organic compounds
3,4,5-Trihydroxybenzohydrazide
aDepartment of Chemistry, University of Karachi, Karachi-75270, Pakistan, and bHEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
*Correspondence e-mail: uzzmma@yahoo.com
In the title compound, C7H8N2O4, the dihedral angle between the aromatic ring and the hydrazide grouping is 21.34 (7)°. In the crystal, the molecules are linked into a three-dimensional network by O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds.
Related literature
For the biological activity of et al. (2006). For related structures, see: Jamal et al. (2009); Saeed et al. (2008); Zareef et al. (2006).
see: MaqsoodExperimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811034374/hb6363sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811034374/hb6363Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811034374/hb6363Isup3.cml
To a solution of methyl-3,4,5-trihydroxybenzoate (3.68 g, 20 mmol) in 75 ml ethanol, hydrazine hydrate (5.0 ml, 100 mmol) was added. The mixture was refluxed for 5 h and a solid was obtained upon removal of the solvent by rotary evaporation. The resulting solid was washed with hexane to afford 3,4,5-trihydroxybenzohydrazide (yield 87%) (Maqsood et al., 2006). Colourless blocks of (I) were grown from a solution of methanol by slow evaporation at room temperature.
The H atoms on the N atoms (N–H= 0.92 (2)–0.86 (19) Å) O atoms (O–H= 0.91 (3)–0.85 (19) Å) and Carbon (C–H= 0.961 (18)–0.955 (17) Å) atoms were located in difference Fourier maps and refined isotropically.
Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009).Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at 50% probability level. | |
Fig. 2. The crystal packing of the title compound I. Only hydrogen atoms involved in hydrogen bonding are shown. |
C7H8N2O4 | F(000) = 384 |
Mr = 184.15 | Dx = 1.651 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2464 reflections |
a = 3.7307 (3) Å | θ = 3.0–28.3° |
b = 22.8402 (18) Å | µ = 0.14 mm−1 |
c = 8.7064 (7) Å | T = 273 K |
β = 93.290 (2)° | Block, colorles |
V = 740.65 (10) Å3 | 0.28 × 0.21 × 0.20 mm |
Z = 4 |
Bruker SMART APEX CCD area-detector diffractometer | 1352 independent reflections |
Radiation source: fine-focus sealed tube | 1234 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.016 |
ω scan | θmax = 25.5°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −4→4 |
Tmin = 0.963, Tmax = 0.973 | k = −27→26 |
4345 measured reflections | l = −10→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.092 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0509P)2 + 0.2069P] where P = (Fo2 + 2Fc2)/3 |
1352 reflections | (Δ/σ)max = 0.001 |
150 parameters | Δρmax = 0.18 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
C7H8N2O4 | V = 740.65 (10) Å3 |
Mr = 184.15 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 3.7307 (3) Å | µ = 0.14 mm−1 |
b = 22.8402 (18) Å | T = 273 K |
c = 8.7064 (7) Å | 0.28 × 0.21 × 0.20 mm |
β = 93.290 (2)° |
Bruker SMART APEX CCD area-detector diffractometer | 1352 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 1234 reflections with I > 2σ(I) |
Tmin = 0.963, Tmax = 0.973 | Rint = 0.016 |
4345 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.092 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | Δρmax = 0.18 e Å−3 |
1352 reflections | Δρmin = −0.24 e Å−3 |
150 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.6088 (3) | 0.49395 (4) | 0.75022 (12) | 0.0388 (3) | |
O2 | 0.4790 (3) | 0.57014 (4) | 0.97692 (11) | 0.0328 (3) | |
H2A | 0.375 (6) | 0.5994 (11) | 1.029 (3) | 0.069 (7)* | |
O3 | 0.5451 (3) | 0.68880 (5) | 0.93130 (11) | 0.0334 (3) | |
H3A | 0.602 (6) | 0.7255 (10) | 0.907 (2) | 0.061 (6)* | |
O4 | 0.7876 (3) | 0.70585 (5) | 0.36218 (12) | 0.0402 (3) | |
N1 | 1.0268 (3) | 0.62028 (5) | 0.30646 (13) | 0.0270 (3) | |
H1B | 1.100 (5) | 0.5854 (9) | 0.329 (2) | 0.037 (5)* | |
N2 | 1.1408 (4) | 0.64212 (6) | 0.16535 (13) | 0.0283 (3) | |
H2C | 1.285 (5) | 0.6739 (9) | 0.188 (2) | 0.041 (5)* | |
H2B | 0.950 (6) | 0.6553 (8) | 0.112 (2) | 0.044 (5)* | |
C1 | 0.7698 (4) | 0.63145 (6) | 0.55422 (14) | 0.0224 (3) | |
C2 | 0.7029 (4) | 0.67156 (6) | 0.66914 (15) | 0.0250 (3) | |
H2 | 0.718 (4) | 0.7128 (8) | 0.6488 (18) | 0.031 (4)* | |
C3 | 0.6093 (4) | 0.65203 (6) | 0.81195 (14) | 0.0235 (3) | |
C4 | 0.5743 (4) | 0.59242 (6) | 0.84021 (14) | 0.0231 (3) | |
C5 | 0.6437 (4) | 0.55257 (6) | 0.72421 (15) | 0.0244 (3) | |
C6 | 0.7421 (4) | 0.57157 (6) | 0.58183 (15) | 0.0246 (3) | |
H6 | 0.780 (4) | 0.5428 (7) | 0.5049 (19) | 0.030 (4)* | |
C7 | 0.8618 (4) | 0.65546 (6) | 0.40269 (14) | 0.0239 (3) | |
H1A | 0.548 (6) | 0.4893 (9) | 0.842 (3) | 0.057 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0733 (9) | 0.0179 (5) | 0.0271 (6) | 0.0005 (5) | 0.0199 (5) | 0.0016 (4) |
O2 | 0.0557 (7) | 0.0214 (5) | 0.0230 (5) | 0.0030 (5) | 0.0173 (5) | 0.0034 (4) |
O3 | 0.0602 (8) | 0.0190 (5) | 0.0227 (5) | −0.0028 (5) | 0.0169 (5) | −0.0024 (4) |
O4 | 0.0707 (9) | 0.0224 (5) | 0.0295 (6) | 0.0123 (5) | 0.0199 (5) | 0.0066 (4) |
N1 | 0.0409 (8) | 0.0210 (6) | 0.0202 (6) | 0.0058 (5) | 0.0118 (5) | 0.0038 (4) |
N2 | 0.0388 (8) | 0.0276 (7) | 0.0194 (6) | 0.0021 (6) | 0.0105 (5) | 0.0028 (5) |
C1 | 0.0257 (7) | 0.0229 (7) | 0.0190 (6) | 0.0014 (5) | 0.0045 (5) | 0.0011 (5) |
C2 | 0.0332 (8) | 0.0188 (7) | 0.0235 (7) | −0.0002 (6) | 0.0063 (5) | 0.0012 (5) |
C3 | 0.0291 (8) | 0.0211 (7) | 0.0209 (6) | 0.0002 (5) | 0.0061 (5) | −0.0016 (5) |
C4 | 0.0280 (8) | 0.0225 (7) | 0.0194 (6) | 0.0006 (5) | 0.0062 (5) | 0.0023 (5) |
C5 | 0.0317 (8) | 0.0177 (7) | 0.0241 (7) | 0.0009 (5) | 0.0055 (5) | 0.0014 (5) |
C6 | 0.0322 (8) | 0.0218 (7) | 0.0205 (7) | 0.0027 (6) | 0.0064 (5) | −0.0023 (5) |
C7 | 0.0302 (8) | 0.0211 (7) | 0.0207 (6) | 0.0001 (5) | 0.0047 (5) | 0.0000 (5) |
O1—C5 | 1.3654 (16) | N2—H2B | 0.88 (2) |
O1—H1A | 0.85 (2) | C1—C2 | 1.3897 (18) |
O2—C4 | 1.3603 (16) | C1—C6 | 1.3934 (19) |
O2—H2A | 0.91 (3) | C1—C7 | 1.4869 (17) |
O3—C3 | 1.3678 (16) | C2—C3 | 1.3844 (18) |
O3—H3A | 0.89 (2) | C2—H2 | 0.961 (18) |
O4—C7 | 1.2306 (17) | C3—C4 | 1.3912 (19) |
N1—C7 | 1.3363 (18) | C4—C5 | 1.3946 (19) |
N1—N2 | 1.4139 (15) | C5—C6 | 1.3828 (19) |
N1—H1B | 0.860 (19) | C6—H6 | 0.955 (17) |
N2—H2C | 0.92 (2) | ||
C5—O1—H1A | 108.1 (14) | O3—C3—C2 | 123.28 (12) |
C4—O2—H2A | 107.7 (15) | O3—C3—C4 | 116.38 (11) |
C3—O3—H3A | 110.1 (14) | C2—C3—C4 | 120.35 (12) |
C7—N1—N2 | 120.34 (12) | O2—C4—C3 | 123.55 (12) |
C7—N1—H1B | 124.6 (12) | O2—C4—C5 | 117.28 (12) |
N2—N1—H1B | 114.4 (12) | C3—C4—C5 | 119.17 (12) |
N1—N2—H2C | 107.3 (11) | O1—C5—C6 | 119.29 (12) |
N1—N2—H2B | 107.8 (12) | O1—C5—C4 | 119.76 (12) |
H2C—N2—H2B | 106.7 (17) | C6—C5—C4 | 120.95 (12) |
C2—C1—C6 | 120.31 (12) | C5—C6—C1 | 119.26 (12) |
C2—C1—C7 | 117.11 (12) | C5—C6—H6 | 118.0 (10) |
C6—C1—C7 | 122.56 (12) | C1—C6—H6 | 122.7 (10) |
C3—C2—C1 | 119.94 (13) | O4—C7—N1 | 119.12 (12) |
C3—C2—H2 | 120.1 (9) | O4—C7—C1 | 122.66 (12) |
C1—C2—H2 | 119.9 (9) | N1—C7—C1 | 118.21 (12) |
C6—C1—C2—C3 | 0.2 (2) | C3—C4—C5—C6 | −0.8 (2) |
C7—C1—C2—C3 | 178.80 (13) | O1—C5—C6—C1 | 178.56 (13) |
C1—C2—C3—O3 | 178.95 (13) | C4—C5—C6—C1 | −0.4 (2) |
C1—C2—C3—C4 | −1.4 (2) | C2—C1—C6—C5 | 0.7 (2) |
O3—C3—C4—O2 | 0.5 (2) | C7—C1—C6—C5 | −177.85 (13) |
C2—C3—C4—O2 | −179.16 (13) | N2—N1—C7—O4 | 5.1 (2) |
O3—C3—C4—C5 | −178.65 (13) | N2—N1—C7—C1 | −175.85 (13) |
C2—C3—C4—C5 | 1.7 (2) | C2—C1—C7—O4 | −20.3 (2) |
O2—C4—C5—O1 | 1.0 (2) | C6—C1—C7—O4 | 158.29 (15) |
C3—C4—C5—O1 | −179.71 (13) | C2—C1—C7—N1 | 160.76 (13) |
O2—C4—C5—C6 | 179.99 (13) | C6—C1—C7—N1 | −20.7 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O2i | 0.85 (3) | 2.09 (2) | 2.8254 (14) | 145.0 (19) |
N1—H1B···O1ii | 0.86 (2) | 2.24 (2) | 2.9960 (15) | 146.2 (16) |
O2—H2A···N2iii | 0.91 (3) | 1.80 (2) | 2.6877 (17) | 165 (2) |
N2—H2B···O3iv | 0.88 (2) | 2.25 (2) | 3.1158 (17) | 167.0 (18) |
N2—H2C···O4v | 0.92 (2) | 2.454 (18) | 3.2255 (18) | 141.8 (15) |
O3—H3A···O4vi | 0.89 (2) | 1.77 (2) | 2.6522 (15) | 171 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+2, −y+1, −z+1; (iii) x−1, y, z+1; (iv) x, y, z−1; (v) x+1, y, z; (vi) x, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C7H8N2O4 |
Mr | 184.15 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 273 |
a, b, c (Å) | 3.7307 (3), 22.8402 (18), 8.7064 (7) |
β (°) | 93.290 (2) |
V (Å3) | 740.65 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.14 |
Crystal size (mm) | 0.28 × 0.21 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2000) |
Tmin, Tmax | 0.963, 0.973 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4345, 1352, 1234 |
Rint | 0.016 |
(sin θ/λ)max (Å−1) | 0.605 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.092, 1.09 |
No. of reflections | 1352 |
No. of parameters | 150 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.18, −0.24 |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O2i | 0.85 (3) | 2.09 (2) | 2.8254 (14) | 145.0 (19) |
N1—H1B···O1ii | 0.86 (2) | 2.24 (2) | 2.9960 (15) | 146.2 (16) |
O2—H2A···N2iii | 0.91 (3) | 1.80 (2) | 2.6877 (17) | 165 (2) |
N2—H2B···O3iv | 0.88 (2) | 2.25 (2) | 3.1158 (17) | 167.0 (18) |
N2—H2C···O4v | 0.92 (2) | 2.454 (18) | 3.2255 (18) | 141.8 (15) |
O3—H3A···O4vi | 0.89 (2) | 1.77 (2) | 2.6522 (15) | 171 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+2, −y+1, −z+1; (iii) x−1, y, z+1; (iv) x, y, z−1; (v) x+1, y, z; (vi) x, −y+3/2, z+1/2. |
Acknowledgements
The authors are grateful to the Higher Education Commission (HEC) Pakistan for financial support under the National Research Grants Program for Universities (grant No. 1862/R&D/10).
References
Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Jamal, R. A., Ashiq, U., Arshad, M. N., Maqsood, Z. T. & Khan, I. U. (2009). Acta Cryst. E65, o1764. Web of Science CSD CrossRef IUCr Journals Google Scholar
Maqsood, Z. T., Khan, K. M., Ashiq, U., Ara, R., Chohan, Z. H., Mahroof-Tahir, M. & Supuran, C. T. (2006). J. Enzyme Inhib. Med. Chem. 21, 37–42. CrossRef CAS Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Saeed, A., Mumtaz, A., Rafique, H., Gotoh, K. & Ishida, H. (2008). Acta Cryst. E64, o2336. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zareef, M., Iqbal, R., Qadeer, G., Arfan, M. & Lu, X.-M. (2006). Acta Cryst. E62, o3259–o3261. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In order to further explore the biological significance of hydrazides, we have prepared the title compound (I). It was found to be active against DPPH radical scavenging activity and inactive against all fungal strains (Maqsood et al. 2006). The crystal structures of trimethoxybenzohydrazide (Saeed et al. 2008, Zareef et al. 2006) and para hydroxybenzohydrazide (Jamal et al. 2009) analogues of (I) have already been reported.
The molecular structure of (I) is composed of a hydrazide moiety attached to the phenyl ring (Fig. 1). The phenyl ring is almost planar with a maximum deviation of 0.009 (1) Å from the least-squares plane. The bond lengths and angles all are in normal range as in other structurally related compounds (Saeed et al. 2008; Zareef et al., 2006). In the crystal, the molecules are linked to form three-dimensional molecular network via O1—H1A···O2, N1—H1B···O1, O2—H2A···N2, N2—H2B···O3, N2—H2C···O4 and O3—H3A···O4 intermolecular hydrogen bonds (Tab. 1 & Fig. 2).