organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4′-(4-Chloro­phenyl)-1′-methyldi­spiro[indan-2,2′-pyrrolidine-3′,2′′-indan]-1,3,1′′-trione

aInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 12 August 2011; accepted 18 August 2011; online 27 August 2011)

In the title compound, C27H20ClNO3, the two cyclo­pentane rings adopt envelope conformations. The pyrrolidine ring also adopts an envelope conformation (with the spiro C atom as the flap) and its least-squares plane (fitted to five atoms) makes dihedral angles of 66.50 (9), 77.36 (8) and 73.76 (8)° with the chloro­benzene ring and the two 2,3-dihydro-1H-indene ring systems, respectively. The mol­ecular conformation is stabilized by an intra­molecular C—H⋯O hydrogen bond, which generates an S(6) ring motif. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds into chains running parallel to the [001] direction.

Related literature

For background to the synthesis, see: Amalraj & Raghunathan (2003[Amalraj, A. & Raghunathan, R. (2003). Tetrahedron, 59, 2907-2911.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For graph-set descriptors of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Kumar et al. (2010[Kumar, R. S., Osman, H., Ali, M. A., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o1540-o1541.]); Wei, Ali, Choon et al. (2011[Wei, A. C., Ali, M. A., Choon, T. S., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o2383.]); Wei, Ali, Ismail et al. (2011[Wei, A. C., Ali, M. A., Ismail, R., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o2381-o2382.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C27H20ClNO3

  • Mr = 441.89

  • Monoclinic, P 21 /c

  • a = 7.8216 (1) Å

  • b = 21.2865 (3) Å

  • c = 14.0641 (2) Å

  • β = 116.156 (1)°

  • V = 2101.81 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.43 × 0.11 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.913, Tmax = 0.979

  • 25402 measured reflections

  • 6459 independent reflections

  • 4537 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.113

  • S = 1.06

  • 6459 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18A⋯O2 0.99 2.40 3.055 (2) 123
C6—H6A⋯O1i 0.95 2.57 3.244 (2) 128
C14—H14A⋯O3i 0.95 2.45 3.167 (2) 132
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,3-Dipolar cycloaddition is a very useful synthetic strategy to construct heterocycles in which high regio- and stereo-chemical control of peripheral substituents can be achieved (Amalraj & Raghunathan, 2003). As part of our studies in this area, the title compound, (I), was prepared and it structure is now described.

The molecular structure is shown in Fig. 1. The two cyclopentane rings, C1-C3/C8/C9 and C10-C12/C17/C18, are in envelope conformations, puckering parameters (Cremer & Pople, 1975) Q =0.2239 (17) Å and ϕ = 177.0 (4)° with atom C1 at the flap; and Q = 0.2121 (17) Å and ϕ = 355.2 (5)° with atom C10 at the flap, respectively. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Kumar et al., 2010; Wei, Ali, Choon et al. (2011); Wei, Ali, Ismail et al. (2011). The pyrrolidine ring (N1/C1/C10/C19/C20) adopts an envelope conformation, puckering parameters (Cremer & Pople, 1975) Q = 0.4461 (17) Å and ϕ = 41.6 (2)°, with atom C1 at the flap and its least-squares plane makes dihedral angles of 66.50 (9), 77.36 (8) and 73.76 (8)° with a phenyl ring (C22-C27) and the two least-squares planes of 2,3-dihydro-1H-indene ring system [C1-C9 (maximum deviation of 0.234 (2) Å at atom C1) and C10-C18 (maximum deviation of 0.221 (2) Å at atom C10)], respectively. The molecular structure is stabilized by an intramolecular C18–H18A···O2 hydrogen bond (Table 1), which generates an S(6) ring motif (Fig. 1, Bernstein et al., 1995).

In the crystal (Fig. 2), molecules are linked by C6–H6A···O1 and C14–H14A···O3 hydrogen bonds (Table 1) into one-dimensional chains parallel to [001] direction.

Related literature top

For background on the synthesis, see: Amalraj & Raghunathan (2003). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). For graph-set descriptors of hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Kumar et al. (2010); Wei, Ali, Choon et al. (2011); Wei, Ali, Ismail et al. (2011) . For standard bond-length data, see: Allen et al. (1987). For ring conformations, see: Cremer & Pople (1975).

Experimental top

A mixture of (E)2-(4-chlorobenzylidene)-2,3-dihydro-1H- indene-1-one (0.001 mmol), ninhydrin (0.001 mmol) and sarcosine (0.002 mmol) (1:1:2) were dissolved in methanol (10 ml) and refluxed for 4 h. After completion of the reaction as evident from TLC, the mixture was poured into water (50 ml). The precipitated solid was filtered, washed with water and recrystallised from pet.ether-ethyl acetate mixture (1:1) to reveal the title compound as yellow crystals.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.95-1.00 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl group. The highest residual electron density peak is located at 0.73 Å from atom C10 and the deepest hole is located at 0.49 Å from atom Cl1.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms. The intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
4'-(4-Chlorophenyl)-1'-methyldispiro[indan-2,2'-pyrrolidine-3',2''-indan]- 1,3,1''-trione top
Crystal data top
C27H20ClNO3F(000) = 920
Mr = 441.89Dx = 1.396 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5352 reflections
a = 7.8216 (1) Åθ = 2.5–30.6°
b = 21.2865 (3) ŵ = 0.21 mm1
c = 14.0641 (2) ÅT = 100 K
β = 116.156 (1)°Needle, yellow
V = 2101.81 (5) Å30.43 × 0.11 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
6459 independent reflections
Radiation source: fine-focus sealed tube4537 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 30.7°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.913, Tmax = 0.979k = 2830
25402 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0402P)2 + 0.7009P]
where P = (Fo2 + 2Fc2)/3
6459 reflections(Δ/σ)max = 0.003
290 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C27H20ClNO3V = 2101.81 (5) Å3
Mr = 441.89Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.8216 (1) ŵ = 0.21 mm1
b = 21.2865 (3) ÅT = 100 K
c = 14.0641 (2) Å0.43 × 0.11 × 0.10 mm
β = 116.156 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
6459 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4537 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.979Rint = 0.047
25402 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.06Δρmax = 0.31 e Å3
6459 reflectionsΔρmin = 0.41 e Å3
290 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.36538 (5)1.10023 (2)0.43329 (4)0.03235 (12)
O10.34773 (16)0.84249 (6)0.29205 (9)0.0267 (3)
O20.21665 (15)0.90315 (5)0.05015 (9)0.0238 (2)
O30.76083 (16)0.81058 (5)0.28215 (9)0.0259 (3)
N10.32278 (17)0.95682 (6)0.16129 (10)0.0186 (3)
C10.3793 (2)0.89484 (7)0.14450 (12)0.0174 (3)
C20.3456 (2)0.83915 (7)0.20561 (12)0.0192 (3)
C30.3038 (2)0.78302 (7)0.13665 (12)0.0195 (3)
C40.3012 (2)0.71988 (8)0.16125 (13)0.0226 (3)
H4A0.32360.70710.23050.027*
C50.2648 (2)0.67623 (8)0.08182 (14)0.0248 (3)
H5A0.26250.63280.09700.030*
C60.2312 (2)0.69460 (8)0.02046 (13)0.0247 (3)
H6A0.20870.66360.07320.030*
C70.2303 (2)0.75755 (8)0.04577 (13)0.0222 (3)
H7A0.20520.77030.11540.027*
C80.2672 (2)0.80142 (7)0.03387 (12)0.0185 (3)
C90.2784 (2)0.87074 (7)0.02905 (12)0.0187 (3)
C100.60072 (19)0.90486 (7)0.18206 (12)0.0163 (3)
C110.7080 (2)0.84175 (7)0.20191 (12)0.0182 (3)
C120.7325 (2)0.82736 (7)0.10625 (12)0.0180 (3)
C130.7860 (2)0.77077 (8)0.07756 (14)0.0247 (3)
H13A0.81900.73540.12340.030*
C140.7896 (2)0.76766 (9)0.01978 (14)0.0302 (4)
H14A0.82210.72930.04240.036*
C150.7456 (2)0.82058 (9)0.08488 (14)0.0300 (4)
H15A0.75040.81780.15110.036*
C160.6949 (2)0.87731 (9)0.05530 (13)0.0246 (3)
H16A0.66680.91320.09980.029*
C170.68632 (19)0.88006 (7)0.04162 (12)0.0186 (3)
C180.6335 (2)0.93495 (7)0.09163 (12)0.0178 (3)
H18A0.51640.95580.03970.021*
H18B0.73790.96620.11970.021*
C190.6508 (2)0.94344 (7)0.28455 (12)0.0178 (3)
H19A0.67490.91260.34270.021*
C200.4657 (2)0.97897 (8)0.26487 (12)0.0215 (3)
H20A0.42590.96920.32100.026*
H20B0.48431.02490.26370.026*
C210.1256 (2)0.96362 (8)0.14474 (13)0.0251 (3)
H21A0.03960.94770.07440.038*
H21B0.09831.00810.14990.038*
H21C0.10690.93960.19890.038*
C220.8282 (2)0.98346 (7)0.31889 (12)0.0178 (3)
C231.0004 (2)0.96051 (8)0.39638 (12)0.0200 (3)
H23A1.00370.92020.42610.024*
C241.1670 (2)0.99542 (8)0.43099 (12)0.0219 (3)
H24A1.28350.97920.48360.026*
C251.1605 (2)1.05421 (8)0.38765 (13)0.0219 (3)
C260.9925 (2)1.07773 (8)0.30868 (13)0.0220 (3)
H26A0.99031.11760.27790.026*
C270.8274 (2)1.04207 (7)0.27535 (12)0.0208 (3)
H27A0.71171.05810.22170.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01834 (18)0.0288 (2)0.0454 (3)0.00521 (15)0.00986 (18)0.00980 (19)
O10.0324 (6)0.0327 (7)0.0189 (6)0.0058 (5)0.0150 (5)0.0018 (5)
O20.0238 (5)0.0275 (6)0.0181 (6)0.0004 (5)0.0074 (5)0.0036 (5)
O30.0294 (6)0.0252 (6)0.0228 (6)0.0031 (5)0.0111 (5)0.0051 (5)
N10.0156 (5)0.0206 (7)0.0203 (7)0.0007 (5)0.0084 (5)0.0025 (5)
C10.0158 (6)0.0189 (7)0.0181 (8)0.0009 (5)0.0081 (6)0.0007 (6)
C20.0164 (6)0.0238 (8)0.0179 (8)0.0017 (6)0.0079 (6)0.0005 (6)
C30.0167 (6)0.0228 (8)0.0202 (8)0.0028 (6)0.0094 (6)0.0012 (6)
C40.0208 (7)0.0269 (8)0.0221 (8)0.0016 (6)0.0114 (6)0.0028 (7)
C50.0249 (8)0.0204 (8)0.0330 (10)0.0022 (6)0.0162 (7)0.0007 (7)
C60.0261 (8)0.0244 (8)0.0281 (9)0.0047 (6)0.0159 (7)0.0070 (7)
C70.0213 (7)0.0269 (9)0.0204 (8)0.0048 (6)0.0109 (6)0.0030 (7)
C80.0158 (6)0.0213 (8)0.0190 (8)0.0019 (5)0.0083 (6)0.0004 (6)
C90.0152 (6)0.0239 (8)0.0184 (8)0.0024 (5)0.0088 (6)0.0013 (6)
C100.0152 (6)0.0176 (7)0.0170 (7)0.0004 (5)0.0078 (6)0.0002 (6)
C110.0162 (6)0.0187 (7)0.0188 (8)0.0014 (5)0.0068 (6)0.0000 (6)
C120.0141 (6)0.0207 (8)0.0181 (8)0.0013 (5)0.0061 (6)0.0033 (6)
C130.0208 (7)0.0237 (8)0.0283 (9)0.0015 (6)0.0097 (7)0.0051 (7)
C140.0238 (8)0.0347 (10)0.0322 (10)0.0005 (7)0.0123 (7)0.0149 (8)
C150.0229 (8)0.0470 (11)0.0225 (9)0.0024 (7)0.0122 (7)0.0105 (8)
C160.0193 (7)0.0362 (10)0.0181 (8)0.0019 (6)0.0083 (6)0.0012 (7)
C170.0138 (6)0.0243 (8)0.0177 (8)0.0032 (5)0.0069 (6)0.0046 (6)
C180.0172 (7)0.0182 (7)0.0180 (8)0.0009 (5)0.0077 (6)0.0007 (6)
C190.0171 (6)0.0200 (8)0.0172 (8)0.0013 (5)0.0084 (6)0.0018 (6)
C200.0179 (7)0.0247 (8)0.0231 (8)0.0012 (6)0.0100 (6)0.0055 (6)
C210.0175 (7)0.0318 (9)0.0273 (9)0.0016 (6)0.0110 (7)0.0020 (7)
C220.0173 (6)0.0201 (8)0.0171 (7)0.0006 (5)0.0086 (6)0.0042 (6)
C230.0204 (7)0.0221 (8)0.0181 (8)0.0027 (6)0.0089 (6)0.0000 (6)
C240.0157 (6)0.0282 (9)0.0187 (8)0.0042 (6)0.0048 (6)0.0016 (7)
C250.0159 (7)0.0252 (8)0.0245 (8)0.0025 (6)0.0089 (6)0.0080 (7)
C260.0206 (7)0.0191 (8)0.0265 (9)0.0005 (6)0.0105 (7)0.0020 (7)
C270.0172 (7)0.0225 (8)0.0204 (8)0.0019 (6)0.0062 (6)0.0021 (6)
Geometric parameters (Å, º) top
Cl1—C251.7413 (15)C13—H13A0.9500
O1—C21.2106 (18)C14—C151.396 (3)
O2—C91.2148 (18)C14—H14A0.9500
O3—C111.2139 (18)C15—C161.391 (2)
N1—C11.4435 (19)C15—H15A0.9500
N1—C211.4616 (18)C16—C171.395 (2)
N1—C201.4692 (19)C16—H16A0.9500
C1—C91.547 (2)C17—C181.512 (2)
C1—C21.553 (2)C18—H18A0.9900
C1—C101.5869 (19)C18—H18B0.9900
C2—C31.482 (2)C19—C221.515 (2)
C3—C41.390 (2)C19—C201.546 (2)
C3—C81.400 (2)C19—H19A1.0000
C4—C51.383 (2)C20—H20A0.9900
C4—H4A0.9500C20—H20B0.9900
C5—C61.399 (2)C21—H21A0.9800
C5—H5A0.9500C21—H21B0.9800
C6—C71.386 (2)C21—H21C0.9800
C6—H6A0.9500C22—C271.389 (2)
C7—C81.388 (2)C22—C231.395 (2)
C7—H7A0.9500C23—C241.389 (2)
C8—C91.481 (2)C23—H23A0.9500
C10—C111.543 (2)C24—C251.383 (2)
C10—C181.543 (2)C24—H24A0.9500
C10—C191.552 (2)C25—C261.388 (2)
C11—C121.472 (2)C26—C271.389 (2)
C12—C171.388 (2)C26—H26A0.9500
C12—C131.392 (2)C27—H27A0.9500
C13—C141.383 (2)
C1—N1—C21116.22 (12)C16—C15—C14121.65 (16)
C1—N1—C20107.55 (12)C16—C15—H15A119.2
C21—N1—C20114.48 (12)C14—C15—H15A119.2
N1—C1—C9115.06 (12)C15—C16—C17118.13 (16)
N1—C1—C2117.92 (12)C15—C16—H16A120.9
C9—C1—C2101.26 (12)C17—C16—H16A120.9
N1—C1—C10100.98 (11)C12—C17—C16119.69 (15)
C9—C1—C10111.78 (11)C12—C17—C18111.45 (13)
C2—C1—C10110.17 (12)C16—C17—C18128.86 (15)
O1—C2—C3127.30 (14)C17—C18—C10103.97 (12)
O1—C2—C1125.47 (14)C17—C18—H18A111.0
C3—C2—C1107.19 (12)C10—C18—H18A111.0
C4—C3—C8120.59 (15)C17—C18—H18B111.0
C4—C3—C2129.78 (14)C10—C18—H18B111.0
C8—C3—C2109.62 (13)H18A—C18—H18B109.0
C5—C4—C3117.96 (15)C22—C19—C20115.83 (13)
C5—C4—H4A121.0C22—C19—C10114.48 (12)
C3—C4—H4A121.0C20—C19—C10105.05 (12)
C4—C5—C6121.41 (15)C22—C19—H19A107.0
C4—C5—H5A119.3C20—C19—H19A107.0
C6—C5—H5A119.3C10—C19—H19A107.0
C7—C6—C5120.78 (15)N1—C20—C19105.29 (12)
C7—C6—H6A119.6N1—C20—H20A110.7
C5—C6—H6A119.6C19—C20—H20A110.7
C6—C7—C8117.89 (15)N1—C20—H20B110.7
C6—C7—H7A121.1C19—C20—H20B110.7
C8—C7—H7A121.1H20A—C20—H20B108.8
C7—C8—C3121.35 (15)N1—C21—H21A109.5
C7—C8—C9128.97 (14)N1—C21—H21B109.5
C3—C8—C9109.68 (13)H21A—C21—H21B109.5
O2—C9—C8126.87 (14)N1—C21—H21C109.5
O2—C9—C1125.93 (14)H21A—C21—H21C109.5
C8—C9—C1107.18 (13)H21B—C21—H21C109.5
C11—C10—C18103.63 (11)C27—C22—C23118.29 (14)
C11—C10—C19113.48 (12)C27—C22—C19122.66 (13)
C18—C10—C19118.72 (12)C23—C22—C19119.05 (14)
C11—C10—C1111.72 (12)C24—C23—C22121.35 (15)
C18—C10—C1109.58 (11)C24—C23—H23A119.3
C19—C10—C199.89 (11)C22—C23—H23A119.3
O3—C11—C12127.43 (14)C25—C24—C23118.90 (14)
O3—C11—C10125.39 (14)C25—C24—H24A120.6
C12—C11—C10107.18 (12)C23—C24—H24A120.6
C17—C12—C13122.31 (15)C24—C25—C26121.14 (14)
C17—C12—C11109.22 (13)C24—C25—Cl1119.84 (12)
C13—C12—C11128.44 (15)C26—C25—Cl1119.02 (13)
C14—C13—C12117.91 (16)C25—C26—C27118.99 (15)
C14—C13—H13A121.0C25—C26—H26A120.5
C12—C13—H13A121.0C27—C26—H26A120.5
C13—C14—C15120.28 (16)C26—C27—C22121.31 (14)
C13—C14—H14A119.9C26—C27—H27A119.3
C15—C14—H14A119.9C22—C27—H27A119.3
C21—N1—C1—C965.60 (16)C1—C10—C11—O382.09 (18)
C20—N1—C1—C9164.59 (12)C18—C10—C11—C1220.04 (14)
C21—N1—C1—C253.86 (18)C19—C10—C11—C12150.16 (12)
C20—N1—C1—C275.96 (15)C1—C10—C11—C1297.84 (13)
C21—N1—C1—C10173.87 (12)O3—C11—C12—C17168.37 (15)
C20—N1—C1—C1044.06 (14)C10—C11—C12—C1711.70 (15)
N1—C1—C2—O130.5 (2)O3—C11—C12—C1313.8 (3)
C9—C1—C2—O1156.98 (15)C10—C11—C12—C13166.11 (14)
C10—C1—C2—O184.59 (18)C17—C12—C13—C141.0 (2)
N1—C1—C2—C3147.34 (13)C11—C12—C13—C14176.57 (14)
C9—C1—C2—C320.88 (14)C12—C13—C14—C151.7 (2)
C10—C1—C2—C397.55 (13)C13—C14—C15—C160.9 (2)
O1—C2—C3—C416.6 (3)C14—C15—C16—C170.8 (2)
C1—C2—C3—C4165.63 (15)C13—C12—C17—C160.7 (2)
O1—C2—C3—C8164.77 (15)C11—C12—C17—C16178.66 (13)
C1—C2—C3—C813.04 (16)C13—C12—C17—C18179.99 (13)
C8—C3—C4—C51.1 (2)C11—C12—C17—C182.02 (16)
C2—C3—C4—C5177.40 (14)C15—C16—C17—C121.6 (2)
C3—C4—C5—C60.1 (2)C15—C16—C17—C18179.24 (14)
C4—C5—C6—C71.1 (2)C12—C17—C18—C1014.68 (15)
C5—C6—C7—C81.2 (2)C16—C17—C18—C10166.07 (14)
C6—C7—C8—C30.1 (2)C11—C10—C18—C1720.42 (14)
C6—C7—C8—C9178.77 (14)C19—C10—C18—C17147.31 (12)
C4—C3—C8—C71.0 (2)C1—C10—C18—C1798.94 (13)
C2—C3—C8—C7177.77 (13)C11—C10—C19—C2284.37 (16)
C4—C3—C8—C9179.86 (13)C18—C10—C19—C2237.69 (18)
C2—C3—C8—C91.33 (16)C1—C10—C19—C22156.60 (12)
C7—C8—C9—O217.7 (2)C11—C10—C19—C20147.44 (12)
C3—C8—C9—O2163.28 (14)C18—C10—C19—C2090.49 (14)
C7—C8—C9—C1163.78 (14)C1—C10—C19—C2028.42 (14)
C3—C8—C9—C115.24 (15)C1—N1—C20—C1925.91 (15)
N1—C1—C9—O228.6 (2)C21—N1—C20—C19156.70 (13)
C2—C1—C9—O2156.89 (14)C22—C19—C20—N1131.17 (13)
C10—C1—C9—O285.85 (17)C10—C19—C20—N13.81 (15)
N1—C1—C9—C8149.97 (12)C20—C19—C22—C2740.6 (2)
C2—C1—C9—C821.64 (14)C10—C19—C22—C2781.89 (17)
C10—C1—C9—C895.62 (14)C20—C19—C22—C23140.24 (14)
N1—C1—C10—C11164.09 (12)C10—C19—C22—C2397.25 (16)
C9—C1—C10—C1173.08 (15)C27—C22—C23—C241.1 (2)
C2—C1—C10—C1138.68 (16)C19—C22—C23—C24179.73 (13)
N1—C1—C10—C1881.66 (13)C22—C23—C24—C250.3 (2)
C9—C1—C10—C1841.17 (16)C23—C24—C25—C261.8 (2)
C2—C1—C10—C18152.93 (12)C23—C24—C25—Cl1177.50 (12)
N1—C1—C10—C1943.77 (13)C24—C25—C26—C271.9 (2)
C9—C1—C10—C19166.61 (12)Cl1—C25—C26—C27177.41 (12)
C2—C1—C10—C1981.64 (14)C25—C26—C27—C220.5 (2)
C18—C10—C11—O3160.03 (14)C23—C22—C27—C261.0 (2)
C19—C10—C11—O329.9 (2)C19—C22—C27—C26179.86 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···O20.992.403.055 (2)123
C6—H6A···O1i0.952.573.244 (2)128
C14—H14A···O3i0.952.453.167 (2)132
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC27H20ClNO3
Mr441.89
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.8216 (1), 21.2865 (3), 14.0641 (2)
β (°) 116.156 (1)
V3)2101.81 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.43 × 0.11 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.913, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
25402, 6459, 4537
Rint0.047
(sin θ/λ)max1)0.718
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.113, 1.06
No. of reflections6459
No. of parameters290
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.41

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···O20.992.403.055 (2)123
C6—H6A···O1i0.952.573.244 (2)128
C14—H14A···O3i0.952.453.167 (2)132
Symmetry code: (i) x, y+3/2, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5525-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors would like to express their thanks to Universiti Sains Malaysia (USM), Penang, Malaysia, for providing research facilities. HKF and CKQ also thank USM for a Research University Grant (No. 1001/PFIZIK/811160).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAmalraj, A. & Raghunathan, R. (2003). Tetrahedron, 59, 2907–2911.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationKumar, R. S., Osman, H., Ali, M. A., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o1540–o1541.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, A. C., Ali, M. A., Choon, T. S., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o2383.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, A. C., Ali, M. A., Ismail, R., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o2381–o2382.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds