organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(E)-3,4-Dimeth­­oxy­benzyl­­idene]-2,3-di­methyl­aniline

aDepartment of Physics, University of Sargodha, Sargodha, Pakistan, bDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and cInstitute of Chemical and Pharmaceutical Sciences, The University of Faisalabad, Faisalabad, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 11 August 2011; accepted 13 August 2011; online 27 August 2011)

In the title compound, C17H19NO2, the aromatic rings are oriented at a dihedral angle of 59.27 (12)°. In the crystal, inversion dimers linked by pairs of weak C—H⋯O inter­actions generate R22(12) loops.

Related literature

For related structures, see: Sarfraz et al. (2010[Sarfraz, M., Tariq, M. I. & Tahir, M. N. (2010). Acta Cryst. E66, o2055.]); Tahir et al. (2010a[Tahir, M. N., Tariq, M. I., Ahmad, S., Sarfraz, M. & Ather, A. Q. (2010a). Acta Cryst. E66, o1562.],b[Tahir, M. N., Tariq, M. I., Ahmad, S., Sarfraz, M. & Tariq, R. H. (2010b). Acta Cryst. E66, o2439.]); Tariq et al. (2010[Tariq, M. I., Sarfraz, M., Tahir, M. N., Ahmad, S. & Hussain, I. (2010). Acta Cryst. E66, o2078.]).

[Scheme 1]

Experimental

Crystal data
  • C17H19NO2

  • Mr = 269.33

  • Triclinic, [P \overline 1]

  • a = 7.0144 (4) Å

  • b = 7.4488 (4) Å

  • c = 15.6202 (8) Å

  • α = 81.987 (2)°

  • β = 81.009 (3)°

  • γ = 73.527 (2)°

  • V = 769.12 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.34 × 0.25 × 0.22 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.983

  • 8993 measured reflections

  • 3688 independent reflections

  • 2028 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.211

  • S = 1.08

  • 3688 reflections

  • 185 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16B⋯O2i 0.96 2.51 3.454 (3) 167
Symmetry code: (i) -x+1, -y+3, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

We have reported crystal structures of Schiff bases containining 2,3-dimethylaniline moiety i.e. (II) N-[(E)-4-chlorobenzylidene] -2,3-dimethylaniline (Tahir et al., 2010a), (III) i.e., 2-[(E)-(2,3-dimethylphenyl)iminomethyl]phenol (Tahir et al., 2010b), (IV) i.e., N-{(E)-[4-(dimethylamino)phenyl] methylidene}-2,3-dimethylaniline (Sarfraz et al., 2010) and (V) i.e., (2Z)-2-[(2,3-dimethylphenyl)imino]-1,2-diphenylethanone (Tariq et al., 2010). The title compound (I), (Fig. 1) is in continuation to synthesize various compounds of 2,3-dimethylaniline.

In (I), the group A (C1—C8/N1) of 2,3-dimethylaniline and the group B (C9—C17/O1/O2) of 3,4-dimethoxybenzaldehyde are close to planar with r.m.s. deviations of 0.010 and 0.041 Å, respectively. The dihedral angle between A/B is 60.57 (4)°. The molecules are linked in the form of dimers due to inter-molecular hydrogen bonds of C—H···O type with R22(12) ring motif (Table 1, Fig. 2). There does not exist any kind of significant π-interactions.

Related literature top

For related structures, see: Sarfraz et al. (2010); Tahir et al. (2010a,b); Tariq et al. (2010).

Experimental top

Equimolar quantities of 2,3-dimethylaniline and 3,4-dimethoxybenzaldehyde were refluxed in methanol for 30 min. The solution was kept at room temperature which affoarded colorless prisms after 48 h.

Refinement top

The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The partial packing of (I) showing that molecules form inversion dimers. The dotted lines represent the H-bondings.
N-[(E)-3,4-Dimethoxybenzylidene]-2,3-dimethylaniline top
Crystal data top
C17H19NO2Z = 2
Mr = 269.33F(000) = 288
Triclinic, P1Dx = 1.163 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0144 (4) ÅCell parameters from 2028 reflections
b = 7.4488 (4) Åθ = 2.7–28.4°
c = 15.6202 (8) ŵ = 0.08 mm1
α = 81.987 (2)°T = 296 K
β = 81.009 (3)°Prism, colorless
γ = 73.527 (2)°0.34 × 0.25 × 0.22 mm
V = 769.12 (7) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3688 independent reflections
Radiation source: fine-focus sealed tube2028 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 7.50 pixels mm-1θmax = 28.4°, θmin = 2.7°
ω scansh = 98
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 99
Tmin = 0.972, Tmax = 0.983l = 2020
8993 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.211H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0973P)2 + 0.0736P]
where P = (Fo2 + 2Fc2)/3
3688 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C17H19NO2γ = 73.527 (2)°
Mr = 269.33V = 769.12 (7) Å3
Triclinic, P1Z = 2
a = 7.0144 (4) ÅMo Kα radiation
b = 7.4488 (4) ŵ = 0.08 mm1
c = 15.6202 (8) ÅT = 296 K
α = 81.987 (2)°0.34 × 0.25 × 0.22 mm
β = 81.009 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3688 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2028 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.983Rint = 0.019
8993 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.211H-atom parameters constrained
S = 1.08Δρmax = 0.19 e Å3
3688 reflectionsΔρmin = 0.18 e Å3
185 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4243 (2)1.3278 (2)0.06049 (11)0.1032 (6)
O20.0678 (3)1.5334 (3)0.09093 (12)0.1237 (7)
N10.4479 (2)0.7156 (3)0.26807 (10)0.0781 (6)
C10.4907 (3)0.5385 (3)0.31797 (12)0.0724 (7)
C20.6399 (3)0.4985 (2)0.37272 (11)0.0653 (6)
C30.6892 (3)0.3227 (3)0.42177 (13)0.0801 (7)
C40.5942 (5)0.1908 (3)0.41376 (19)0.1067 (10)
C50.4515 (5)0.2251 (4)0.3599 (2)0.1191 (11)
C60.3959 (4)0.4001 (4)0.31104 (18)0.1058 (10)
C70.7449 (3)0.6439 (3)0.38007 (15)0.0814 (7)
C80.8467 (4)0.2768 (3)0.48259 (17)0.1107 (10)
C90.2673 (3)0.8109 (4)0.26475 (13)0.0873 (8)
C100.2098 (3)0.9939 (4)0.21549 (13)0.0872 (8)
C110.3509 (3)1.0665 (3)0.15843 (12)0.0804 (7)
C120.2991 (3)1.2443 (3)0.11668 (13)0.0845 (7)
C130.1014 (3)1.3574 (4)0.13272 (14)0.0982 (9)
C140.0383 (3)1.2866 (5)0.18777 (16)0.1098 (12)
C150.0153 (3)1.1059 (5)0.22878 (16)0.1091 (12)
C160.6230 (3)1.2208 (3)0.03706 (18)0.1017 (9)
C170.1297 (4)1.6586 (5)0.1040 (2)0.1511 (14)
H40.628320.074160.446100.1282*
H50.389930.132050.355420.1429*
H60.297180.424040.274380.1267*
H7A0.711560.745860.335350.1221*
H7B0.887060.588570.373390.1221*
H7C0.703330.690600.436180.1221*
H8A0.845830.159700.517050.1659*
H8B0.818760.375040.520200.1659*
H8C0.975890.266370.449340.1659*
H90.166480.760710.295550.1047*
H110.482080.992650.148740.0964*
H140.169551.360300.197530.1317*
H150.080691.059030.265800.1308*
H16A0.691241.182970.087990.1523*
H16B0.691941.295760.004560.1523*
H16C0.620601.111210.011840.1523*
H17A0.222291.609820.081220.2265*
H17B0.129561.780390.074300.2265*
H17C0.169371.669120.165140.2265*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0793 (9)0.1041 (11)0.0950 (11)0.0173 (8)0.0053 (8)0.0011 (8)
O20.0955 (11)0.1343 (14)0.0975 (12)0.0434 (10)0.0131 (9)0.0186 (10)
N10.0689 (10)0.1016 (12)0.0657 (10)0.0269 (9)0.0016 (7)0.0135 (8)
C10.0726 (11)0.0870 (13)0.0648 (10)0.0362 (10)0.0107 (9)0.0220 (9)
C20.0683 (10)0.0677 (11)0.0609 (10)0.0251 (8)0.0103 (8)0.0157 (8)
C30.0919 (13)0.0699 (12)0.0725 (12)0.0256 (10)0.0236 (10)0.0164 (9)
C40.133 (2)0.0838 (15)0.1044 (19)0.0482 (15)0.0309 (16)0.0238 (13)
C50.144 (2)0.1027 (19)0.133 (2)0.0808 (18)0.034 (2)0.0442 (18)
C60.1058 (17)0.139 (2)0.0977 (17)0.0668 (16)0.0115 (13)0.0523 (16)
C70.0819 (12)0.0803 (12)0.0893 (14)0.0328 (10)0.0139 (10)0.0060 (10)
C80.124 (2)0.0967 (16)0.0917 (17)0.0090 (15)0.0065 (15)0.0061 (13)
C90.0686 (12)0.1318 (18)0.0640 (12)0.0304 (12)0.0026 (9)0.0174 (12)
C100.0633 (11)0.1337 (19)0.0587 (11)0.0106 (11)0.0090 (9)0.0217 (12)
C110.0590 (10)0.1120 (16)0.0585 (10)0.0010 (10)0.0108 (8)0.0156 (10)
C120.0670 (11)0.1122 (16)0.0570 (11)0.0084 (11)0.0100 (9)0.0159 (10)
C130.0765 (13)0.130 (2)0.0626 (12)0.0260 (13)0.0180 (10)0.0259 (12)
C140.0621 (12)0.167 (3)0.0755 (14)0.0215 (14)0.0105 (11)0.0365 (15)
C150.0625 (12)0.178 (3)0.0730 (14)0.0054 (15)0.0046 (10)0.0264 (16)
C160.0696 (12)0.0984 (16)0.122 (2)0.0017 (11)0.0060 (12)0.0103 (14)
C170.114 (2)0.163 (3)0.118 (2)0.0679 (19)0.0177 (17)0.035 (2)
Geometric parameters (Å, º) top
O1—C121.358 (3)C14—C151.383 (5)
O1—C161.416 (3)C4—H40.9300
O2—C131.355 (3)C5—H50.9300
O2—C171.436 (4)C6—H60.9300
N1—C11.414 (3)C7—H7A0.9600
N1—C91.270 (3)C7—H7B0.9600
C1—C21.396 (3)C7—H7C0.9600
C1—C61.400 (4)C8—H8A0.9600
C2—C31.403 (3)C8—H8B0.9600
C2—C71.497 (3)C8—H8C0.9600
C3—C41.363 (4)C9—H90.9300
C3—C81.504 (4)C11—H110.9300
C4—C51.354 (5)C14—H140.9300
C5—C61.400 (4)C15—H150.9300
C9—C101.451 (4)C16—H16A0.9600
C10—C111.400 (3)C16—H16B0.9600
C10—C151.384 (4)C16—H16C0.9600
C11—C121.368 (3)C17—H17A0.9600
C12—C131.408 (3)C17—H17B0.9600
C13—C141.372 (3)C17—H17C0.9600
C12—O1—C16118.63 (17)C5—C6—H6120.00
C13—O2—C17118.4 (2)C2—C7—H7A109.00
C1—N1—C9119.83 (19)C2—C7—H7B109.00
N1—C1—C2118.28 (18)C2—C7—H7C109.00
N1—C1—C6122.3 (2)H7A—C7—H7B109.00
C2—C1—C6119.3 (2)H7A—C7—H7C109.00
C1—C2—C3119.81 (18)H7B—C7—H7C109.00
C1—C2—C7120.07 (16)C3—C8—H8A109.00
C3—C2—C7120.11 (18)C3—C8—H8B109.00
C2—C3—C4119.6 (2)C3—C8—H8C109.00
C2—C3—C8121.02 (19)H8A—C8—H8B109.00
C4—C3—C8119.4 (2)H8A—C8—H8C109.00
C3—C4—C5121.7 (2)H8B—C8—H8C109.00
C4—C5—C6120.3 (3)N1—C9—H9118.00
C1—C6—C5119.3 (3)C10—C9—H9118.00
N1—C9—C10123.5 (2)C10—C11—H11119.00
C9—C10—C11121.3 (2)C12—C11—H11119.00
C9—C10—C15120.1 (2)C13—C14—H14120.00
C11—C10—C15118.5 (2)C15—C14—H14120.00
C10—C11—C12121.1 (2)C10—C15—H15120.00
O1—C12—C11125.7 (2)C14—C15—H15120.00
O1—C12—C13114.90 (19)O1—C16—H16A109.00
C11—C12—C13119.4 (2)O1—C16—H16B109.00
O2—C13—C12114.7 (2)O1—C16—H16C109.00
O2—C13—C14125.5 (3)H16A—C16—H16B109.00
C12—C13—C14119.8 (3)H16A—C16—H16C109.00
C13—C14—C15120.2 (3)H16B—C16—H16C109.00
C10—C15—C14120.9 (2)O2—C17—H17A109.00
C3—C4—H4119.00O2—C17—H17B109.00
C5—C4—H4119.00O2—C17—H17C109.00
C4—C5—H5120.00H17A—C17—H17B109.00
C6—C5—H5120.00H17A—C17—H17C109.00
C1—C6—H6120.00H17B—C17—H17C110.00
C16—O1—C12—C114.7 (3)C8—C3—C4—C5180.0 (3)
C16—O1—C12—C13176.7 (2)C3—C4—C5—C60.6 (5)
C17—O2—C13—C12179.7 (2)C4—C5—C6—C10.5 (4)
C17—O2—C13—C140.3 (4)N1—C9—C10—C118.8 (4)
C9—N1—C1—C2133.8 (2)N1—C9—C10—C15166.8 (2)
C9—N1—C1—C649.3 (3)C9—C10—C11—C12175.4 (2)
C1—N1—C9—C10179.8 (2)C15—C10—C11—C120.2 (3)
N1—C1—C2—C3178.66 (18)C9—C10—C15—C14174.7 (2)
N1—C1—C2—C72.3 (3)C11—C10—C15—C141.0 (4)
C6—C1—C2—C31.7 (3)C10—C11—C12—O1179.8 (2)
C6—C1—C2—C7179.2 (2)C10—C11—C12—C131.2 (3)
N1—C1—C6—C5177.5 (2)O1—C12—C13—O21.3 (3)
C2—C1—C6—C50.6 (4)O1—C12—C13—C14179.3 (2)
C1—C2—C3—C41.7 (3)C11—C12—C13—O2177.4 (2)
C1—C2—C3—C8178.9 (2)C11—C12—C13—C142.0 (3)
C7—C2—C3—C4179.3 (2)O2—C13—C14—C15178.1 (2)
C7—C2—C3—C80.2 (3)C12—C13—C14—C151.2 (4)
C2—C3—C4—C50.5 (4)C13—C14—C15—C100.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16B···O2i0.962.513.454 (3)167
Symmetry code: (i) x+1, y+3, z.

Experimental details

Crystal data
Chemical formulaC17H19NO2
Mr269.33
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.0144 (4), 7.4488 (4), 15.6202 (8)
α, β, γ (°)81.987 (2), 81.009 (3), 73.527 (2)
V3)769.12 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.34 × 0.25 × 0.22
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.972, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
8993, 3688, 2028
Rint0.019
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.211, 1.08
No. of reflections3688
No. of parameters185
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.18

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16B···O2i0.962.513.454 (3)167
Symmetry code: (i) x+1, y+3, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, former Vice Chancellor, University of Sargodha. Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSarfraz, M., Tariq, M. I. & Tahir, M. N. (2010). Acta Cryst. E66, o2055.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Tariq, M. I., Ahmad, S., Sarfraz, M. & Ather, A. Q. (2010a). Acta Cryst. E66, o1562.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTahir, M. N., Tariq, M. I., Ahmad, S., Sarfraz, M. & Tariq, R. H. (2010b). Acta Cryst. E66, o2439.  CrossRef IUCr Journals Google Scholar
First citationTariq, M. I., Sarfraz, M., Tahir, M. N., Ahmad, S. & Hussain, I. (2010). Acta Cryst. E66, o2078.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds