metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1270-m1271

(4-Chloro-3-nitro­benzoato)tri­phenyl­tin(IV)

aDepartment of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Perak Campus, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia, bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 12 August 2011; accepted 12 August 2011; online 27 August 2011)

In the title compound, [Sn(C6H5)3(C7H3ClNO4)], the four-coordinate SnIV atom exists in a distorted tetra­hedral geometry, formed by a monodentate carboxyl­ate group and three phenyl rings. The conformation is stabilized by an intra­molecular C—H⋯O hydrogen bond, which generates an S(5) ring. The aromatic ring of the 4-chloro-3-nitro­benzoate ligand makes dihedral angles of 75.64 (12), 64.37 (12) and 2.97 (12)° with the three phenyl ligands. The O atoms of the nitro group are disordered over two sets of sites in a 0.817 (5):0.183 (5) ratio. In the crystal, mol­ecules are linked via inter­molecular C—H⋯O hydrogen bonds into chains running parallel to [010].

Related literature

For general background to and the metal coordination environment of the title complex, see: Win et al. (2008[Win, Y. F., Teoh, S. G., Ha, S. T., Kia, R. & Fun, H.-K. (2008). Acta Cryst. E64, m1530-m1531.], 2010[Win, Y. F., Teoh, S. G., Vikneswaran, M. R., Goh, J. H. & Fun, H.-K. (2010). Acta Cryst. E66, m695-m696.], 2011a[Win, Y.-F., Choong, C.-S., Ha, S.-T., Quah, C. K. & Fun, H.-K. (2011a). Acta Cryst. E67, m535.],b[Win, Y.-F., Choong, C.-S., Heng, M.-H., Quah, C. K. & Fun, H.-K. (2011b). Acta Cryst. E67, m561-m562.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)3(C7H3ClNO4)]

  • Mr = 550.54

  • Monoclinic, P 21 /c

  • a = 12.3926 (2) Å

  • b = 8.8033 (1) Å

  • c = 21.5592 (3) Å

  • β = 103.217 (1)°

  • V = 2289.72 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.26 mm−1

  • T = 100 K

  • 0.35 × 0.31 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.668, Tmax = 0.807

  • 23882 measured reflections

  • 5204 independent reflections

  • 4817 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.056

  • S = 1.11

  • 5204 reflections

  • 308 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—O1 2.0558 (15)
Sn1—C6 2.121 (2)
Sn1—C18 2.124 (2)
Sn1—C12 2.127 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O2i 0.93 2.55 3.346 (3) 144
C17—H17A⋯O1 0.93 2.56 3.140 (3) 120
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The study of triphenyltin(IV) carboxylate complexes have received tremendous attention due to their structural diversity for which their structure could be monomeric or polymeric although the reaction was carried out in 1:1 molar ratio between the triphenyltin(IV) hydroxide and the respective acid (Win et al., 2008; 2010; 2011a,b). In this study, the structure of the title complex is similar to (2-chloro-4-nitrobenzoato)(methanol) triphenyltin(IV) (Win et al., 2011a). The only exceptions are that the methanol is not part of the crystal structure and the 2-chloro-4-nitrobenzoic acid is substituted with 4-chloro-3-nitrobenzoic acid.

The molecular structure is shown in Fig. 1. The four-coordinate tin atom (Sn1) exists in a distorted tetrahedral geometry, formed by a monodentate carboxylate group and three phenyl rings. Bond lengths (Allen et al., 1987) and angles are within normal ranges. The molecular structure is stabilized by an intramolecular C17–H17A···O1 hydrogen bond (Table 1), which generates an S(5) ring motif (Fig. 1, Bernstein et al., 1995). The phenyl ring (C20-C25) of 4-chloro-3-nitrobenzoate moiety makes dihedral angles of 75.64 (12), 64.37 (12) and 2.97 (12)° with respect to the other three phenyl rings (C1-C6, C7-C12 and C13-C18). Oxygen atoms (O3/O4) of the nitro group are disordered over two positions with refined site-occupancies of 0.817 (5) and 0.183 (5).

In the crystal (Fig. 2), molecules are linked via intermolecular C3–H3A···O2 hydrogen bonds (Table 1) into one-dimensional chains parallel to [010] direction.

Related literature top

For general background to and the metal coordination environment of the title complex, see: Win et al. (2008,2010,2011a,b). For reference bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title complex was obtained by heating under reflux a 1:1 molar mixture of triphenyltin(IV) hydroxide (1.10 g, 3 mmol) and 4-chloro-3-nitrobenzoic acid (0.60 g, 3 mmol) in methanol (50 ml) for 2 h. A clear transparent solution was isolated by filtration and kept in a bottle. After few days, colourless blocks (1.43 g, 82.1% yield) were collected. Melting point: 408-410 K. Analysis for C25H18NO4ClSn: C, 55.60; H, 3.30; N, 2.55 %. Calculated for C25H18NO4ClSn: C, 54.54; H, 3.29; N, 2.54 %.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 Å and Uiso(H) = 1.2 Ueq(C). Oxygen atoms (O3/O4) of the nitro group are disordered over two positions with refined site-occupancies of 0.817 (5) and 0.183 (5). The highest residual electron density peak and the deepest hole are located at 0.79 and 0.71 Å from atom Sn1, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms. Intramolecular hydrogen bonds and minor component of disorder are shown as dashed line and open bonds, respectively.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the c axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity. Only the major disorder component is shown.
(4-Chloro-3-nitrobenzoato)triphenyltin(IV) top
Crystal data top
[Sn(C6H5)3(C7H3ClNO4)]F(000) = 1096
Mr = 550.54Dx = 1.597 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9115 reflections
a = 12.3926 (2) Åθ = 2.5–32.7°
b = 8.8033 (1) ŵ = 1.26 mm1
c = 21.5592 (3) ÅT = 100 K
β = 103.217 (1)°Block, colourless
V = 2289.72 (6) Å30.35 × 0.31 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
5204 independent reflections
Radiation source: fine-focus sealed tube4817 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1516
Tmin = 0.668, Tmax = 0.807k = 119
23882 measured reflectionsl = 2827
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0116P)2 + 3.5862P]
where P = (Fo2 + 2Fc2)/3
5204 reflections(Δ/σ)max = 0.001
308 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
[Sn(C6H5)3(C7H3ClNO4)]V = 2289.72 (6) Å3
Mr = 550.54Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.3926 (2) ŵ = 1.26 mm1
b = 8.8033 (1) ÅT = 100 K
c = 21.5592 (3) Å0.35 × 0.31 × 0.18 mm
β = 103.217 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
5204 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4817 reflections with I > 2σ(I)
Tmin = 0.668, Tmax = 0.807Rint = 0.024
23882 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 1.11Δρmax = 0.60 e Å3
5204 reflectionsΔρmin = 0.68 e Å3
308 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.364093 (12)0.404888 (17)0.369328 (7)0.01672 (5)
Cl10.01735 (7)0.74667 (9)0.64665 (4)0.0474 (2)
O10.29596 (13)0.45731 (19)0.44511 (8)0.0217 (3)
O20.18430 (14)0.6075 (2)0.37524 (8)0.0256 (4)
O30.1368 (2)0.8214 (4)0.45615 (14)0.0435 (8)0.817 (5)
O40.0736 (2)0.9462 (3)0.54411 (12)0.0375 (7)0.817 (5)
O3X0.0894 (9)0.9151 (14)0.4504 (6)0.038 (3)0.183 (5)
O4X0.1525 (9)0.8071 (14)0.5262 (7)0.049 (4)0.183 (5)
N10.07089 (19)0.8404 (3)0.50478 (13)0.0344 (5)
C10.22638 (19)0.1332 (3)0.30822 (12)0.0233 (5)
H1A0.27410.08000.34050.028*
C20.1424 (2)0.0565 (3)0.26581 (12)0.0293 (6)
H2A0.13400.04780.26990.035*
C30.0713 (2)0.1352 (3)0.21756 (13)0.0326 (6)
H3A0.01490.08400.18950.039*
C40.0845 (2)0.2900 (3)0.21118 (12)0.0311 (6)
H4A0.03740.34260.17850.037*
C50.1678 (2)0.3671 (3)0.25337 (11)0.0258 (5)
H5A0.17610.47120.24890.031*
C60.23910 (18)0.2891 (3)0.30242 (11)0.0200 (5)
C70.3731 (2)0.7235 (3)0.30473 (11)0.0259 (5)
H7A0.29640.72490.29870.031*
C80.4268 (2)0.8430 (3)0.28291 (12)0.0293 (6)
H8A0.38580.92410.26210.035*
C90.5414 (2)0.8432 (3)0.29180 (12)0.0283 (6)
H9A0.57690.92450.27740.034*
C100.6026 (2)0.7222 (3)0.32206 (12)0.0281 (5)
H10A0.67930.72160.32800.034*
C110.5490 (2)0.6014 (3)0.34361 (11)0.0234 (5)
H11A0.59040.51970.36360.028*
C120.43383 (19)0.6006 (3)0.33577 (10)0.0200 (5)
C130.5609 (2)0.1802 (3)0.39217 (12)0.0249 (5)
H13A0.55140.18610.34820.030*
C140.6447 (2)0.0898 (3)0.42741 (13)0.0286 (5)
H14A0.69110.03580.40700.034*
C150.6592 (2)0.0801 (3)0.49280 (13)0.0281 (5)
H15A0.71530.01960.51650.034*
C160.5902 (2)0.1608 (3)0.52298 (12)0.0275 (5)
H16A0.59990.15380.56700.033*
C170.50684 (19)0.2517 (3)0.48821 (11)0.0228 (5)
H17A0.46130.30610.50900.027*
C180.49066 (18)0.2622 (2)0.42193 (11)0.0183 (4)
C190.21426 (18)0.5547 (3)0.42882 (11)0.0199 (5)
C200.16128 (17)0.5965 (3)0.48230 (11)0.0188 (4)
C210.07045 (19)0.6930 (3)0.47042 (12)0.0219 (5)
H21A0.04010.72670.42920.026*
C220.02544 (19)0.7387 (3)0.52057 (12)0.0230 (5)
C230.0696 (2)0.6910 (3)0.58240 (12)0.0261 (5)
C240.1580 (2)0.5903 (3)0.59346 (12)0.0285 (5)
H24A0.18730.55460.63450.034*
C250.20268 (19)0.5428 (3)0.54347 (11)0.0227 (5)
H25A0.26120.47410.55110.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01539 (8)0.01828 (8)0.01466 (8)0.00306 (6)0.00037 (6)0.00178 (6)
Cl10.0558 (5)0.0539 (5)0.0429 (4)0.0225 (4)0.0327 (4)0.0056 (4)
O10.0198 (8)0.0248 (8)0.0196 (9)0.0073 (7)0.0027 (7)0.0023 (7)
O20.0247 (8)0.0332 (10)0.0166 (9)0.0060 (8)0.0003 (7)0.0012 (7)
O30.0263 (14)0.0471 (19)0.0520 (18)0.0166 (13)0.0017 (13)0.0013 (14)
O40.0418 (14)0.0267 (13)0.0495 (16)0.0145 (10)0.0218 (12)0.0025 (11)
O3X0.029 (6)0.032 (7)0.049 (7)0.016 (5)0.001 (5)0.003 (5)
O4X0.029 (6)0.043 (7)0.085 (10)0.008 (5)0.032 (6)0.005 (6)
N10.0292 (12)0.0284 (12)0.0495 (16)0.0116 (10)0.0168 (12)0.0074 (11)
C10.0188 (11)0.0301 (13)0.0201 (12)0.0018 (10)0.0028 (9)0.0037 (10)
C20.0245 (13)0.0318 (14)0.0324 (15)0.0065 (11)0.0080 (11)0.0114 (11)
C30.0187 (12)0.0471 (17)0.0305 (15)0.0032 (11)0.0022 (11)0.0175 (12)
C40.0211 (12)0.0506 (17)0.0172 (13)0.0091 (12)0.0047 (10)0.0092 (12)
C50.0240 (12)0.0320 (14)0.0206 (13)0.0043 (10)0.0032 (10)0.0042 (10)
C60.0148 (10)0.0292 (12)0.0148 (11)0.0020 (9)0.0010 (9)0.0059 (10)
C70.0270 (12)0.0304 (13)0.0201 (12)0.0085 (11)0.0050 (10)0.0011 (10)
C80.0425 (15)0.0243 (12)0.0230 (13)0.0103 (11)0.0111 (12)0.0061 (10)
C90.0423 (15)0.0237 (12)0.0209 (13)0.0029 (11)0.0114 (11)0.0000 (10)
C100.0263 (13)0.0318 (14)0.0246 (13)0.0044 (11)0.0026 (10)0.0015 (11)
C110.0254 (12)0.0237 (12)0.0182 (12)0.0018 (10)0.0008 (9)0.0005 (10)
C120.0248 (11)0.0200 (11)0.0139 (11)0.0019 (9)0.0017 (9)0.0009 (9)
C130.0254 (12)0.0253 (13)0.0237 (13)0.0042 (10)0.0048 (10)0.0006 (10)
C140.0231 (12)0.0262 (12)0.0360 (15)0.0079 (10)0.0059 (11)0.0029 (11)
C150.0207 (12)0.0214 (12)0.0365 (15)0.0040 (10)0.0052 (10)0.0027 (11)
C160.0296 (13)0.0287 (13)0.0194 (13)0.0038 (11)0.0043 (10)0.0013 (10)
C170.0221 (11)0.0219 (12)0.0232 (13)0.0039 (9)0.0026 (10)0.0026 (10)
C180.0154 (10)0.0162 (10)0.0210 (12)0.0002 (8)0.0007 (9)0.0006 (9)
C190.0162 (10)0.0204 (11)0.0209 (12)0.0004 (9)0.0003 (9)0.0061 (9)
C200.0148 (10)0.0182 (10)0.0219 (12)0.0011 (9)0.0011 (9)0.0038 (9)
C210.0202 (11)0.0200 (11)0.0229 (13)0.0020 (9)0.0001 (9)0.0016 (10)
C220.0169 (11)0.0169 (11)0.0356 (14)0.0025 (9)0.0067 (10)0.0010 (10)
C230.0262 (12)0.0265 (13)0.0296 (14)0.0016 (10)0.0148 (11)0.0003 (10)
C240.0276 (12)0.0350 (14)0.0235 (13)0.0080 (11)0.0071 (10)0.0028 (11)
C250.0172 (11)0.0257 (12)0.0244 (13)0.0052 (9)0.0032 (9)0.0010 (10)
Geometric parameters (Å, º) top
Sn1—O12.0558 (15)C9—C101.382 (4)
Sn1—C62.121 (2)C9—H9A0.9300
Sn1—C182.124 (2)C10—C111.389 (3)
Sn1—C122.127 (2)C10—H10A0.9300
Cl1—C231.729 (2)C11—C121.398 (3)
O1—C191.311 (3)C11—H11A0.9300
O2—C191.222 (3)C13—C141.389 (3)
O3—N11.185 (3)C13—C181.395 (3)
O4—N11.266 (3)C13—H13A0.9300
O3X—N11.318 (12)C14—C151.383 (4)
O4X—N11.239 (10)C14—H14A0.9300
N1—C221.469 (3)C15—C161.383 (4)
C1—C61.390 (3)C15—H15A0.9300
C1—C21.393 (3)C16—C171.384 (3)
C1—H1A0.9300C16—H16A0.9300
C2—C31.385 (4)C17—C181.400 (3)
C2—H2A0.9300C17—H17A0.9300
C3—C41.383 (4)C19—C201.497 (3)
C3—H3A0.9300C20—C251.384 (3)
C4—C51.387 (4)C20—C211.387 (3)
C4—H4A0.9300C21—C221.385 (3)
C5—C61.394 (3)C21—H21A0.9300
C5—H5A0.9300C22—C231.385 (4)
C7—C81.384 (4)C23—C241.387 (3)
C7—C121.398 (3)C24—C251.384 (3)
C7—H7A0.9300C24—H24A0.9300
C8—C91.388 (4)C25—H25A0.9300
C8—H8A0.9300
O1—Sn1—C6106.24 (7)C11—C10—H10A120.2
O1—Sn1—C1895.50 (7)C10—C11—C12121.1 (2)
C6—Sn1—C18114.46 (9)C10—C11—H11A119.4
O1—Sn1—C12111.17 (8)C12—C11—H11A119.4
C6—Sn1—C12116.64 (9)C7—C12—C11118.5 (2)
C18—Sn1—C12110.66 (9)C7—C12—Sn1125.01 (18)
C19—O1—Sn1111.47 (14)C11—C12—Sn1116.48 (17)
O3—N1—O4X80.8 (7)C14—C13—C18120.8 (2)
O3—N1—O4125.3 (3)C14—C13—H13A119.6
O4X—N1—O477.0 (6)C18—C13—H13A119.6
O3—N1—O3X48.6 (5)C15—C14—C13120.0 (2)
O4X—N1—O3X117.3 (8)C15—C14—H14A120.0
O4—N1—O3X101.7 (5)C13—C14—H14A120.0
O3—N1—C22118.6 (2)C14—C15—C16119.9 (2)
O4X—N1—C22117.3 (6)C14—C15—H15A120.1
O4—N1—C22116.0 (2)C16—C15—H15A120.1
O3X—N1—C22118.5 (5)C15—C16—C17120.5 (2)
C6—C1—C2120.2 (2)C15—C16—H16A119.8
C6—C1—H1A119.9C17—C16—H16A119.8
C2—C1—H1A119.9C16—C17—C18120.4 (2)
C3—C2—C1120.1 (3)C16—C17—H17A119.8
C3—C2—H2A119.9C18—C17—H17A119.8
C1—C2—H2A119.9C13—C18—C17118.5 (2)
C4—C3—C2119.9 (2)C13—C18—Sn1121.51 (17)
C4—C3—H3A120.1C17—C18—Sn1120.00 (16)
C2—C3—H3A120.1O2—C19—O1123.5 (2)
C3—C4—C5120.3 (3)O2—C19—C20122.8 (2)
C3—C4—H4A119.9O1—C19—C20113.7 (2)
C5—C4—H4A119.9C25—C20—C21119.6 (2)
C4—C5—C6120.2 (3)C25—C20—C19121.2 (2)
C4—C5—H5A119.9C21—C20—C19119.3 (2)
C6—C5—H5A119.9C22—C21—C20119.2 (2)
C1—C6—C5119.3 (2)C22—C21—H21A120.4
C1—C6—Sn1119.58 (18)C20—C21—H21A120.4
C5—C6—Sn1121.11 (18)C21—C22—C23121.5 (2)
C8—C7—C12120.2 (2)C21—C22—N1116.6 (2)
C8—C7—H7A119.9C23—C22—N1121.9 (2)
C12—C7—H7A119.9C22—C23—C24118.8 (2)
C7—C8—C9120.6 (2)C22—C23—Cl1123.18 (19)
C7—C8—H8A119.7C24—C23—Cl1118.0 (2)
C9—C8—H8A119.7C25—C24—C23120.0 (2)
C10—C9—C8119.9 (2)C25—C24—H24A120.0
C10—C9—H9A120.1C23—C24—H24A120.0
C8—C9—H9A120.1C24—C25—C20120.8 (2)
C9—C10—C11119.7 (2)C24—C25—H25A119.6
C9—C10—H10A120.2C20—C25—H25A119.6
C6—Sn1—O1—C1965.58 (16)C14—C13—C18—Sn1178.65 (19)
C18—Sn1—O1—C19176.95 (15)C16—C17—C18—C130.6 (4)
C12—Sn1—O1—C1962.28 (16)C16—C17—C18—Sn1179.01 (18)
C6—C1—C2—C30.2 (3)O1—Sn1—C18—C13174.44 (19)
C1—C2—C3—C40.6 (4)C6—Sn1—C18—C1363.8 (2)
C2—C3—C4—C50.8 (4)C12—Sn1—C18—C1370.5 (2)
C3—C4—C5—C60.2 (4)O1—Sn1—C18—C177.14 (19)
C2—C1—C6—C50.7 (3)C6—Sn1—C18—C17117.78 (18)
C2—C1—C6—Sn1177.96 (16)C12—Sn1—C18—C17107.94 (19)
C4—C5—C6—C10.5 (3)Sn1—O1—C19—O20.7 (3)
C4—C5—C6—Sn1178.13 (17)Sn1—O1—C19—C20179.81 (14)
O1—Sn1—C6—C185.63 (18)O2—C19—C20—C25175.2 (2)
C18—Sn1—C6—C118.4 (2)O1—C19—C20—C254.3 (3)
C12—Sn1—C6—C1149.83 (17)O2—C19—C20—C213.5 (3)
O1—Sn1—C6—C593.03 (18)O1—C19—C20—C21177.0 (2)
C18—Sn1—C6—C5162.96 (17)C25—C20—C21—C222.5 (3)
C12—Sn1—C6—C531.5 (2)C19—C20—C21—C22176.3 (2)
C12—C7—C8—C90.4 (4)C20—C21—C22—C230.5 (4)
C7—C8—C9—C100.7 (4)C20—C21—C22—N1179.7 (2)
C8—C9—C10—C110.2 (4)O3—N1—C22—C2137.1 (4)
C9—C10—C11—C120.6 (4)O4X—N1—C22—C21131.5 (8)
C8—C7—C12—C110.5 (3)O4—N1—C22—C21140.2 (2)
C8—C7—C12—Sn1177.80 (18)O3X—N1—C22—C2118.8 (7)
C10—C11—C12—C71.0 (3)O3—N1—C22—C23143.2 (3)
C10—C11—C12—Sn1178.53 (18)O4X—N1—C22—C2348.8 (8)
O1—Sn1—C12—C769.0 (2)O4—N1—C22—C2339.5 (3)
C6—Sn1—C12—C753.0 (2)O3X—N1—C22—C23160.9 (7)
C18—Sn1—C12—C7173.79 (19)C21—C22—C23—C242.8 (4)
O1—Sn1—C12—C11113.67 (17)N1—C22—C23—C24177.5 (2)
C6—Sn1—C12—C11124.34 (17)C21—C22—C23—Cl1179.23 (19)
C18—Sn1—C12—C118.8 (2)N1—C22—C23—Cl10.5 (4)
C18—C13—C14—C150.1 (4)C22—C23—C24—C252.0 (4)
C13—C14—C15—C160.1 (4)Cl1—C23—C24—C25179.9 (2)
C14—C15—C16—C170.2 (4)C23—C24—C25—C201.0 (4)
C15—C16—C17—C180.6 (4)C21—C20—C25—C243.2 (4)
C14—C13—C18—C170.2 (4)C19—C20—C25—C24175.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O2i0.932.553.346 (3)144
C17—H17A···O10.932.563.140 (3)120
Symmetry code: (i) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Sn(C6H5)3(C7H3ClNO4)]
Mr550.54
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.3926 (2), 8.8033 (1), 21.5592 (3)
β (°) 103.217 (1)
V3)2289.72 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.26
Crystal size (mm)0.35 × 0.31 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.668, 0.807
No. of measured, independent and
observed [I > 2σ(I)] reflections
23882, 5204, 4817
Rint0.024
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.056, 1.11
No. of reflections5204
No. of parameters308
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.68

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Sn1—O12.0558 (15)Sn1—C182.124 (2)
Sn1—C62.121 (2)Sn1—C122.127 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O2i0.932.553.346 (3)144
C17—H17A···O10.932.563.140 (3)120
Symmetry code: (i) x, y1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5525-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors would like to thank Universiti Tunku Abdul Rahman (UTAR) for the UTAR Research Fund (Project No. IPSR/RMC/UTARRF/C1-C11/C07) and Universiti Sains Malaysia (USM) for providing research facilities. HKF and CKQ also thank USM for the Research University Grant (No. 1001/PFIZIK/811160).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWin, Y.-F., Choong, C.-S., Ha, S.-T., Quah, C. K. & Fun, H.-K. (2011a). Acta Cryst. E67, m535.  CrossRef IUCr Journals Google Scholar
First citationWin, Y.-F., Choong, C.-S., Heng, M.-H., Quah, C. K. & Fun, H.-K. (2011b). Acta Cryst. E67, m561–m562.  CrossRef IUCr Journals Google Scholar
First citationWin, Y. F., Teoh, S. G., Ha, S. T., Kia, R. & Fun, H.-K. (2008). Acta Cryst. E64, m1530–m1531.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWin, Y. F., Teoh, S. G., Vikneswaran, M. R., Goh, J. H. & Fun, H.-K. (2010). Acta Cryst. E66, m695–m696.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1270-m1271
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds