organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2Z)-1-(5-Hy­dr­oxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-3-(4-meth­­oxy­anilino)but-2-en-1-one

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, bThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 8 August 2011; accepted 10 August 2011; online 17 August 2011)

The central residue in the title compound, C21H21N3O3, is close to planar (r.m.s. deviation = 0.0753 Å for all non-H atoms from OH to NH inclusive): the hy­droxy, amino and carbonyl groups all lie to the same side of the mol­ecule (the conformation about the ethene bond is Z), facilitating the formation of intra­molecular O—H⋯O and N—H⋯O hydrogen bonds that close S(6) rings. However, overall the mol­ecule is twisted as the terminal aromatic rings are not coplanar with the central plane [dihedral angles = 20.55 (5) and 80.90 (4)° for the N-bound phenyl ring and the meth­oxy­benzene ring, respectively]. The dihedral angle between the rings is 82.14 (7)°. Supra­molecular layers in the ac plane mediated by C—H⋯π inter­actions are found in the crystal.

Related literature

For background to the synthesis, see: Gelin et al. (1983[Gelin, S., Chantegrel, B. & Nadi, A. I. (1983). J. Org. Chem. 48, 4078-4082.]); Bendaas et al. (1999[Bendaas, A., Hamdi, M. & Sellier, N. (1999). J. Heterocycl. Chem. 36, 1291-1294.]). For the structure of the 4-chloro derivative, see: Asiri et al. (2011[Asiri, A. M., Al-Youbi, A. O., Alamry, K. A., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2157.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21N3O3

  • Mr = 363.41

  • Monoclinic, P 21 /n

  • a = 9.5717 (3) Å

  • b = 16.9516 (6) Å

  • c = 11.3143 (4) Å

  • β = 104.946 (4)°

  • V = 1773.70 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.837, Tmax = 1.000

  • 8486 measured reflections

  • 3939 independent reflections

  • 3145 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.104

  • S = 1.05

  • 3939 reflections

  • 255 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1,N2,C1–C3 and C15–C20 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.86 (1) 1.68 (1) 2.4963 (15) 156 (2)
N3—H3⋯O2 0.89 (1) 1.92 (1) 2.6447 (16) 138 (2)
C14—H14b⋯Cg1i 0.98 2.88 3.5542 (18) 127
C21—H21c⋯Cg2ii 0.98 2.76 3.5195 (17) 134
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In connection with a recent structural study (Asiri et al., 2011), the title compound (I) was prepared as a part of on-going investigations of reactions between pyrazoles and aniline derivatives (Gelin et al., 1983; Bendaas et al., 1999).

The molecular structure of (I), Fig. 1, resembles closely that of the 4-chloroanilino derivative (Asiri et al., 2011) and features a Z configuration about the C12—C13 [1.381 (2) Å] bond. The hydroxy and amino groups are syn to the central carbonyl group and each forms a hydrogen bond to close a S(6) ring (Table 1). A direct consequence of this is that the central residue is planar; the values of the C1—C2—C11—O2, C2—C11—C12—C13 and C11—C12—C13—N3 torsion angles are -3.6 (2), -171.74 (15) and -1.7 (2) °, respectively. The benzene and 4-methoxybenzene rings are each twisted out of the central plane as seen in the values of the C1—N1—C5—C6 and C13—N3—C15—C16 torsion angles of 159.97 (15) and -74.5 (2) °, respectively.

The most prominent feature of the crystal packing is the formation of supramolecular layers in the ac plane and mediated by C—H···π interactions, Fig. 2. and Table 1. Layers stack along the b axis as shown in Fig. 3.

Related literature top

For background to the synthesis, see: Gelin et al. (1983); Bendaas et al. (1999). For the structure of the 4-chloro derivative, see: Asiri et al. (2011).

Experimental top

A solution of 4-acetoacetyl-5-hydroxy-3-methyl-1-p-sulfamylphenypyrazole (1.7 g, 0.005 mole) and 4-methoxyaniline (0.63 g, 0.005 mole) in ethanol (25 ml) was refluxed for 2 h. The precipitate, obtained from the hot solution, was collected, washed with methanol and recrystallized from ethanol-benzene as yellow blocks; M.pt: 507–507 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The hydroxyl- and amino- H-atoms were located in a difference Fourier map, and subsequently refined freely.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of a supramolecular layer in (I) mediated by C—H···π interactions, shown as purple dashed lines
[Figure 3] Fig. 3. Stacking of supramolecular layers along the b axis in (I). The C—H···π interactions are shown as purple dashed lines.
(2Z)-1-(5-Hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)- 3-(4-methoxyanilino)but-2-en-1-one top
Crystal data top
C21H21N3O3F(000) = 768
Mr = 363.41Dx = 1.361 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3917 reflections
a = 9.5717 (3) Åθ = 2.4–29.3°
b = 16.9516 (6) ŵ = 0.09 mm1
c = 11.3143 (4) ÅT = 100 K
β = 104.946 (4)°Block, yellow
V = 1773.70 (10) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3939 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3145 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.024
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.4°
ω scansh = 129
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1721
Tmin = 0.837, Tmax = 1.000l = 1414
8486 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0364P)2 + 0.8331P]
where P = (Fo2 + 2Fc2)/3
3939 reflections(Δ/σ)max < 0.001
255 parametersΔρmax = 0.27 e Å3
2 restraintsΔρmin = 0.23 e Å3
Crystal data top
C21H21N3O3V = 1773.70 (10) Å3
Mr = 363.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.5717 (3) ŵ = 0.09 mm1
b = 16.9516 (6) ÅT = 100 K
c = 11.3143 (4) Å0.30 × 0.25 × 0.20 mm
β = 104.946 (4)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3939 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
3145 reflections with I > 2σ(I)
Tmin = 0.837, Tmax = 1.000Rint = 0.024
8486 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0422 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.27 e Å3
3939 reflectionsΔρmin = 0.23 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.14980 (12)0.66071 (7)0.33592 (9)0.0222 (3)
O20.37382 (11)0.60631 (7)0.29255 (9)0.0213 (3)
O30.91460 (11)0.58562 (7)0.12793 (9)0.0219 (3)
N10.17619 (13)0.67412 (8)0.54868 (11)0.0166 (3)
N20.28248 (13)0.65978 (8)0.65708 (11)0.0175 (3)
N30.61937 (14)0.57378 (8)0.23667 (11)0.0195 (3)
C10.22616 (16)0.65491 (9)0.45138 (13)0.0170 (3)
C20.36749 (16)0.62804 (9)0.49321 (13)0.0169 (3)
C30.39577 (15)0.63279 (9)0.62323 (13)0.0162 (3)
C40.52961 (16)0.61127 (10)0.71833 (13)0.0196 (3)
H4A0.51340.61840.79970.029*
H4B0.60940.64520.71010.029*
H4C0.55400.55600.70780.029*
C50.04095 (15)0.70640 (9)0.55398 (13)0.0166 (3)
C60.00329 (16)0.69838 (9)0.66119 (13)0.0187 (3)
H60.05620.67160.72960.022*
C70.13461 (16)0.72972 (10)0.66734 (14)0.0217 (3)
H70.16510.72450.74050.026*
C80.22213 (17)0.76870 (10)0.56770 (15)0.0247 (4)
H80.31260.78980.57220.030*
C90.17707 (17)0.77671 (10)0.46184 (14)0.0235 (4)
H90.23670.80360.39360.028*
C100.04527 (17)0.74579 (10)0.45410 (14)0.0205 (3)
H100.01460.75160.38110.025*
C110.44652 (16)0.60431 (9)0.40619 (13)0.0176 (3)
C120.59321 (16)0.58162 (9)0.44007 (13)0.0175 (3)
H120.63850.57520.52470.021*
C130.67514 (16)0.56811 (9)0.35792 (13)0.0176 (3)
C140.83048 (16)0.54384 (10)0.40247 (14)0.0211 (3)
H14A0.89070.57900.36770.032*
H14B0.84170.48950.37690.032*
H14C0.86060.54710.49190.032*
C150.70003 (15)0.57341 (10)0.14592 (13)0.0179 (3)
C160.77859 (16)0.63978 (10)0.13037 (13)0.0193 (3)
H160.78400.68380.18340.023*
C170.84893 (16)0.64190 (10)0.03781 (13)0.0190 (3)
H170.90220.68740.02710.023*
C180.84160 (15)0.57738 (9)0.03966 (13)0.0172 (3)
C190.76391 (16)0.51053 (10)0.02410 (13)0.0193 (3)
H190.75890.46630.07660.023*
C200.69349 (16)0.50912 (10)0.06938 (13)0.0196 (3)
H200.64050.46360.08070.023*
C210.90919 (17)0.52107 (10)0.21023 (13)0.0223 (3)
H21A0.96470.53430.26920.033*
H21B0.80840.51060.25400.033*
H21C0.95070.47400.16400.033*
H10.214 (2)0.6449 (15)0.300 (2)0.067 (8)*
H30.5266 (11)0.5872 (11)0.2149 (16)0.030 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0225 (6)0.0292 (7)0.0142 (5)0.0037 (5)0.0039 (4)0.0013 (5)
O20.0214 (5)0.0273 (6)0.0154 (5)0.0025 (5)0.0049 (4)0.0012 (4)
O30.0259 (6)0.0232 (6)0.0198 (5)0.0003 (5)0.0119 (5)0.0004 (4)
N10.0172 (6)0.0178 (7)0.0141 (6)0.0020 (5)0.0027 (5)0.0006 (5)
N20.0187 (6)0.0179 (7)0.0149 (6)0.0010 (5)0.0024 (5)0.0007 (5)
N30.0178 (6)0.0250 (8)0.0171 (6)0.0018 (6)0.0070 (5)0.0006 (5)
C10.0207 (7)0.0155 (8)0.0150 (7)0.0020 (6)0.0048 (6)0.0008 (6)
C20.0185 (7)0.0158 (8)0.0166 (7)0.0001 (6)0.0050 (6)0.0000 (6)
C30.0181 (7)0.0138 (7)0.0172 (7)0.0021 (6)0.0055 (6)0.0004 (6)
C40.0204 (7)0.0215 (8)0.0172 (7)0.0024 (6)0.0053 (6)0.0002 (6)
C50.0159 (7)0.0145 (8)0.0193 (7)0.0009 (6)0.0042 (6)0.0029 (6)
C60.0183 (7)0.0189 (8)0.0184 (7)0.0013 (6)0.0036 (6)0.0002 (6)
C70.0201 (7)0.0254 (9)0.0208 (7)0.0020 (7)0.0075 (6)0.0022 (6)
C80.0181 (7)0.0273 (9)0.0288 (8)0.0025 (7)0.0060 (7)0.0032 (7)
C90.0217 (8)0.0232 (9)0.0234 (8)0.0040 (7)0.0018 (6)0.0020 (6)
C100.0230 (8)0.0205 (8)0.0183 (7)0.0006 (6)0.0060 (6)0.0010 (6)
C110.0225 (7)0.0137 (8)0.0169 (7)0.0013 (6)0.0056 (6)0.0003 (6)
C120.0205 (7)0.0178 (8)0.0145 (7)0.0001 (6)0.0051 (6)0.0005 (6)
C130.0204 (7)0.0142 (8)0.0178 (7)0.0013 (6)0.0040 (6)0.0009 (6)
C140.0210 (7)0.0231 (9)0.0202 (7)0.0018 (6)0.0072 (6)0.0007 (6)
C150.0168 (7)0.0225 (9)0.0149 (7)0.0027 (6)0.0046 (6)0.0013 (6)
C160.0205 (7)0.0180 (8)0.0188 (7)0.0039 (6)0.0039 (6)0.0011 (6)
C170.0189 (7)0.0174 (8)0.0205 (7)0.0011 (6)0.0045 (6)0.0034 (6)
C180.0151 (7)0.0215 (8)0.0145 (7)0.0041 (6)0.0030 (6)0.0041 (6)
C190.0210 (7)0.0194 (8)0.0170 (7)0.0009 (6)0.0039 (6)0.0022 (6)
C200.0202 (7)0.0197 (8)0.0191 (7)0.0020 (6)0.0056 (6)0.0001 (6)
C210.0235 (8)0.0273 (9)0.0178 (7)0.0040 (7)0.0083 (6)0.0011 (6)
Geometric parameters (Å, º) top
O1—C11.3259 (17)C8—C91.380 (2)
O1—H10.864 (10)C8—H80.9500
O2—C111.2950 (17)C9—C101.390 (2)
O3—C181.3657 (17)C9—H90.9500
O3—C211.4291 (19)C10—H100.9500
N1—C11.3484 (19)C11—C121.410 (2)
N1—N21.3981 (16)C12—C131.381 (2)
N1—C51.4208 (19)C12—H120.9500
N2—C31.3213 (19)C13—C141.499 (2)
N3—C131.3410 (19)C14—H14A0.9800
N3—C151.4350 (19)C14—H14B0.9800
N3—H30.888 (9)C14—H14C0.9800
C1—C21.390 (2)C15—C201.383 (2)
C2—C31.4277 (19)C15—C161.389 (2)
C2—C111.445 (2)C16—C171.384 (2)
C3—C41.490 (2)C16—H160.9500
C4—H4A0.9800C17—C181.392 (2)
C4—H4B0.9800C17—H170.9500
C4—H4C0.9800C18—C191.391 (2)
C5—C101.387 (2)C19—C201.393 (2)
C5—C61.391 (2)C19—H190.9500
C6—C71.383 (2)C20—H200.9500
C6—H60.9500C21—H21A0.9800
C7—C81.386 (2)C21—H21B0.9800
C7—H70.9500C21—H21C0.9800
C1—O1—H199.0 (16)C9—C10—H10120.3
C18—O3—C21117.30 (12)O2—C11—C12121.30 (13)
C1—N1—N2110.07 (12)O2—C11—C2115.32 (13)
C1—N1—C5130.27 (12)C12—C11—C2123.38 (13)
N2—N1—C5119.65 (11)C13—C12—C11124.10 (13)
C3—N2—N1105.77 (11)C13—C12—H12118.0
C13—N3—C15125.88 (13)C11—C12—H12118.0
C13—N3—H3114.1 (12)N3—C13—C12122.10 (13)
C15—N3—H3119.1 (12)N3—C13—C14117.52 (13)
O1—C1—N1124.40 (13)C12—C13—C14120.35 (13)
O1—C1—C2126.92 (14)C13—C14—H14A109.5
N1—C1—C2108.68 (12)C13—C14—H14B109.5
C1—C2—C3103.98 (13)H14A—C14—H14B109.5
C1—C2—C11119.59 (13)C13—C14—H14C109.5
C3—C2—C11136.42 (14)H14A—C14—H14C109.5
N2—C3—C2111.50 (13)H14B—C14—H14C109.5
N2—C3—C4119.49 (12)C20—C15—C16119.82 (14)
C2—C3—C4129.00 (13)C20—C15—N3120.37 (14)
C3—C4—H4A109.5C16—C15—N3119.71 (14)
C3—C4—H4B109.5C17—C16—C15120.12 (15)
H4A—C4—H4B109.5C17—C16—H16119.9
C3—C4—H4C109.5C15—C16—H16119.9
H4A—C4—H4C109.5C16—C17—C18120.05 (15)
H4B—C4—H4C109.5C16—C17—H17120.0
C10—C5—C6120.45 (14)C18—C17—H17120.0
C10—C5—N1120.55 (13)O3—C18—C19124.54 (14)
C6—C5—N1119.00 (13)O3—C18—C17115.33 (14)
C7—C6—C5119.44 (14)C19—C18—C17120.13 (14)
C7—C6—H6120.3C18—C19—C20119.28 (14)
C5—C6—H6120.3C18—C19—H19120.4
C6—C7—C8120.57 (14)C20—C19—H19120.4
C6—C7—H7119.7C15—C20—C19120.60 (15)
C8—C7—H7119.7C15—C20—H20119.7
C9—C8—C7119.60 (15)C19—C20—H20119.7
C9—C8—H8120.2O3—C21—H21A109.5
C7—C8—H8120.2O3—C21—H21B109.5
C8—C9—C10120.63 (15)H21A—C21—H21B109.5
C8—C9—H9119.7O3—C21—H21C109.5
C10—C9—H9119.7H21A—C21—H21C109.5
C5—C10—C9119.30 (14)H21B—C21—H21C109.5
C5—C10—H10120.3
C1—N1—N2—C30.61 (16)N1—C5—C10—C9179.96 (14)
C5—N1—N2—C3177.93 (13)C8—C9—C10—C50.2 (2)
N2—N1—C1—O1178.89 (14)C1—C2—C11—O23.6 (2)
C5—N1—C1—O12.8 (3)C3—C2—C11—O2176.96 (17)
N2—N1—C1—C20.54 (17)C1—C2—C11—C12175.40 (15)
C5—N1—C1—C2177.79 (15)C3—C2—C11—C124.1 (3)
O1—C1—C2—C3179.15 (15)O2—C11—C12—C137.2 (2)
N1—C1—C2—C30.26 (17)C2—C11—C12—C13171.74 (15)
O1—C1—C2—C111.2 (2)C15—N3—C13—C12169.33 (15)
N1—C1—C2—C11179.38 (13)C15—N3—C13—C1412.5 (2)
N1—N2—C3—C20.44 (17)C11—C12—C13—N31.7 (2)
N1—N2—C3—C4179.84 (13)C11—C12—C13—C14179.77 (15)
C1—C2—C3—N20.12 (18)C13—N3—C15—C20109.16 (18)
C11—C2—C3—N2179.67 (17)C13—N3—C15—C1674.5 (2)
C1—C2—C3—C4179.46 (15)C20—C15—C16—C170.7 (2)
C11—C2—C3—C41.0 (3)N3—C15—C16—C17175.75 (13)
C1—N1—C5—C1020.5 (2)C15—C16—C17—C180.3 (2)
N2—N1—C5—C10157.74 (14)C21—O3—C18—C190.5 (2)
C1—N1—C5—C6159.97 (15)C21—O3—C18—C17179.53 (13)
N2—N1—C5—C621.8 (2)C16—C17—C18—O3179.91 (13)
C10—C5—C6—C70.3 (2)C16—C17—C18—C190.2 (2)
N1—C5—C6—C7179.88 (14)O3—C18—C19—C20179.88 (13)
C5—C6—C7—C80.2 (2)C17—C18—C19—C200.2 (2)
C6—C7—C8—C90.5 (3)C16—C15—C20—C190.6 (2)
C7—C8—C9—C100.3 (3)N3—C15—C20—C19175.76 (13)
C6—C5—C10—C90.5 (2)C18—C19—C20—C150.2 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1,N2,C1–C3 and C15–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.86 (1)1.68 (1)2.4963 (15)156 (2)
N3—H3···O20.89 (1)1.92 (1)2.6447 (16)138 (2)
C14—H14b···Cg1i0.982.883.5542 (18)127
C21—H21c···Cg2ii0.982.763.5195 (17)134
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC21H21N3O3
Mr363.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)9.5717 (3), 16.9516 (6), 11.3143 (4)
β (°) 104.946 (4)
V3)1773.70 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.837, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8486, 3939, 3145
Rint0.024
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.104, 1.05
No. of reflections3939
No. of parameters255
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.23

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1,N2,C1–C3 and C15–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.864 (10)1.682 (13)2.4963 (15)156 (2)
N3—H3···O20.888 (9)1.918 (14)2.6447 (16)137.9 (16)
C14—H14b···Cg1i0.982.883.5542 (18)127
C21—H21c···Cg2ii0.982.763.5195 (17)134
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Acknowledgements

The authors are thankful to the Center of Excellence for Advanced Materials Research and the Chemistry Department at King Abdulaziz University for providing research facilities. Dr Al-Amry is thanked for support. The authors also thank the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Alamry, K. A., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2157.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBendaas, A., Hamdi, M. & Sellier, N. (1999). J. Heterocycl. Chem. 36, 1291–1294.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGelin, S., Chantegrel, B. & Nadi, A. I. (1983). J. Org. Chem. 48, 4078–4082.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds