organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Bromo­phen­yl)-4-(4-hy­dr­oxy­anilino)furan-2(5H)-one

aSchool of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, People's Republic of China
*Correspondence e-mail: pengwanxi@163.com

(Received 28 July 2011; accepted 6 August 2011; online 11 August 2011)

In the title compound, C16H12BrNO3, the butyrolactone core adopts the furan-2(5H)-one structure and forms dihedral angles of 44.80 (17) and 65.73 (18)° with the bromo­benzene and phenol rings, respectively. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds link the mol­ecules, generating R43(26) loops The edge-fused rings extend to form a chain running along the b-axis direction and C—H⋯π contacts help to consolidate the packing.

Related literature

For biological background to furan-2(5H)-one derivatives, see: Bailly et al. (2008[Bailly, F., Queffèlec, C., Mbemba, G., Mouscadet, J. F., Pommery, N., Pommery, J., Hènichart, J. P. & Cotelle, P. (2008). Eur. J. Med. Chem. 43, 1222-1229.]); Weber et al. (2005[Weber, V., Rubat, C., Duroux, E., Lartigue, C., Madesclaire, M. & Coudert, P. (2005). Bioorg. Med. Chem. 13, 4552-4564.]); Xiao et al. (2011a[Xiao, Z.-P., He, X.-B., Peng, Z.-Y., Xiong, T.-J., Peng, J., Chen, L.-H. & Zhu, H.-L. (2011a). Bioorg. Med. Chem. 19, 1571-1579.],b[Xiao, Z.-P., Ouyang, H., Wang, X.-D., Lv, P.-C., Huang, Z.-J., Yu, S.-R., Yi, T.-F., Yang, Y.-L. & Zhu, H.-L. (2011b). Bioorg. Med. Chem. 19, 3884-3891.]). For related structures, see: Xiao et al. (2010[Xiao, Z.-P., Zhu, J., Jiang, W., Li, G.-X. & Wang, X.-D. (2010). Z. Kristallogr. New Cryst. Struct. 225, 797-798.], 2011c[Xiao, Z.-P., Peng, Z.-Y., Liu, Z.-X., Chen, L.-H. & Zhu, H.-L. (2011c). J. Chem. Crystallogr. 41, 649-653.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12BrNO3

  • Mr = 346.18

  • Monoclinic, P 21 /c

  • a = 11.2418 (10) Å

  • b = 8.0545 (7) Å

  • c = 16.1138 (13) Å

  • β = 100.244 (4)°

  • V = 1435.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.87 mm−1

  • T = 296 K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.597, Tmax = 0.762

  • 7599 measured reflections

  • 2725 independent reflections

  • 1650 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.108

  • S = 1.01

  • 2725 reflections

  • 195 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.76 (4) 2.56 (4) 3.207 (4) 144 (4)
O3—H3A⋯O1ii 0.82 1.90 2.700 (4) 165
C12—H12⋯Cg1i 0.93 2.86 3.723 (4) 155
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z.

Data collection: SMART (Bruker, 2000)[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]; cell refinement: SAINT (Bruker, 2000)[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]; data reduction: SAINT[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Many compounds with γ-butyrolactone-core (furanone) show diverse biological activities such as antitumor and anti-inflammatory activity (Bailly et al., 2008; Weber et al., 2005). Recently, Xiao and his co-workers reported that 4-alkylamino or 4-arylamino derivatives of 3-arylfuran-2(5H)-one are potent inhibitors against tyrosyl-tRNA synthetase (TyrRS) (Xiao et al., 2011a and 2011b), one of the aminoacyl-tRNA synthetases (aaRSs). Herein, we report the crystal structure of the title compound (I) (Fig. 1), an 3-aryl-4-arylaminofuran-2(5H)-one.

The bond C7—C10 (1.364 (4) Å) was assigned as a double bond, and the title compound was therefore identified as a furan-2(5H)-one (Xiao et al., 2010; Xiao et al., 2011c). C10—N1 (1.332 (4) Å) bond has shorter bond distance than the standard C—N single bond (1.48 Å), but longer than C—N double bond (1.28 Å). This clearly indicated that a p orbital of N1 is conjugated with the π molecular orbital of C7—C10 double bond. However, the bond distance of C11—N1 is 1.437 (4) Å, much longer than that of C10—N1. This may be caused by the large dihedral angle [65.76 (28) °] between the amino group (C10, C11, N1 and H1) and the 4-hydroxybenzene ring, which significantly disrupted the conjugation between N1 and its attached benzene ring.

In the crystal, four molecules of I are connected by intermolecular N1—H1···O1 and O3—H3A···O1 interactions to generate a ring motif described by a graph-set motif of R43(26) (Fig. 2). The edge-fused rings extend to form a sheet running along the b axis. The resulted sheet is further stablized by C—H···π contacts (Fig. 3).

Related literature top

For biological background to furan-2(5H)-one derivatives, see: Bailly et al. (2008); Weber et al. (2005); Xiao et al. (2011a,b). For related structures, see: Xiao et al. (2010, 2011c).

Experimental top

3-(4-bromophenyl)-4-hydroxyfuran-2(5H)-one (255 mg, 1 mmol) was prepared according to the procedure described by Xiao (Xiao et al., 2011a), which was added into a mixture of 4-hydroxyaniline (130 mg, 1.2 mmol) and p-toluene sulphonic acid (6.8 mg, 0.04 mmol). The resulted mixture was heated to 370 K for 10 min. Nine ml of toluene was then added and refluxed for 6 h. After toluene was removed under reduced pressure, the residue was purified by column chromatography on silica gel, eluting with EtOAc/petroleum ether (v/v = 2/1), which furnished colorless blocks of I by slow evaporation at room temperature.

Refinement top

The H atom bonded to N1 was located in difference Fourier maps, and all other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93 Å for aromatic H atoms, 0.97 Å for CH2 type H atoms and O—H = 0.82 Å hydroxyl group, respectively. Uiso(H) values were set at 1.2 times Ueq(C) for all H atoms, and at 1.5 times Ueq(O) for hydrogxyl group.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Motifs of R43(26) are formed through intermolecular N—H···O and O—H···O hydrogen bonds. For the sake of clarity, the H atoms not involved in the hydrogen bonds have been omitted.
[Figure 3] Fig. 3. Packing diagram of compound (I) viewing along c axis, Solid dashed lines indicate C—H···π contacts. For the sake of clarity, the H atoms not involved in the hydrogen bonds have been omitted.
3-(4-Bromophenyl)-4-(4-hydroxyanilino)furan-2(5H)-one top
Crystal data top
C16H12BrNO3F(000) = 696
Mr = 346.18Dx = 1.601 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1582 reflections
a = 11.2418 (10) Åθ = 2.1–25.1°
b = 8.0545 (7) ŵ = 2.87 mm1
c = 16.1138 (13) ÅT = 296 K
β = 100.244 (4)°Block, colorless
V = 1435.8 (2) Å30.20 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker APEX CCD
diffractometer
2725 independent reflections
Radiation source: fine-focus sealed tube1650 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 25.8°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1310
Tmin = 0.597, Tmax = 0.762k = 99
7599 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0519P)2 + 0.1637P]
where P = (Fo2 + 2Fc2)/3
2725 reflections(Δ/σ)max < 0.001
195 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
C16H12BrNO3V = 1435.8 (2) Å3
Mr = 346.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.2418 (10) ŵ = 2.87 mm1
b = 8.0545 (7) ÅT = 296 K
c = 16.1138 (13) Å0.20 × 0.20 × 0.10 mm
β = 100.244 (4)°
Data collection top
Bruker APEX CCD
diffractometer
2725 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1650 reflections with I > 2σ(I)
Tmin = 0.597, Tmax = 0.762Rint = 0.035
7599 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.27 e Å3
2725 reflectionsΔρmin = 0.59 e Å3
195 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.33348 (4)0.01420 (6)0.05871 (2)0.0870 (2)
C10.0793 (3)0.0631 (4)0.2028 (2)0.0449 (8)
C20.1939 (3)0.0066 (4)0.1953 (2)0.0506 (8)
H20.22010.04500.24350.061*
C30.2695 (3)0.0201 (4)0.1185 (2)0.0544 (9)
H30.34660.06470.11480.065*
C40.2294 (3)0.0333 (4)0.0473 (2)0.0512 (9)
C50.1167 (3)0.1009 (4)0.0516 (2)0.0549 (9)
H50.09080.13610.00280.066*
C60.0417 (3)0.1162 (4)0.1293 (2)0.0522 (8)
H60.03470.16250.13240.063*
C70.0029 (3)0.0832 (4)0.28604 (19)0.0452 (8)
C80.0498 (3)0.1479 (4)0.3561 (2)0.0548 (9)
C90.1485 (3)0.0909 (4)0.4049 (2)0.0549 (9)
H9A0.17310.01020.43600.066*
H9B0.21320.17180.41720.066*
C100.1178 (3)0.0571 (4)0.31223 (19)0.0447 (8)
C110.3288 (3)0.0027 (4)0.3037 (2)0.0485 (8)
C120.3717 (3)0.1054 (4)0.3681 (2)0.0632 (10)
H120.31910.17840.38790.076*
C130.4933 (3)0.1054 (5)0.4032 (2)0.0690 (10)
H130.52240.17830.44690.083*
C140.5709 (3)0.0011 (5)0.3740 (2)0.0603 (10)
C150.5287 (3)0.1075 (5)0.3088 (2)0.0575 (9)
H150.58170.17870.28810.069*
C160.4072 (3)0.1084 (4)0.27397 (19)0.0517 (8)
H160.37840.18100.23010.062*
N10.2020 (3)0.0087 (4)0.2687 (2)0.0594 (8)
O10.1497 (2)0.2035 (4)0.36051 (14)0.0755 (8)
O20.03891 (19)0.1547 (3)0.42643 (13)0.0621 (6)
O30.6898 (2)0.0049 (4)0.4118 (2)0.0954 (10)
H3A0.72790.06610.39110.143*
H10.187 (3)0.027 (4)0.224 (2)0.062 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0902 (4)0.1047 (4)0.0567 (3)0.0269 (2)0.0122 (2)0.0012 (2)
C10.0419 (18)0.0458 (18)0.0469 (18)0.0003 (14)0.0078 (14)0.0035 (15)
C20.046 (2)0.057 (2)0.0502 (19)0.0069 (16)0.0130 (15)0.0000 (16)
C30.047 (2)0.057 (2)0.058 (2)0.0081 (16)0.0074 (16)0.0011 (17)
C40.057 (2)0.043 (2)0.051 (2)0.0020 (16)0.0011 (16)0.0051 (15)
C50.061 (2)0.060 (2)0.0455 (19)0.0004 (18)0.0133 (16)0.0042 (16)
C60.0436 (18)0.060 (2)0.055 (2)0.0065 (16)0.0131 (15)0.0012 (17)
C70.0409 (18)0.0498 (19)0.0460 (18)0.0022 (15)0.0109 (14)0.0043 (15)
C80.045 (2)0.070 (2)0.049 (2)0.0012 (18)0.0066 (16)0.0012 (17)
C90.046 (2)0.060 (2)0.057 (2)0.0035 (17)0.0053 (16)0.0054 (18)
C100.0414 (19)0.0432 (18)0.0503 (19)0.0064 (14)0.0100 (15)0.0048 (14)
C110.0401 (19)0.054 (2)0.0519 (19)0.0012 (16)0.0089 (15)0.0112 (17)
C120.055 (2)0.050 (2)0.088 (3)0.0011 (17)0.021 (2)0.0051 (19)
C130.060 (2)0.070 (3)0.077 (3)0.019 (2)0.013 (2)0.016 (2)
C140.039 (2)0.080 (3)0.062 (2)0.0043 (18)0.0085 (17)0.003 (2)
C150.0407 (19)0.078 (3)0.055 (2)0.0114 (17)0.0119 (16)0.0001 (19)
C160.050 (2)0.066 (2)0.0410 (18)0.0016 (18)0.0111 (15)0.0016 (16)
N10.0412 (17)0.079 (2)0.058 (2)0.0017 (14)0.0086 (15)0.0229 (18)
O10.0518 (15)0.115 (2)0.0616 (16)0.0171 (14)0.0139 (12)0.0101 (14)
O20.0556 (14)0.0847 (18)0.0457 (13)0.0084 (12)0.0087 (11)0.0092 (12)
O30.0431 (16)0.147 (3)0.091 (2)0.0103 (15)0.0021 (14)0.0237 (18)
Geometric parameters (Å, º) top
Br1—C41.897 (3)C9—H9A0.9700
C1—C21.391 (4)C9—H9B0.9700
C1—C61.394 (4)C10—N11.332 (4)
C1—C71.467 (4)C11—C161.371 (4)
C2—C31.376 (5)C11—C121.375 (5)
C2—H20.9300C11—N11.437 (4)
C3—C41.373 (5)C12—C131.384 (5)
C3—H30.9300C12—H120.9300
C4—C51.369 (5)C13—C141.366 (5)
C5—C61.384 (4)C13—H130.9300
C5—H50.9300C14—O31.368 (4)
C6—H60.9300C14—C151.373 (5)
C7—C101.364 (4)C15—C161.381 (4)
C7—C81.428 (4)C15—H150.9300
C8—O11.222 (4)C16—H160.9300
C8—O21.371 (3)N1—H10.76 (4)
C9—O21.433 (4)O3—H3A0.8200
C9—C101.497 (4)
C2—C1—C6117.8 (3)C10—C9—H9B110.8
C2—C1—C7120.4 (3)H9A—C9—H9B108.9
C6—C1—C7121.8 (3)N1—C10—C7130.0 (3)
C3—C2—C1121.6 (3)N1—C10—C9121.3 (3)
C3—C2—H2119.2C7—C10—C9108.7 (3)
C1—C2—H2119.2C16—C11—C12119.7 (3)
C4—C3—C2119.0 (3)C16—C11—N1119.8 (3)
C4—C3—H3120.5C12—C11—N1120.5 (3)
C2—C3—H3120.5C11—C12—C13119.8 (3)
C5—C4—C3121.4 (3)C11—C12—H12120.1
C5—C4—Br1119.6 (3)C13—C12—H12120.1
C3—C4—Br1119.0 (3)C14—C13—C12120.2 (3)
C4—C5—C6119.3 (3)C14—C13—H13119.9
C4—C5—H5120.3C12—C13—H13119.9
C6—C5—H5120.3C13—C14—O3117.2 (3)
C5—C6—C1120.9 (3)C13—C14—C15120.1 (3)
C5—C6—H6119.6O3—C14—C15122.7 (3)
C1—C6—H6119.6C14—C15—C16119.7 (3)
C10—C7—C8107.4 (3)C14—C15—H15120.1
C10—C7—C1130.9 (3)C16—C15—H15120.1
C8—C7—C1121.6 (3)C11—C16—C15120.4 (3)
O1—C8—O2118.6 (3)C11—C16—H16119.8
O1—C8—C7130.7 (3)C15—C16—H16119.8
O2—C8—C7110.6 (3)C10—N1—C11123.4 (3)
O2—C9—C10104.5 (2)C10—N1—H1123 (3)
O2—C9—H9A110.8C11—N1—H1113 (3)
C10—C9—H9A110.8C8—O2—C9108.4 (2)
O2—C9—H9B110.8C14—O3—H3A109.5
C6—C1—C2—C31.3 (5)C1—C7—C10—C9177.8 (3)
C7—C1—C2—C3177.0 (3)O2—C9—C10—N1174.5 (3)
C1—C2—C3—C41.5 (5)O2—C9—C10—C76.0 (4)
C2—C3—C4—C50.7 (5)C16—C11—C12—C130.9 (5)
C2—C3—C4—Br1179.8 (2)N1—C11—C12—C13177.6 (3)
C3—C4—C5—C60.2 (5)C11—C12—C13—C140.3 (6)
Br1—C4—C5—C6179.3 (2)C12—C13—C14—O3179.7 (4)
C4—C5—C6—C10.3 (5)C12—C13—C14—C150.8 (6)
C2—C1—C6—C50.4 (5)C13—C14—C15—C161.2 (5)
C7—C1—C6—C5177.9 (3)O3—C14—C15—C16179.3 (3)
C2—C1—C7—C10138.5 (4)C12—C11—C16—C150.5 (5)
C6—C1—C7—C1043.2 (5)N1—C11—C16—C15178.0 (3)
C2—C1—C7—C845.2 (4)C14—C15—C16—C110.5 (5)
C6—C1—C7—C8133.1 (3)C7—C10—N1—C11173.4 (3)
C10—C7—C8—O1172.4 (4)C9—C10—N1—C117.2 (5)
C1—C7—C8—O14.6 (6)C16—C11—N1—C10113.5 (4)
C10—C7—C8—O22.9 (4)C12—C11—N1—C1064.9 (5)
C1—C7—C8—O2180.0 (3)O1—C8—O2—C9177.0 (3)
C8—C7—C10—N1175.1 (3)C7—C8—O2—C91.0 (4)
C1—C7—C10—N11.6 (6)C10—C9—O2—C84.2 (3)
C8—C7—C10—C95.5 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.76 (4)2.56 (4)3.207 (4)144 (4)
O3—H3A···O1ii0.821.902.700 (4)165
C12—H12···Cg1i0.932.863.723 (4)155
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H12BrNO3
Mr346.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.2418 (10), 8.0545 (7), 16.1138 (13)
β (°) 100.244 (4)
V3)1435.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.87
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.597, 0.762
No. of measured, independent and
observed [I > 2σ(I)] reflections
7599, 2725, 1650
Rint0.035
(sin θ/λ)max1)0.612
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.108, 1.01
No. of reflections2725
No. of parameters195
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.59

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.76 (4)2.56 (4)3.207 (4)144 (4)
O3—H3A···O1ii0.821.902.700 (4)165.3
C12—H12···Cg1i0.932.863.723 (4)155
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y, z.
 

Acknowledgements

This work was financed by a project supported by the National Natural Science Foundation of China (No. 31070497), the Program for New Century Excellent Talents in Universities, a project supported by the Scientific Research Fund of Hunan Provincial Education Department (No. 10 A131) and a key (key grant) project of the Chinese Ministry of Education (No. 211128).

References

First citationBailly, F., Queffèlec, C., Mbemba, G., Mouscadet, J. F., Pommery, N., Pommery, J., Hènichart, J. P. & Cotelle, P. (2008). Eur. J. Med. Chem. 43, 1222–1229.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeber, V., Rubat, C., Duroux, E., Lartigue, C., Madesclaire, M. & Coudert, P. (2005). Bioorg. Med. Chem. 13, 4552–4564.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXiao, Z.-P., He, X.-B., Peng, Z.-Y., Xiong, T.-J., Peng, J., Chen, L.-H. & Zhu, H.-L. (2011a). Bioorg. Med. Chem. 19, 1571–1579.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationXiao, Z.-P., Ouyang, H., Wang, X.-D., Lv, P.-C., Huang, Z.-J., Yu, S.-R., Yi, T.-F., Yang, Y.-L. & Zhu, H.-L. (2011b). Bioorg. Med. Chem. 19, 3884–3891.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationXiao, Z.-P., Peng, Z.-Y., Liu, Z.-X., Chen, L.-H. & Zhu, H.-L. (2011c). J. Chem. Crystallogr. 41, 649–653.  CrossRef CAS Google Scholar
First citationXiao, Z.-P., Zhu, J., Jiang, W., Li, G.-X. & Wang, X.-D. (2010). Z. Kristallogr. New Cryst. Struct. 225, 797–798.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds