organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-6-methyl­pyridinium 2-carb­­oxy­benzoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 11 August 2011; accepted 16 August 2011; online 27 August 2011)

In the title mol­ecular salt, C6H9N2+·C8H5O4, an intra­molecular O—H⋯O hydrogen bond occurs within the anion, thereby generating an S(7) ring, which may correlate with the fact that both the carb­oxy­lic acid and carboxyl­ate groups are almost coplanar with their attached rings [dihedral angles = 2.9 (3) and 5.2 (3)°, respectively]. In the crystal, each cation is linked to its adjacent anion by two N—H⋯O hydrogen bonds; the dihedral angle between the pyridine and benzene rings is 2.22 (10)°. The ion pairs are linked by further N—H⋯O inter­actions.

Related literature

For related structures, see: Navarro Ranninger et al. (1985[Navarro Ranninger, M.-C., Martínez-Carrera, S. & García-Blanco, S. (1985). Acta Cryst. C41, 21-22.]); Luque et al. (1997[Luque, A., Sertucha, J., Lezama, L., Rojo, T. & Román, P. (1997). J. Chem. Soc. Dalton Trans. pp. 847-854.]); Jin et al. (2000[Jin, Z. M., Pan, Y. J., Liu, J. G. & Xu, D. J. (2000). J. Chem. Crystallogr. 30, 195-198.]); Schuckmann et al. (1978[Schuckmann, W., Fuess, H. & Bats, J. W. (1978). Acta Cryst. B34, 3754-3756.]); Küppers et al. (1985[Küppers, H., Takusagawa, F. & Koetzle, T. F. (1985). J. Chem. Phys. 82, 5636-5647.]); Jessen (1990[Jessen, S. M. (1990). Acta Cryst. C46, 1513-1515.]); Hemamalini & Fun (2010a[Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o2535.],b[Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o2192-o2193.]); Quah et al. (2010[Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2269-o2270.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2+·C8H5O4

  • Mr = 274.27

  • Triclinic, [P \overline 1]

  • a = 7.473 (2) Å

  • b = 8.386 (3) Å

  • c = 11.818 (4) Å

  • α = 97.401 (6)°

  • β = 102.940 (7)°

  • γ = 109.616 (6)°

  • V = 662.9 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 1.00 × 0.20 × 0.10 mm

Data collection
  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.905, Tmax = 0.990

  • 12166 measured reflections

  • 3706 independent reflections

  • 2219 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.190

  • S = 1.05

  • 3706 reflections

  • 194 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O3 0.84 1.55 2.393 (2) 174
N1—H1N1⋯O4 0.98 (2) 1.71 (2) 2.692 (2) 175 (2)
N2—H1N2⋯O2i 0.96 (3) 1.99 (2) 2.940 (3) 172 (2)
N2—H2N2⋯O3 0.92 (2) 2.04 (2) 2.936 (3) 165 (2)
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

There are numerous examples of 2-amino-substituted pyridine compounds in which the 2-aminopyridines act as ligands (Navarro Ranninger et al., 1985) or as protonated cations (Luque et al., 1997; Jin et al., 2000). Phthalic acid forms hydrogenphthalate salts with various organic and other compounds. The crystal structures of hydrogenphthalates include calcium phthalate monohydrate (Schuckmann et al., 1978), lithium hydrogen phthalate monohydrate (Küppers et al., 1985) and tetramethylammonium hydrogen phthalate (Jessen, 1990) which have been reported in the literature. Recently, we have reported the crystal structures of 2-amino-5-chloro pyridinium 2-carboxybenzoate-benzene-1,2-dicarboxylic acid (Hemamalini & Fun, 2010a), 2-amino-5-bromopridinium 2-carboxybenzoate (Quah et al., 2010) and 2-amino-5-methylpyridinium 2-carboxybenzoate (Hemamalini & Fun, 2010b) from our laboratory. In a continuation of our studies of pyridinium derivatives, the crystal structure determination of the title compound (I) has been undertaken.

In the title salt, (I), the asymmetric unit contains a protonated 2-amino-6-methylpyridinium cation and a hydrogenphthalate anion as shown in Fig.1. In the 2-amino-6-methylpyridinium cation, a wider than normal angle [C1—N1—C5 = 123.64 (16)°] is subtended at the protonated N1 atom. The pyridine ring is essentially planar, with a maximum deviation of 0.007 (2) Å for atom C2. The dihedral angle between the pyridine (N1/C1–C5) and benzene (C7–C11/C13) rings is 2.22 (10)°.

In the crystal structure (Fig. 2), the cations and anions are connected via intermolecular N—H···O and intramolecular O—H···O (Table 1) hydrogen bonds forming dimers. These dimers contain R22(8), R12(4) and S(7) ring motifs.

Related literature top

For related structures, see: Navarro Ranninger et al. (1985); Luque et al. (1997); Jin et al. (2000); Schuckmann et al. (1978); Küppers et al. (1985); Jessen (1990); Hemamalini & Fun (2010a,b); Quah et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A hot methanol solution (20 ml) of 2-amino-6-methylpyridine (54 mg, Aldrich) and phthalic acid (41 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and colourless needles of the title compound appeared after a few days.

Refinement top

Atoms H1N1, H1N2 and H2N2 were located from difference Fourier maps and refined freely [N–H = 0.92 (3)–0.99 (3) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93–0.96 Å and O–H = 0.8434 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was used for the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids. Intramolecular hydrogen bonds shown by dashed lines.
[Figure 2] Fig. 2. The crystal packing of title compound (I) showing a dimer. Dashed lines represents hydrogen bonding.
2-Amino-6-methylpyridinium 2-carboxybenzoate top
Crystal data top
C6H9N2+·C8H5O4Z = 2
Mr = 274.27F(000) = 288
Triclinic, P1Dx = 1.374 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.473 (2) ÅCell parameters from 3645 reflections
b = 8.386 (3) Åθ = 2.6–27.4°
c = 11.818 (4) ŵ = 0.10 mm1
α = 97.401 (6)°T = 296 K
β = 102.940 (7)°Needle, colourless
γ = 109.616 (6)°1.00 × 0.20 × 0.10 mm
V = 662.9 (4) Å3
Data collection top
Bruker APEXII DUO CCD
diffractometer
3706 independent reflections
Radiation source: fine-focus sealed tube2219 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 29.9°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.905, Tmax = 0.990k = 1111
12166 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.190H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.1052P)2 + 0.0321P]
where P = (Fo2 + 2Fc2)/3
3706 reflections(Δ/σ)max < 0.001
194 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C6H9N2+·C8H5O4γ = 109.616 (6)°
Mr = 274.27V = 662.9 (4) Å3
Triclinic, P1Z = 2
a = 7.473 (2) ÅMo Kα radiation
b = 8.386 (3) ŵ = 0.10 mm1
c = 11.818 (4) ÅT = 296 K
α = 97.401 (6)°1.00 × 0.20 × 0.10 mm
β = 102.940 (7)°
Data collection top
Bruker APEXII DUO CCD
diffractometer
3706 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2219 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 0.990Rint = 0.044
12166 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.190H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.20 e Å3
3706 reflectionsΔρmin = 0.24 e Å3
194 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3997 (3)0.99186 (18)0.64341 (12)0.0720 (5)
H1O10.36520.89640.59510.108*
O20.4150 (3)1.09584 (17)0.82518 (13)0.0727 (5)
O30.3231 (2)0.71890 (18)0.51427 (12)0.0682 (4)
O40.2170 (2)0.44177 (18)0.51346 (12)0.0694 (4)
N10.2619 (2)0.33871 (18)0.29978 (13)0.0452 (3)
N20.3912 (3)0.6236 (2)0.28428 (16)0.0562 (4)
C10.3333 (2)0.4560 (2)0.23665 (14)0.0441 (4)
C20.3430 (3)0.3937 (2)0.12220 (15)0.0504 (4)
H2A0.39310.47070.07660.060*
C30.2783 (3)0.2199 (3)0.07971 (17)0.0574 (5)
H3A0.28230.17820.00390.069*
C40.2057 (3)0.1023 (3)0.14768 (18)0.0584 (5)
H4A0.16230.01640.11740.070*
C50.1989 (3)0.1630 (2)0.25911 (17)0.0503 (4)
C60.1328 (4)0.0531 (3)0.3429 (2)0.0694 (6)
H6A0.05750.06470.29960.104*
H6B0.05160.09580.38080.104*
H6C0.24650.05750.40230.104*
C70.2521 (3)0.7860 (2)0.87715 (15)0.0481 (4)
H7A0.28750.89120.92990.058*
C80.1716 (3)0.6332 (3)0.91302 (16)0.0539 (4)
H8A0.15410.63640.98860.065*
C90.1182 (3)0.4775 (3)0.83617 (17)0.0561 (5)
H9A0.06260.37420.85890.067*
C100.1472 (3)0.4744 (2)0.72467 (16)0.0511 (4)
H10A0.11060.36780.67330.061*
C110.2297 (2)0.6265 (2)0.68645 (13)0.0419 (4)
C120.2586 (3)0.5937 (2)0.56344 (15)0.0481 (4)
C130.2820 (2)0.7880 (2)0.76533 (14)0.0424 (4)
C140.3712 (3)0.9700 (2)0.74459 (16)0.0498 (4)
H1N10.251 (3)0.383 (3)0.378 (2)0.068 (6)*
H1N20.454 (4)0.707 (3)0.243 (2)0.075 (7)*
H2N20.394 (3)0.663 (3)0.361 (2)0.074 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1160 (13)0.0466 (8)0.0533 (8)0.0208 (7)0.0380 (8)0.0130 (6)
O20.1115 (13)0.0458 (8)0.0560 (8)0.0212 (8)0.0330 (8)0.0025 (6)
O30.0998 (11)0.0543 (8)0.0468 (8)0.0175 (7)0.0337 (7)0.0086 (6)
O40.1065 (12)0.0497 (8)0.0519 (8)0.0250 (8)0.0338 (8)0.0029 (6)
N10.0491 (8)0.0417 (8)0.0408 (7)0.0147 (6)0.0123 (6)0.0028 (6)
N20.0740 (10)0.0417 (8)0.0501 (9)0.0160 (7)0.0239 (8)0.0053 (7)
C10.0449 (8)0.0456 (9)0.0404 (8)0.0185 (7)0.0096 (6)0.0052 (7)
C20.0558 (10)0.0596 (11)0.0411 (9)0.0285 (8)0.0149 (7)0.0089 (8)
C30.0618 (11)0.0663 (12)0.0447 (9)0.0328 (9)0.0114 (8)0.0023 (8)
C40.0616 (11)0.0504 (10)0.0579 (11)0.0235 (8)0.0119 (9)0.0037 (8)
C50.0488 (9)0.0428 (9)0.0540 (10)0.0153 (7)0.0118 (7)0.0038 (7)
C60.0795 (14)0.0504 (11)0.0794 (15)0.0201 (10)0.0301 (11)0.0171 (10)
C70.0554 (10)0.0511 (10)0.0409 (9)0.0231 (8)0.0168 (7)0.0065 (7)
C80.0629 (11)0.0627 (12)0.0449 (9)0.0269 (9)0.0250 (8)0.0165 (8)
C90.0638 (11)0.0508 (10)0.0538 (11)0.0150 (8)0.0236 (8)0.0184 (8)
C100.0577 (10)0.0441 (9)0.0453 (9)0.0130 (7)0.0149 (7)0.0065 (7)
C110.0411 (8)0.0473 (9)0.0355 (8)0.0165 (6)0.0096 (6)0.0062 (6)
C120.0519 (9)0.0511 (10)0.0378 (8)0.0168 (7)0.0120 (7)0.0063 (7)
C130.0442 (8)0.0451 (9)0.0382 (8)0.0183 (7)0.0114 (6)0.0072 (7)
C140.0596 (10)0.0451 (9)0.0452 (9)0.0190 (7)0.0171 (7)0.0097 (7)
Geometric parameters (Å, º) top
O1—C141.286 (2)C4—H4A0.9300
O1—H1O10.8434C5—C61.491 (3)
O2—C141.223 (2)C6—H6A0.9600
O3—C121.271 (2)C6—H6B0.9600
O4—C121.236 (2)C6—H6C0.9600
N1—C11.350 (2)C7—C81.386 (3)
N1—C51.369 (2)C7—C131.390 (2)
N1—H1N10.99 (3)C7—H7A0.9300
N2—C11.326 (2)C8—C91.367 (3)
N2—H1N20.95 (3)C8—H8A0.9300
N2—H2N20.92 (3)C9—C101.381 (3)
C1—C21.413 (2)C9—H9A0.9300
C2—C31.356 (3)C10—C111.398 (2)
C2—H2A0.9300C10—H10A0.9300
C3—C41.397 (3)C11—C131.418 (2)
C3—H3A0.9300C11—C121.521 (2)
C4—C51.368 (3)C13—C141.524 (3)
C14—O1—H1O1111.8H6A—C6—H6C109.5
C1—N1—C5123.64 (16)H6B—C6—H6C109.5
C1—N1—H1N1117.4 (13)C8—C7—C13122.48 (17)
C5—N1—H1N1118.9 (13)C8—C7—H7A118.8
C1—N2—H1N2119.1 (15)C13—C7—H7A118.8
C1—N2—H2N2122.3 (15)C9—C8—C7119.37 (17)
H1N2—N2—H2N2118 (2)C9—C8—H8A120.3
N2—C1—N1118.97 (16)C7—C8—H8A120.3
N2—C1—C2122.93 (17)C8—C9—C10119.76 (17)
N1—C1—C2118.09 (15)C8—C9—H9A120.1
C3—C2—C1119.05 (18)C10—C9—H9A120.1
C3—C2—H2A120.5C9—C10—C11122.13 (17)
C1—C2—H2A120.5C9—C10—H10A118.9
C2—C3—C4121.27 (18)C11—C10—H10A118.9
C2—C3—H3A119.4C10—C11—C13118.15 (15)
C4—C3—H3A119.4C10—C11—C12113.54 (15)
C5—C4—C3119.58 (17)C13—C11—C12128.27 (15)
C5—C4—H4A120.2O4—C12—O3121.50 (17)
C3—C4—H4A120.2O4—C12—C11117.68 (15)
C4—C5—N1118.35 (17)O3—C12—C11120.82 (16)
C4—C5—C6125.27 (18)C7—C13—C11118.09 (15)
N1—C5—C6116.36 (17)C7—C13—C14113.65 (15)
C5—C6—H6A109.5C11—C13—C14128.25 (15)
C5—C6—H6B109.5O2—C14—O1120.10 (17)
H6A—C6—H6B109.5O2—C14—C13119.35 (16)
C5—C6—H6C109.5O1—C14—C13120.55 (16)
C5—N1—C1—N2179.76 (16)C10—C11—C12—O43.4 (2)
C5—N1—C1—C20.1 (2)C13—C11—C12—O4174.11 (17)
N2—C1—C2—C3179.19 (17)C10—C11—C12—O3176.56 (16)
N1—C1—C2—C30.9 (2)C13—C11—C12—O35.9 (3)
C1—C2—C3—C41.1 (3)C8—C7—C13—C110.8 (3)
C2—C3—C4—C50.2 (3)C8—C7—C13—C14179.70 (16)
C3—C4—C5—N10.8 (3)C10—C11—C13—C71.3 (2)
C3—C4—C5—C6177.48 (18)C12—C11—C13—C7176.07 (15)
C1—N1—C5—C41.0 (3)C10—C11—C13—C14179.27 (16)
C1—N1—C5—C6177.44 (16)C12—C11—C13—C143.3 (3)
C13—C7—C8—C90.2 (3)C7—C13—C14—O22.5 (3)
C7—C8—C9—C100.8 (3)C11—C13—C14—O2176.88 (17)
C8—C9—C10—C110.2 (3)C7—C13—C14—O1177.23 (17)
C9—C10—C11—C130.9 (3)C11—C13—C14—O13.4 (3)
C9—C10—C11—C12176.92 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O30.841.552.393 (2)174
N1—H1N1···O40.98 (2)1.71 (2)2.692 (2)175 (2)
N2—H1N2···O2i0.96 (3)1.99 (2)2.940 (3)172 (2)
N2—H2N2···O30.92 (2)2.04 (2)2.936 (3)165 (2)
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC6H9N2+·C8H5O4
Mr274.27
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.473 (2), 8.386 (3), 11.818 (4)
α, β, γ (°)97.401 (6), 102.940 (7), 109.616 (6)
V3)662.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)1.00 × 0.20 × 0.10
Data collection
DiffractometerBruker APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.905, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
12166, 3706, 2219
Rint0.044
(sin θ/λ)max1)0.702
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.190, 1.05
No. of reflections3706
No. of parameters194
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.24

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O30.841.552.393 (2)174
N1—H1N1···O40.98 (2)1.71 (2)2.692 (2)175 (2)
N2—H1N2···O2i0.96 (3)1.99 (2)2.940 (3)172 (2)
N2—H2N2···O30.92 (2)2.04 (2)2.936 (3)165 (2)
Symmetry code: (i) x+1, y+2, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH, HKF and IAR thank the Ministry of Higher Education, Malaysia, and Universiti Sains Malaysia for the Fundamental Research Grant Scheme (FRGS) grant No. 203/PFIZIK/6711171. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o2535.  CrossRef IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o2192–o2193.  CrossRef IUCr Journals Google Scholar
First citationJessen, S. M. (1990). Acta Cryst. C46, 1513–1515.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJin, Z. M., Pan, Y. J., Liu, J. G. & Xu, D. J. (2000). J. Chem. Crystallogr. 30, 195–198.  Web of Science CSD CrossRef CAS Google Scholar
First citationKüppers, H., Takusagawa, F. & Koetzle, T. F. (1985). J. Chem. Phys. 82, 5636–5647.  CSD CrossRef Google Scholar
First citationLuque, A., Sertucha, J., Lezama, L., Rojo, T. & Román, P. (1997). J. Chem. Soc. Dalton Trans. pp. 847–854.  CSD CrossRef Web of Science Google Scholar
First citationNavarro Ranninger, M.-C., Martínez-Carrera, S. & García-Blanco, S. (1985). Acta Cryst. C41, 21–22.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationQuah, C. K., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2269–o2270.  CrossRef IUCr Journals Google Scholar
First citationSchuckmann, W., Fuess, H. & Bats, J. W. (1978). Acta Cryst. B34, 3754–3756.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds