organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Chloro­phen­yl)-4-methyl­piperazine-1-carboxamide

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bCenter of Forestry Science, Linjiacun Town, Zhucheng 261000, People's Republic of China
*Correspondence e-mail: liyufeng8111@163.com

(Received 6 August 2011; accepted 21 August 2011; online 27 August 2011)

In the title compound, C12H16ClN3O, the piperazine ring has a chair conformation. Within this ring, the N-methyl nitro­gen atom has a pyramidal geometry and the N-carboxamide nitro­gen atom is almost planar (bond-angle sum = 359.8°). In the crystal, the mol­ecules are linked by N—H⋯O hydrogen bonds into C(4) chains propagating in [010].

Related literature

For related structures, see: Arrieta et al. (2007[Arrieta, A., Otaegui, D., Zubia, A., et al. (2007). J. Org. Chem. 72, 4313-4322.]1); Li (2011a[Li, Y.-F. (2011a). Acta Cryst. E67, o1796.],b[Li, Y.-F. (2011b). Acta Cryst. E67, o1792.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16ClN3O

  • Mr = 253.73

  • Orthorhombic, P b c n

  • a = 24.920 (5) Å

  • b = 9.5033 (19) Å

  • c = 11.064 (2) Å

  • V = 2620.3 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 23785 measured reflections

  • 3006 independent reflections

  • 2077 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.192

  • S = 1.11

  • 3006 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1i 0.86 2.26 3.001 (2) 144
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For related structures, see: Arrieta et al. (20071); Li (2011a,b).

Experimental top

A mixture of 1-methylpiperazine (0.1 mol), and (4-chlorophenyl)carbamic chloride (0.1 mol) was stirred in refluxing ethanol (20 ml) for 4 h to afford the title compound (0.079 mol, yield 79%). Colourless blocks of the title compound were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93–0.97 Å; N—H = 0.86Å and with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(Cmethyl).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids.
N-(4-Chlorophenyl)-4-methylpiperazine-1-carboxamide top
Crystal data top
C12H16ClN3ODx = 1.286 Mg m3
Mr = 253.73Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 2077 reflections
a = 24.920 (5) Åθ = 3.2–27.4°
b = 9.5033 (19) ŵ = 0.28 mm1
c = 11.064 (2) ÅT = 293 K
V = 2620.3 (9) Å3Block, colorless
Z = 80.22 × 0.20 × 0.18 mm
F(000) = 1072
Data collection top
Bruker SMART CCD
diffractometer
2077 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 27.5°, θmin = 3.3°
ϕ and ω scansh = 3132
23785 measured reflectionsk = 1210
3006 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.192H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.1054P)2 + 0.5647P]
where P = (Fo2 + 2Fc2)/3
3006 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
C12H16ClN3OV = 2620.3 (9) Å3
Mr = 253.73Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 24.920 (5) ŵ = 0.28 mm1
b = 9.5033 (19) ÅT = 293 K
c = 11.064 (2) Å0.22 × 0.20 × 0.18 mm
Data collection top
Bruker SMART CCD
diffractometer
2077 reflections with I > 2σ(I)
23785 measured reflectionsRint = 0.045
3006 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.192H-atom parameters constrained
S = 1.11Δρmax = 0.25 e Å3
3006 reflectionsΔρmin = 0.60 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.07382 (3)0.14060 (8)0.66714 (8)0.0750 (3)
O10.28704 (6)0.11160 (14)1.01352 (17)0.0559 (5)
C60.28896 (7)0.0180 (2)1.0143 (2)0.0424 (5)
C70.21110 (7)0.0415 (2)0.88098 (19)0.0399 (5)
N30.25282 (6)0.09932 (17)0.95154 (18)0.0453 (5)
H3A0.25580.18940.95550.054*
C120.16012 (8)0.0996 (2)0.8900 (2)0.0479 (5)
H12A0.15410.17540.94150.058*
C110.11817 (8)0.0447 (3)0.8224 (2)0.0516 (6)
H11A0.08400.08360.82820.062*
C100.12738 (8)0.0675 (2)0.7469 (2)0.0501 (5)
C90.17805 (9)0.1239 (2)0.7340 (2)0.0522 (6)
H9A0.18400.19810.68090.063*
C80.21988 (8)0.0687 (2)0.8010 (2)0.0464 (5)
H8A0.25420.10570.79250.056*
N20.32650 (7)0.08928 (19)1.0782 (2)0.0558 (6)
N10.43172 (7)0.1934 (2)1.1165 (2)0.0605 (6)
C30.33749 (9)0.2391 (2)1.0715 (3)0.0593 (7)
H3B0.31390.28241.01260.071*
H3C0.33060.28221.14950.071*
C40.36406 (10)0.0151 (3)1.1554 (3)0.0681 (8)
H4A0.35920.04501.23850.082*
H4B0.35720.08521.15120.082*
C50.42085 (10)0.0446 (3)1.1162 (3)0.0719 (8)
H5A0.42650.00741.03560.086*
H5B0.44560.00251.17050.086*
C20.39479 (11)0.2641 (3)1.0361 (3)0.0647 (7)
H2A0.40210.36431.03720.078*
H2B0.40040.23050.95420.078*
C10.48742 (12)0.2234 (5)1.0819 (4)0.1134 (15)
H1A0.51140.17671.13670.170*
H1B0.49370.19021.00120.170*
H1C0.49360.32311.08510.170*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0629 (4)0.0773 (5)0.0846 (6)0.0211 (3)0.0201 (3)0.0074 (4)
O10.0555 (9)0.0286 (7)0.0836 (13)0.0032 (6)0.0119 (8)0.0023 (7)
C60.0424 (10)0.0319 (9)0.0529 (13)0.0009 (7)0.0027 (8)0.0008 (8)
C70.0433 (10)0.0341 (9)0.0422 (11)0.0036 (8)0.0015 (8)0.0007 (8)
N30.0477 (9)0.0295 (8)0.0587 (12)0.0000 (7)0.0117 (8)0.0055 (7)
C120.0493 (11)0.0431 (11)0.0514 (13)0.0051 (9)0.0025 (9)0.0047 (9)
C110.0419 (10)0.0536 (13)0.0591 (15)0.0025 (9)0.0016 (9)0.0004 (11)
C100.0499 (12)0.0490 (12)0.0514 (13)0.0120 (9)0.0052 (9)0.0021 (10)
C90.0592 (13)0.0455 (11)0.0520 (14)0.0077 (9)0.0019 (10)0.0093 (10)
C80.0433 (10)0.0436 (11)0.0523 (13)0.0014 (8)0.0018 (9)0.0060 (9)
N20.0542 (11)0.0345 (9)0.0787 (15)0.0054 (8)0.0240 (10)0.0057 (9)
N10.0428 (10)0.0548 (12)0.0838 (16)0.0033 (8)0.0014 (9)0.0012 (11)
C30.0574 (13)0.0342 (11)0.0862 (19)0.0016 (9)0.0252 (12)0.0045 (11)
C40.0611 (13)0.0508 (14)0.092 (2)0.0102 (11)0.0304 (13)0.0211 (14)
C50.0595 (14)0.0533 (14)0.103 (2)0.0107 (11)0.0139 (14)0.0008 (15)
C20.0767 (16)0.0486 (13)0.0689 (18)0.0123 (12)0.0063 (13)0.0065 (12)
C10.0538 (18)0.113 (3)0.173 (4)0.0106 (17)0.023 (2)0.011 (3)
Geometric parameters (Å, º) top
Cl1—C101.745 (2)N2—C31.452 (3)
O1—C61.232 (2)N1—C51.440 (3)
C6—N21.355 (3)N1—C21.446 (3)
C6—N31.375 (3)N1—C11.468 (3)
C7—C81.388 (3)C3—C21.500 (4)
C7—C121.389 (3)C3—H3B0.9700
C7—N31.411 (2)C3—H3C0.9700
N3—H3A0.8600C4—C51.506 (4)
C12—C111.388 (3)C4—H4A0.9700
C12—H12A0.9300C4—H4B0.9700
C11—C101.374 (3)C5—H5A0.9700
C11—H11A0.9300C5—H5B0.9700
C10—C91.379 (3)C2—H2A0.9700
C9—C81.383 (3)C2—H2B0.9700
C9—H9A0.9300C1—H1A0.9600
C8—H8A0.9300C1—H1B0.9600
N2—C41.450 (3)C1—H1C0.9600
O1—C6—N2122.02 (19)N2—C3—C2110.4 (2)
O1—C6—N3122.22 (18)N2—C3—H3B109.6
N2—C6—N3115.75 (17)C2—C3—H3B109.6
C8—C7—C12119.35 (19)N2—C3—H3C109.6
C8—C7—N3122.00 (17)C2—C3—H3C109.6
C12—C7—N3118.63 (18)H3B—C3—H3C108.1
C6—N3—C7122.87 (16)N2—C4—C5110.3 (2)
C6—N3—H3A118.6N2—C4—H4A109.6
C7—N3—H3A118.6C5—C4—H4A109.6
C11—C12—C7120.0 (2)N2—C4—H4B109.6
C11—C12—H12A120.0C5—C4—H4B109.6
C7—C12—H12A120.0H4A—C4—H4B108.1
C10—C11—C12119.6 (2)N1—C5—C4111.0 (2)
C10—C11—H11A120.2N1—C5—H5A109.4
C12—C11—H11A120.2C4—C5—H5A109.4
C11—C10—C9121.2 (2)N1—C5—H5B109.4
C11—C10—Cl1119.27 (17)C4—C5—H5B109.4
C9—C10—Cl1119.57 (18)H5A—C5—H5B108.0
C10—C9—C8119.2 (2)N1—C2—C3111.8 (2)
C10—C9—H9A120.4N1—C2—H2A109.3
C8—C9—H9A120.4C3—C2—H2A109.3
C9—C8—C7120.6 (2)N1—C2—H2B109.3
C9—C8—H8A119.7C3—C2—H2B109.3
C7—C8—H8A119.7H2A—C2—H2B107.9
C6—N2—C4120.68 (18)N1—C1—H1A109.5
C6—N2—C3126.47 (18)N1—C1—H1B109.5
C4—N2—C3112.64 (17)H1A—C1—H1B109.5
C5—N1—C2109.6 (2)N1—C1—H1C109.5
C5—N1—C1111.6 (2)H1A—C1—H1C109.5
C2—N1—C1110.5 (3)H1B—C1—H1C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.862.263.001 (2)144
Symmetry code: (i) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC12H16ClN3O
Mr253.73
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)293
a, b, c (Å)24.920 (5), 9.5033 (19), 11.064 (2)
V3)2620.3 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
23785, 3006, 2077
Rint0.045
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.192, 1.11
No. of reflections3006
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.60

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.862.263.001 (2)144
Symmetry code: (i) x+1/2, y1/2, z.
 

References

First citationArrieta, A., Otaegui, D., Zubia, A., et al. (2007). J. Org. Chem. 72, 4313–4322.  CrossRef CAS Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, Y.-F. (2011a). Acta Cryst. E67, o1796.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Y.-F. (2011b). Acta Cryst. E67, o1792.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds