organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Bis(1H-benzimidazol-1-yl)benzene

aMolecular Design Center, College of Chemistry and Life Science, Leshan Normal University, Leshan 614000, Sichuan Province, People's Republic of China
*Correspondence e-mail: sunguofeng03@163.com

(Received 28 July 2011; accepted 3 August 2011; online 11 August 2011)

In the title compound, C20H14N4, the dihedral angles between the central benzene ring and the pendant benzimidazole ring systems are 46.60 (15) and 47.89 (16)°. The dihedral angle between the benzimidazole ring systems is 85.62 (12)° and the N atoms lie to the same side of the mol­ecule. In the crystal, mol­ecules are linked by C—H⋯N inter­actions and weak aromatic ππ stacking [shortest centroid–centroid separation = 3.770 (2) Å] is observed.

Related literature

For background to benzimidazole derivatives as ligands in crystal engineering, see: Li et al. (2009[Li, Z. X., Xu, Y., Zuo, Y., Li, L., Pan, Q., Hu, T. L. & Bu, X. H. (2009). Cryst. Growth Des. 9, 3904-3909.]); Vijayan et al. (2006[Vijayan, N., Bhagavannarayana, G., Balamurugan, N., Babu, R. R., Maurya, K. K., Gopalakrishnan, R. & Ramasamy, P. (2006). J. Cryst. Growth, 293, 318-323.]).

[Scheme 1]

Experimental

Crystal data
  • C20H14N4

  • Mr = 310.35

  • Orthorhombic, P n a 21

  • a = 9.5458 (19) Å

  • b = 20.499 (4) Å

  • c = 7.9283 (16) Å

  • V = 1551.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.18 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.980, Tmax = 0.985

  • 12744 measured reflections

  • 1479 independent reflections

  • 1298 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.104

  • S = 1.17

  • 1479 reflections

  • 231 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯N4i 0.93 2.50 3.359 (5) 153
C6—H6⋯N4ii 0.93 2.56 3.447 (5) 159
Symmetry codes: (i) x-1, y, z; (ii) [-x+2, -y+1, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In recent years, benzimidazole has been well used in crystal engineering, because they exhibit a strong networking ability (Vijayan et al., 2006). To our knowledge, the research on benzimidazole ligands bearing rigid spacers is still less developed (Li et al., 2009), and the title compound was well designed for building polymer architecture. We report here the structure and conformation of a rigid benzimidazole derivative, and further explore the ligand coordination. As shown in Fig. 1, the title compound is trans-conformation and tends to trans-coordination. The molecule has no inversion centre because two benzimidazole rings are not coplanar.

Related literature top

For background to benzimidazole derivatives as ligands in crystal engineering, see: Li et al. (2009); Vijayan et al. (2006).

Experimental top

The ligand 1,4-di(1H-benzimidazol-1-yl)benzene was prepared by a modified method (Li et al., 2009). A mixture of 1,4-dibromophenyl (3.72 g, 12.0 mmol), benzimidazole (4.25 g, 36.0 mmol), CuI (0.38 g, 2.0 mmol), 1,10-phenanthroline (0.72 g, 4.0 mmol), and Cs2CO3 (2.48 g, 18.0 mmol) was suspended in DMF (50 ml) and refluxed for 48 h to afford (I) as off-white powder, yield: 25% (based on 1,4-dibromophenyl), Mp: 291°C. Colourless blocks of (I) were obtained by recrystallizing from a mixed solvent of methanol and water (1:1).

Refinement top

C-bound H atoms were positioned geometrically and refined in the riding-model approximation, with C—H = 0.93Å and Uiso(H) = 1.2Ueq. Anomalous dispersion was negligible and Friedel pairs were merged before refinement.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing for (I).
1,4-Bis(1H-benzimidazol-1-yl)benzene top
Crystal data top
C20H14N4Dx = 1.329 Mg m3
Mr = 310.35Melting point: 564 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 13068 reflections
a = 9.5458 (19) Åθ = 3.3–27.6°
b = 20.499 (4) ŵ = 0.08 mm1
c = 7.9283 (16) ÅT = 293 K
V = 1551.4 (5) Å3Block, colorless
Z = 40.25 × 0.22 × 0.18 mm
F(000) = 648
Data collection top
Rigaku Mercury CCD
diffractometer
1479 independent reflections
Radiation source: fine-focus sealed tube1298 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 3.5°
ω scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 2424
Tmin = 0.980, Tmax = 0.985l = 99
12744 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0488P)2 + 0.1271P]
where P = (Fo2 + 2Fc2)/3
1479 reflections(Δ/σ)max < 0.001
231 parametersΔρmax = 0.14 e Å3
1 restraintΔρmin = 0.16 e Å3
0 constraints
Crystal data top
C20H14N4V = 1551.4 (5) Å3
Mr = 310.35Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 9.5458 (19) ŵ = 0.08 mm1
b = 20.499 (4) ÅT = 293 K
c = 7.9283 (16) Å0.25 × 0.22 × 0.18 mm
Data collection top
Rigaku Mercury CCD
diffractometer
1479 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1298 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.985Rint = 0.075
12744 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0511 restraint
wR(F2) = 0.104H-atom parameters constrained
S = 1.17Δρmax = 0.14 e Å3
1479 reflectionsΔρmin = 0.16 e Å3
231 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2140 (3)0.55131 (15)0.6320 (4)0.0462 (8)
N20.4461 (3)0.53457 (14)0.6010 (4)0.0411 (8)
N30.9643 (3)0.40659 (14)0.6681 (4)0.0383 (7)
N41.1632 (3)0.37523 (15)0.7980 (4)0.0479 (9)
C10.3178 (4)0.51125 (18)0.6527 (5)0.0452 (9)
H10.30650.46990.69930.043 (10)*
C20.2750 (3)0.60700 (16)0.5602 (4)0.0361 (8)
C30.2141 (4)0.66544 (17)0.5108 (5)0.0427 (9)
H30.11890.67290.52630.036 (9)*
C40.2986 (4)0.71179 (17)0.4385 (5)0.0421 (9)
H40.25980.75130.40470.063 (13)*
C50.4412 (4)0.70086 (17)0.4146 (5)0.0442 (10)
H50.49480.73310.36290.046 (11)*
C60.5059 (4)0.64388 (17)0.4649 (5)0.0431 (9)
H60.60140.63710.44990.045 (10)*
C70.4197 (3)0.59693 (16)0.5399 (5)0.0364 (8)
C80.5788 (3)0.50222 (17)0.6151 (4)0.0379 (9)
C90.5905 (4)0.43768 (17)0.5667 (5)0.0419 (9)
H90.51340.41580.52260.058 (12)*
C100.7177 (3)0.40549 (17)0.5842 (5)0.0408 (9)
H100.72560.36180.55390.037 (9)*
C110.8327 (3)0.43899 (17)0.6469 (5)0.0366 (8)
C120.8204 (4)0.50358 (17)0.6927 (5)0.0421 (9)
H120.89820.52600.73300.047 (11)*
C130.6930 (4)0.53532 (18)0.6794 (5)0.0455 (10)
H130.68430.57860.71300.037 (10)*
C141.0470 (4)0.40901 (19)0.8087 (5)0.0443 (9)
H141.02290.43290.90420.046 (11)*
C151.0353 (3)0.36720 (16)0.5527 (5)0.0391 (9)
C161.0063 (4)0.3484 (2)0.3891 (6)0.0523 (11)
H160.92410.36100.33550.064 (13)*
C171.1043 (4)0.3103 (2)0.3088 (6)0.0662 (12)
H171.08800.29710.19830.086 (16)*
C181.2279 (5)0.2907 (2)0.3899 (6)0.0650 (13)
H181.29140.26440.33250.055 (12)*
C191.2571 (4)0.30983 (19)0.5533 (6)0.0525 (10)
H191.33970.29730.60650.065 (13)*
C201.1584 (4)0.34847 (17)0.6357 (5)0.0423 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0327 (17)0.0505 (18)0.056 (2)0.0003 (15)0.0048 (16)0.0058 (17)
N20.0318 (16)0.0426 (18)0.049 (2)0.0027 (13)0.0035 (15)0.0057 (15)
N30.0292 (15)0.0410 (16)0.0448 (18)0.0019 (13)0.0052 (14)0.0046 (16)
N40.040 (2)0.058 (2)0.046 (2)0.0025 (16)0.0089 (16)0.0052 (18)
C10.041 (2)0.038 (2)0.057 (2)0.0039 (17)0.010 (2)0.009 (2)
C20.0285 (17)0.0417 (19)0.038 (2)0.0029 (16)0.0033 (17)0.0012 (17)
C30.034 (2)0.047 (2)0.047 (2)0.0072 (17)0.0010 (17)0.0050 (19)
C40.039 (2)0.0353 (18)0.052 (2)0.0059 (17)0.0013 (19)0.0000 (19)
C50.044 (2)0.038 (2)0.051 (2)0.0019 (18)0.0041 (19)0.003 (2)
C60.031 (2)0.047 (2)0.052 (2)0.0003 (17)0.0011 (19)0.0041 (19)
C70.0305 (18)0.0354 (19)0.043 (2)0.0001 (15)0.0014 (17)0.0035 (19)
C80.0363 (19)0.041 (2)0.036 (2)0.0057 (15)0.0021 (16)0.0033 (17)
C90.0316 (19)0.042 (2)0.052 (2)0.0021 (16)0.0049 (18)0.0017 (19)
C100.039 (2)0.038 (2)0.046 (2)0.0017 (17)0.0042 (17)0.0015 (18)
C110.0318 (19)0.044 (2)0.0339 (19)0.0024 (15)0.0022 (17)0.0042 (18)
C120.034 (2)0.043 (2)0.049 (2)0.0014 (17)0.0066 (17)0.0030 (19)
C130.044 (2)0.039 (2)0.054 (3)0.0039 (17)0.0021 (19)0.0105 (19)
C140.039 (2)0.053 (2)0.041 (2)0.0013 (19)0.0063 (19)0.001 (2)
C150.0338 (19)0.0346 (18)0.049 (2)0.0030 (15)0.0013 (18)0.0040 (18)
C160.048 (2)0.061 (3)0.048 (2)0.013 (2)0.013 (2)0.007 (2)
C170.064 (3)0.079 (3)0.056 (3)0.024 (2)0.004 (2)0.015 (3)
C180.057 (3)0.068 (3)0.070 (3)0.024 (2)0.003 (2)0.010 (3)
C190.042 (2)0.056 (2)0.060 (3)0.011 (2)0.005 (2)0.006 (2)
C200.037 (2)0.041 (2)0.049 (2)0.0012 (16)0.0034 (19)0.005 (2)
Geometric parameters (Å, º) top
N1—C11.298 (5)C8—C131.381 (5)
N1—C21.402 (4)C8—C91.382 (5)
N2—C11.377 (4)C9—C101.389 (5)
N2—C71.390 (4)C9—H90.9300
N2—C81.434 (4)C10—C111.387 (5)
N3—C141.367 (4)C10—H100.9301
N3—C151.396 (5)C11—C121.378 (5)
N3—C111.431 (4)C12—C131.384 (5)
N4—C141.310 (4)C12—H120.9299
N4—C201.400 (5)C13—H130.9301
C1—H10.9301C14—H140.9299
C2—C31.388 (5)C15—C161.381 (6)
C2—C71.406 (4)C15—C201.400 (5)
C3—C41.372 (5)C16—C171.374 (6)
C3—H30.9300C16—H160.9299
C4—C51.393 (5)C17—C181.402 (6)
C4—H40.9299C17—H170.9300
C5—C61.380 (5)C18—C191.382 (6)
C5—H50.9301C18—H180.9300
C6—C71.399 (5)C19—C201.394 (5)
C6—H60.9300C19—H190.9301
C1—N1—C2104.4 (3)C10—C9—H9120.0
C1—N2—C7105.2 (3)C11—C10—C9119.5 (3)
C1—N2—C8127.0 (3)C11—C10—H10120.3
C7—N2—C8127.8 (3)C9—C10—H10120.2
C14—N3—C15106.0 (3)C12—C11—C10120.2 (3)
C14—N3—C11125.8 (3)C12—C11—N3119.3 (3)
C15—N3—C11128.2 (3)C10—C11—N3120.5 (3)
C14—N4—C20103.8 (3)C11—C12—C13120.4 (3)
N1—C1—N2115.0 (3)C11—C12—H12119.8
N1—C1—H1122.5C13—C12—H12119.8
N2—C1—H1122.5C8—C13—C12119.4 (3)
C3—C2—N1130.0 (3)C8—C13—H13120.3
C3—C2—C7120.4 (3)C12—C13—H13120.3
N1—C2—C7109.6 (3)N4—C14—N3114.6 (4)
C4—C3—C2118.0 (3)N4—C14—H14122.7
C4—C3—H3121.0N3—C14—H14122.7
C2—C3—H3120.9C16—C15—N3132.8 (3)
C3—C4—C5121.3 (3)C16—C15—C20122.2 (4)
C3—C4—H4119.3N3—C15—C20104.9 (3)
C5—C4—H4119.4C17—C16—C15117.2 (4)
C6—C5—C4122.3 (4)C17—C16—H16121.4
C6—C5—H5118.9C15—C16—H16121.4
C4—C5—H5118.9C16—C17—C18121.5 (5)
C5—C6—C7116.2 (3)C16—C17—H17119.2
C5—C6—H6121.9C18—C17—H17119.3
C7—C6—H6121.9C19—C18—C17121.2 (4)
N2—C7—C6132.4 (3)C19—C18—H18119.4
N2—C7—C2105.9 (3)C17—C18—H18119.4
C6—C7—C2121.7 (3)C18—C19—C20117.7 (4)
C13—C8—C9120.6 (3)C18—C19—H19121.2
C13—C8—N2119.9 (3)C20—C19—H19121.1
C9—C8—N2119.5 (3)C19—C20—N4129.2 (3)
C8—C9—C10119.8 (3)C19—C20—C15120.2 (4)
C8—C9—H9120.1N4—C20—C15110.6 (3)
C2—N1—C1—N20.1 (4)C14—N3—C11—C1246.4 (5)
C7—N2—C1—N10.1 (5)C15—N3—C11—C12133.0 (4)
C8—N2—C1—N1177.2 (4)C14—N3—C11—C10132.3 (4)
C1—N1—C2—C3179.9 (4)C15—N3—C11—C1048.3 (5)
C1—N1—C2—C70.2 (4)C10—C11—C12—C131.1 (6)
N1—C2—C3—C4178.1 (4)N3—C11—C12—C13177.6 (4)
C7—C2—C3—C41.5 (5)C9—C8—C13—C120.9 (6)
C2—C3—C4—C50.2 (6)N2—C8—C13—C12179.9 (3)
C3—C4—C5—C61.4 (6)C11—C12—C13—C81.8 (6)
C4—C5—C6—C70.8 (6)C20—N4—C14—N30.6 (4)
C1—N2—C7—C6177.3 (4)C15—N3—C14—N40.5 (4)
C8—N2—C7—C65.4 (7)C11—N3—C14—N4179.9 (3)
C1—N2—C7—C20.2 (4)C14—N3—C15—C16178.0 (4)
C8—N2—C7—C2177.1 (3)C11—N3—C15—C161.4 (6)
C5—C6—C7—N2178.1 (4)C14—N3—C15—C200.1 (4)
C5—C6—C7—C21.0 (6)C11—N3—C15—C20179.6 (3)
C3—C2—C7—N2180.0 (3)N3—C15—C16—C17177.6 (4)
N1—C2—C7—N20.3 (4)C20—C15—C16—C170.3 (6)
C3—C2—C7—C62.2 (6)C15—C16—C17—C180.6 (7)
N1—C2—C7—C6177.6 (4)C16—C17—C18—C191.0 (7)
C1—N2—C8—C13131.9 (4)C17—C18—C19—C201.0 (6)
C7—N2—C8—C1344.8 (5)C18—C19—C20—N4178.6 (4)
C1—N2—C8—C947.1 (5)C18—C19—C20—C150.6 (5)
C7—N2—C8—C9136.2 (4)C14—N4—C20—C19177.6 (4)
C13—C8—C9—C100.7 (6)C14—N4—C20—C150.5 (4)
N2—C8—C9—C10178.3 (3)C16—C15—C20—C190.3 (5)
C8—C9—C10—C111.4 (6)N3—C15—C20—C19178.1 (3)
C9—C10—C11—C120.5 (5)C16—C15—C20—N4178.6 (4)
C9—C10—C11—N3179.2 (3)N3—C15—C20—N40.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N4i0.932.503.359 (5)153
C6—H6···N4ii0.932.563.447 (5)159
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC20H14N4
Mr310.35
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)9.5458 (19), 20.499 (4), 7.9283 (16)
V3)1551.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.22 × 0.18
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.980, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
12744, 1479, 1298
Rint0.075
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.104, 1.17
No. of reflections1479
No. of parameters231
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.16

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N4i0.932.503.359 (5)153
C6—H6···N4ii0.932.563.447 (5)159
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z1/2.
 

References

First citationLi, Z. X., Xu, Y., Zuo, Y., Li, L., Pan, Q., Hu, T. L. & Bu, X. H. (2009). Cryst. Growth Des. 9, 3904–3909.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVijayan, N., Bhagavannarayana, G., Balamurugan, N., Babu, R. R., Maurya, K. K., Gopalakrishnan, R. & Ramasamy, P. (2006). J. Cryst. Growth, 293, 318–323.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds