 (8)0.0299 (9)0.0279 (8)0.0013 (8)0.0008 (7)0.0021 (7)
C20.0361 (10)0.0283 (9)0.0329 (9)0.0047 (8)0.0023 (8)0.0071 (7)
C30.0383 (10)0.0255 (9)0.0320 (9)0.0055 (8)0.0031 (8)0.0054 (7)
C40.0273 (9)0.0283 (9)0.0358 (9)0.0047 (7)0.0024 (7)0.0001 (7)
C50.0246 (8)0.0232 (8)0.0289 (9)0.0013 (7)0.0008 (7)0.0015 (7)
C60.0245 (8)0.0214 (8)0.0226 (8)0.0004 (7)0.0007 (6)0.0006 (6)
C70.0244 (8)0.0258 (9)0.0276 (8)0.0035 (7)0.0021 (6)0.0036 (7)
C80.0308 (9)0.0227 (8)0.0263 (8)0.0014 (7)0.0028 (7)0.0020 (7)
C90.0399 (10)0.0272 (9)0.0273 (9)0.0090 (8)0.0052 (7)0.0006 (7)
C100.0265 (8)0.0209 (8)0.0237 (8)0.0025 (7)0.0016 (6)0.0012 (6)
C110.0307 (9)0.0240 (8)0.0245 (8)0.0058 (7)0.0035 (7)0.0032 (7)
C120.0264 (9)0.0344 (10)0.0324 (9)0.0023 (8)0.0053 (7)0.0032 (8)
C130.0352 (10)0.0260 (9)0.0341 (9)0.0066 (8)0.0034 (8)0.0010 (7)
C140.0218 (8)0.0228 (8)0.0214 (7)0.0004 (7)0.0019 (6)0.0010 (6)
Geometric parameters (Å, º) top
O1—C141.2341 (19)C7—H7B0.9900
N1—C71.459 (2)C7—H7A0.9900
N1—C111.462 (2)C8—C91.521 (2)
N1—C81.466 (2)C8—H8A0.9900
N3—C141.337 (2)C8—H8B0.9900
N3—C131.460 (2)C9—C101.540 (2)
N3—H30.8800C9—H9A0.9900
C1—C21.383 (2)C9—H9B0.9900
C1—C61.390 (2)C10—C141.524 (2)
C1—H10.9500C10—C121.531 (2)
C2—C31.384 (3)C10—C111.544 (2)
C2—H20.9500C11—H11B0.9900
C3—C41.384 (3)C11—H11A0.9900
C3—H3A0.9500C12—C131.529 (2)
C4—C51.384 (2)C12—H12A0.9900
C4—H40.9500C12—H12B0.9900
C5—C61.391 (2)C13—H13A0.9900
C5—H50.9500C13—H13B0.9900
C6—C71.510 (2)
C7—N1—C11110.62 (13)H8A—C8—H8B108.9
C7—N1—C8113.55 (13)C8—C9—C10105.45 (14)
C11—N1—C8103.47 (13)C8—C9—H9A110.7
C14—N3—C13113.77 (14)C10—C9—H9A110.7
C14—N3—H3123.1C8—C9—H9B110.7
C13—N3—H3123.1C10—C9—H9B110.7
C2—C1—C6120.90 (16)H9A—C9—H9B108.8
C2—C1—H1119.5C14—C10—C12102.28 (13)
C6—C1—H1119.5C14—C10—C9114.22 (14)
C1—C2—C3120.16 (17)C12—C10—C9115.95 (14)
C1—C2—H2119.9C14—C10—C11108.61 (13)
C3—C2—H2119.9C12—C10—C11112.71 (14)
C4—C3—C2119.67 (17)C9—C10—C11103.19 (13)
C4—C3—H3A120.2N1—C11—C10104.07 (13)
C2—C3—H3A120.2N1—C11—H11B110.9
C3—C4—C5119.94 (17)C10—C11—H11B110.9
C3—C4—H4120.0N1—C11—H11A110.9
C5—C4—H4120.0C10—C11—H11A110.9
C4—C5—C6121.06 (16)H11B—C11—H11A109.0
C4—C5—H5119.5C13—C12—C10104.21 (14)
C6—C5—H5119.5C13—C12—H12A110.9
C1—C6—C5118.26 (15)C10—C12—H12A110.9
C1—C6—C7119.90 (15)C13—C12—H12B110.9
C5—C6—C7121.82 (15)C10—C12—H12B110.9
N1—C7—C6113.99 (13)H12A—C12—H12B108.9
N1—C7—H7B108.8N3—C13—C12102.45 (13)
C6—C7—H7B108.8N3—C13—H13A111.3
N1—C7—H7A108.8C12—C13—H13A111.3
C6—C7—H7A108.8N3—C13—H13B111.3
H7B—C7—H7A107.7C12—C13—H13B111.3
N1—C8—C9104.13 (14)H13A—C13—H13B109.2
N1—C8—H8A110.9O1—C14—N3125.71 (15)
C9—C8—H8A110.9O1—C14—C10125.64 (15)
N1—C8—H8B110.9N3—C14—C10108.61 (14)
C9—C8—H8B110.9
C6—C1—C2—C30.4 (3)C7—N1—C11—C10165.66 (13)
C1—C2—C3—C40.6 (3)C8—N1—C11—C1043.71 (16)
C2—C3—C4—C50.0 (3)C14—C10—C11—N1149.00 (13)
C3—C4—C5—C60.7 (3)C12—C10—C11—N198.41 (16)
C2—C1—C6—C50.3 (2)C9—C10—C11—N127.42 (17)
C2—C1—C6—C7178.67 (16)C14—C10—C12—C1328.06 (17)
C4—C5—C6—C10.9 (2)C9—C10—C12—C13153.01 (15)
C4—C5—C6—C7179.16 (16)C11—C10—C12—C1388.38 (16)
C11—N1—C7—C6179.16 (13)C14—N3—C13—C1217.26 (19)
C8—N1—C7—C665.02 (18)C10—C12—C13—N327.63 (17)
C1—C6—C7—N1156.04 (15)C13—N3—C14—O1178.80 (16)
C5—C6—C7—N125.7 (2)C13—N3—C14—C100.86 (19)
C7—N1—C8—C9162.37 (14)C12—C10—C14—O1163.51 (16)
C11—N1—C8—C942.41 (16)C9—C10—C14—O137.4 (2)
N1—C8—C9—C1024.29 (18)C11—C10—C14—O177.1 (2)
C8—C9—C10—C14119.53 (15)C12—C10—C14—N318.55 (17)
C8—C9—C10—C12121.90 (16)C9—C10—C14—N3144.63 (14)
C8—C9—C10—C111.82 (18)C11—C10—C14—N3100.81 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.882.142.9839 (19)160
Symmetry code: (i) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC14H18N2O
Mr230.30
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)173
a, b, c (Å)9.630 (2), 8.4322 (18), 29.848 (7)
V3)2423.8 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.21 × 0.18 × 0.17
Data collection
DiffractometerMM007-HF CCD (Saturn 724+)
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2007)
Tmin, Tmax0.983, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
9156, 2761, 2495
Rint0.046
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.120, 1.16
No. of reflections2761
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.19

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.882.142.9839 (19)160
Symmetry code: (i) x+1/2, y1/2, z.
 

Acknowledgements

The author thanks Shandong Provincial Natural Science Foundation, China (grant No. Y2008B29) and Yuandu Scholar of Weifang City for support.

References

First citationHale, J. J., Budhu, R. J., Mills, S. G., MacCoss, M., Malkowitz, L., Siciliano, S., Gould, S. L., DeMartino, J. A. & Springer, M. S. (2001). Bioorg. Med. Chem. Lett. 11, 1437–1440.  CrossRef CAS Google Scholar
First citationKuroki, Y. & Iseki, K. (1999). Tetrahedron Lett. 40, 8231–8234.  CAS Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, D. M., et al. (2004). Bioorg. Med. Chem. Lett. 14, 953–957.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds