organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(4-Chloro­benzyl­­idene)-2-phenyl­hydrazine

aDepartment of Physics, University of Sargodha, Sargodha, Pakistan, bDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and cInstitute of Chemical and Pharmaceutical Sciences, The University of Faisalabad, Faisalabad, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 13 August 2011; accepted 14 August 2011; online 27 August 2011)

The asymmetric unit of the title compound, C13H11ClN2, contains two geometrically distinct mol­ecules; one mol­ecule is close to planar [dihedral angle between the aromatic rings = 2.44 (18)°] and the other is twisted about the linking hydrazide group [dihedral angle = 14.08 (19)°]. In the crystal, the N—H groups do not form hydrogen bonds and the mol­ecules are linked by weak C—H⋯π inter­actions.

Related literature

For related structures, see: Mufakkar et al. (2010[Mufakkar, M., Tahir, M. N., Tariq, M. I., Ahmad, S. & Sarfraz, M. (2010). Acta Cryst. E66, o1887.]); Shad et al. (2010[Shad, H. A., Tahir, M. N., Tariq, M. I., Sarfraz, M. & Ahmad, S. (2010). Acta Cryst. E66, o1955.]); Yin et al. (2007[Yin, Z.-G., Qian, H.-Y., Chen, Y.-Z. & Feng, Y.-L. (2007). Acta Cryst. E63, o4119.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11ClN2

  • Mr = 230.69

  • Orthorhombic, P c a 21

  • a = 18.6896 (9) Å

  • b = 15.0250 (7) Å

  • c = 8.4679 (4) Å

  • V = 2377.9 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 296 K

  • 0.30 × 0.22 × 0.18 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.983

  • 10661 measured reflections

  • 4631 independent reflections

  • 2234 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.107

  • S = 0.96

  • 4631 reflections

  • 295 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.12 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2120 Friedel pairs

  • Flack parameter: 0.08 (8)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C14–C19 and C1–C6 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Cg1i 0.93 2.91 3.668 (4) 139
C20—H20⋯Cg2ii 0.93 2.73 3.660 (4) 174
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-1, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+1, z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

We have reported crystal structures of Schiff bases containing phenylhydrazine (E)-1-(2-nitrobenzylidene)-2-phenylhydrazine (Shad et al., 2010) and (E)-1-(4-methoxybenzylidene)-2-phenylhydrazine 2-nitrobenzaldehyde (Mufakkar et al., 2010). The crystal structure of (E)-N- (2,4-dichlorobenzylidene)-N'-phenylhydrazine (Yin, et al., 2007) has been published which is related to the title compound (I), (Fig. 1).

The title compound consists of two molecules in the crystallographic asymmetric unit which differ from each other geometrically. In one molecule, the benzene ring A (C1—C6) of phenylhydrazine and group B (C8—C13/CL1) of 4-chlorobenzaldehyde are planar with r.m.s. deviation of 0.006 and 0.018 Å, respectively. The Schiff base group C (C7/N1/N2) is of course planar. The dihedral angle between A/B, A/C and B/C is 14.62 (16)°, 8.18 (51)° and 9.86 (48)°, respectively. In second molecule, the benzene ring D (C14—C19) and group E (C21—C26) of 4-chlorobenzaldehyde are also almost planar with r.m.s. deviations of 0.004 and 0.016 Å, respectively. The dihedral angle between D/E is 2.84 (15)°. The central group F (C20/N3/N4) of this molecule makes dihedral angle of 3.10 (41)° with group D, whereas it is oriented at 0.99 (43)° with group E. This molecule is therefore, essentially planar with r.m.s. deviation of 0.026 Å. The molecules are consolidated due to van Der Wal and C—H···π interactions (Table 1).

Related literature top

For related structures, see: Mufakkar et al. (2010); Shad et al. (2010); Yin et al. (2007).

Experimental top

Equimolar quantities of phenylhydrazine and 4-chlorobenzaldehyde were refluxed in methanol for 30 min resulting in light yellow solution. The solution was kept at room temperature which affoarded yellow prisms after 72 h.

Refinement top

The coordinates of H-atoms of N—H groups were refined. The C-bound H-atoms were positioned geometrically (C–H = 0.93 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.2 for all H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level.
(E)-1-(4-Chlorobenzylidene)-2-phenylhydrazine top
Crystal data top
C13H11ClN2F(000) = 960
Mr = 230.69Dx = 1.289 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2234 reflections
a = 18.6896 (9) Åθ = 2.6–26.0°
b = 15.0250 (7) ŵ = 0.29 mm1
c = 8.4679 (4) ÅT = 296 K
V = 2377.9 (2) Å3Prism, yellow
Z = 80.30 × 0.22 × 0.18 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4631 independent reflections
Radiation source: fine-focus sealed tube2234 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 7.80 pixels mm-1θmax = 26.0°, θmin = 2.6°
ω scansh = 2317
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 188
Tmin = 0.972, Tmax = 0.983l = 1010
10661 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.034P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
4631 reflectionsΔρmax = 0.15 e Å3
295 parametersΔρmin = 0.12 e Å3
1 restraintAbsolute structure: Flack (1983), 2120 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (8)
Crystal data top
C13H11ClN2V = 2377.9 (2) Å3
Mr = 230.69Z = 8
Orthorhombic, Pca21Mo Kα radiation
a = 18.6896 (9) ŵ = 0.29 mm1
b = 15.0250 (7) ÅT = 296 K
c = 8.4679 (4) Å0.30 × 0.22 × 0.18 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4631 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2234 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.983Rint = 0.047
10661 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107Δρmax = 0.15 e Å3
S = 0.96Δρmin = 0.12 e Å3
4631 reflectionsAbsolute structure: Flack (1983), 2120 Friedel pairs
295 parametersAbsolute structure parameter: 0.08 (8)
1 restraint
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.65074 (8)0.28852 (7)0.04443 (17)0.1121 (6)
N10.7409 (2)0.2275 (3)0.1957 (4)0.0747 (16)
N20.71259 (15)0.1473 (2)0.1565 (3)0.0620 (12)
C10.7116 (2)0.3043 (3)0.1339 (4)0.0570 (17)
C20.6470 (2)0.3045 (2)0.0531 (5)0.0600 (16)
C30.6199 (2)0.3839 (3)0.0015 (4)0.0680 (16)
C40.6544 (2)0.4633 (3)0.0205 (5)0.0700 (17)
C50.7189 (2)0.4618 (3)0.0988 (4)0.0733 (17)
C60.7466 (2)0.3843 (3)0.1566 (5)0.0667 (16)
C70.7460 (2)0.0782 (3)0.2017 (4)0.0660 (17)
C80.7209 (2)0.0111 (3)0.1679 (5)0.0610 (16)
C90.6539 (2)0.0276 (3)0.1025 (4)0.0690 (17)
C100.6317 (2)0.1110 (3)0.0677 (4)0.0733 (17)
C110.6769 (3)0.1823 (3)0.0953 (5)0.0763 (19)
C120.7428 (3)0.1686 (3)0.1634 (6)0.0880 (19)
C130.7642 (2)0.0834 (3)0.1987 (5)0.0830 (17)
Cl20.05113 (6)0.19759 (6)0.67491 (15)0.0891 (5)
N30.09142 (18)0.7174 (2)0.4688 (4)0.0713 (14)
N40.07889 (14)0.6368 (2)0.5353 (3)0.0569 (11)
C140.07671 (18)0.7951 (2)0.5497 (4)0.0550 (14)
C150.0503 (2)0.7956 (3)0.7018 (4)0.0627 (17)
C160.0368 (2)0.8752 (3)0.7763 (5)0.0723 (17)
C170.0484 (2)0.9564 (3)0.7053 (5)0.0727 (17)
C180.0740 (2)0.9553 (3)0.5522 (5)0.0740 (19)
C190.0884 (2)0.8767 (3)0.4756 (5)0.0670 (17)
C200.09573 (19)0.5686 (3)0.4543 (4)0.0613 (16)
C210.08497 (18)0.4782 (2)0.5112 (4)0.0527 (14)
C220.1035 (2)0.4073 (3)0.4174 (4)0.0730 (16)
C230.0947 (2)0.3208 (3)0.4663 (5)0.0763 (17)
C240.0658 (2)0.3056 (3)0.6128 (4)0.0580 (16)
C250.0479 (2)0.3741 (3)0.7092 (4)0.0617 (16)
C260.05611 (19)0.4603 (2)0.6581 (5)0.0590 (14)
H10.782 (2)0.228 (2)0.231 (5)0.0899*
H20.622340.251540.036150.0718*
H30.576490.383550.055300.0817*
H40.634930.516390.016170.0842*
H50.744140.514570.112550.0878*
H60.789570.385380.211950.0798*
H70.788200.085120.258630.0790*
H90.623580.020120.082040.0825*
H100.586370.120360.025470.0879*
H120.772570.216560.185310.1056*
H130.808900.074350.244340.0998*
H3A0.113 (2)0.720 (2)0.369 (4)0.0858*
H150.041560.742180.753900.0750*
H160.019070.874110.878930.0867*
H170.039371.009530.757940.0874*
H180.081671.008940.499980.0888*
H190.106070.877910.372940.0803*
H200.115700.576920.354740.0736*
H220.122600.418160.317810.0874*
H230.108060.273640.401530.0915*
H250.030180.362720.809790.0739*
H260.042060.507050.722970.0710*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1692 (12)0.0627 (8)0.1044 (9)0.0202 (8)0.0151 (10)0.0053 (7)
N10.067 (3)0.063 (2)0.094 (3)0.002 (2)0.019 (2)0.004 (2)
N20.063 (2)0.056 (2)0.067 (2)0.0003 (18)0.0010 (19)0.003 (2)
C10.055 (3)0.060 (3)0.056 (3)0.003 (2)0.006 (2)0.013 (2)
C20.062 (3)0.056 (3)0.062 (2)0.009 (2)0.005 (2)0.010 (2)
C30.070 (3)0.072 (3)0.062 (2)0.004 (2)0.012 (2)0.003 (2)
C40.087 (3)0.056 (3)0.067 (3)0.001 (2)0.002 (2)0.010 (2)
C50.079 (3)0.064 (3)0.077 (3)0.017 (2)0.011 (2)0.016 (2)
C60.057 (2)0.064 (3)0.079 (3)0.005 (2)0.001 (2)0.012 (3)
C70.060 (3)0.068 (3)0.070 (3)0.004 (3)0.008 (2)0.004 (2)
C80.056 (3)0.065 (3)0.062 (2)0.004 (2)0.006 (2)0.002 (2)
C90.069 (3)0.061 (3)0.077 (3)0.007 (2)0.006 (2)0.000 (2)
C100.077 (3)0.074 (3)0.069 (3)0.001 (3)0.007 (2)0.002 (3)
C110.101 (4)0.062 (3)0.066 (3)0.015 (3)0.000 (3)0.009 (2)
C120.100 (4)0.058 (3)0.106 (3)0.011 (3)0.009 (3)0.011 (3)
C130.070 (3)0.072 (3)0.107 (3)0.008 (3)0.023 (3)0.013 (3)
Cl20.1246 (9)0.0516 (7)0.0911 (8)0.0030 (6)0.0040 (8)0.0068 (7)
N30.104 (3)0.049 (2)0.061 (2)0.0020 (19)0.0193 (19)0.0028 (18)
N40.068 (2)0.044 (2)0.0586 (19)0.0062 (16)0.0039 (17)0.0035 (17)
C140.060 (2)0.049 (3)0.056 (2)0.0028 (19)0.001 (2)0.000 (2)
C150.077 (3)0.051 (3)0.060 (3)0.007 (2)0.004 (2)0.013 (2)
C160.084 (3)0.063 (3)0.070 (3)0.009 (2)0.012 (2)0.003 (2)
C170.088 (3)0.060 (3)0.070 (3)0.004 (2)0.001 (2)0.007 (2)
C180.088 (3)0.041 (3)0.093 (4)0.004 (2)0.003 (3)0.014 (2)
C190.076 (3)0.057 (3)0.068 (3)0.002 (2)0.011 (2)0.014 (2)
C200.074 (3)0.057 (3)0.053 (2)0.004 (2)0.004 (2)0.000 (2)
C210.062 (3)0.043 (2)0.053 (2)0.0034 (18)0.0001 (19)0.0053 (19)
C220.099 (3)0.060 (3)0.060 (2)0.006 (2)0.018 (2)0.001 (2)
C230.102 (3)0.059 (3)0.068 (3)0.014 (2)0.010 (2)0.012 (2)
C240.069 (3)0.042 (2)0.063 (3)0.002 (2)0.010 (2)0.0058 (19)
C250.081 (3)0.053 (3)0.051 (2)0.001 (2)0.003 (2)0.003 (2)
C260.069 (2)0.056 (3)0.052 (2)0.012 (2)0.003 (2)0.011 (2)
Geometric parameters (Å, º) top
Cl1—C111.724 (5)C7—H70.9300
Cl2—C241.728 (4)C9—H90.9300
N1—N21.357 (5)C10—H100.9300
N1—C11.380 (6)C12—H120.9300
N2—C71.271 (5)C13—H130.9300
N1—H10.82 (4)C14—C191.395 (5)
N3—C141.381 (4)C14—C151.379 (5)
N3—N41.356 (4)C15—C161.376 (6)
N4—C201.273 (5)C16—C171.377 (6)
N3—H3A0.94 (3)C17—C181.382 (6)
C1—C61.382 (6)C18—C191.374 (6)
C1—C21.388 (5)C20—C211.455 (5)
C2—C31.376 (5)C21—C261.382 (5)
C3—C41.369 (6)C21—C221.373 (5)
C4—C51.376 (5)C22—C231.374 (6)
C5—C61.365 (6)C23—C241.372 (5)
C7—C81.450 (6)C24—C251.356 (6)
C8—C131.380 (6)C25—C261.374 (5)
C8—C91.392 (5)C15—H150.9300
C9—C101.353 (6)C16—H160.9300
C10—C111.384 (6)C17—H170.9300
C11—C121.376 (8)C18—H180.9300
C12—C131.374 (6)C19—H190.9300
C2—H20.9300C20—H200.9300
C3—H30.9300C22—H220.9300
C4—H40.9300C23—H230.9300
C5—H50.9300C25—H250.9300
C6—H60.9300C26—H260.9300
N2—N1—C1119.7 (3)C11—C12—H12120.00
N1—N2—C7117.4 (3)C13—C12—H12120.00
N2—N1—H1117 (2)C12—C13—H13119.00
C1—N1—H1120 (2)C8—C13—H13119.00
N4—N3—C14121.0 (3)N3—C14—C15122.6 (3)
N3—N4—C20116.9 (3)N3—C14—C19119.3 (3)
C14—N3—H3A119.8 (19)C15—C14—C19118.1 (3)
N4—N3—H3A119.1 (19)C14—C15—C16119.9 (4)
N1—C1—C6119.1 (4)C15—C16—C17122.8 (4)
N1—C1—C2122.3 (4)C16—C17—C18117.0 (4)
C2—C1—C6118.6 (4)C17—C18—C19121.4 (4)
C1—C2—C3119.2 (3)C14—C19—C18120.8 (4)
C2—C3—C4122.4 (4)N4—C20—C21122.6 (3)
C3—C4—C5117.7 (4)C22—C21—C26117.9 (3)
C4—C5—C6121.3 (4)C20—C21—C22119.9 (3)
C1—C6—C5120.8 (4)C20—C21—C26122.2 (3)
N2—C7—C8122.5 (3)C21—C22—C23122.0 (3)
C7—C8—C9122.3 (4)C22—C23—C24118.5 (4)
C7—C8—C13120.1 (4)Cl2—C24—C25119.4 (3)
C9—C8—C13117.6 (4)Cl2—C24—C23119.6 (3)
C8—C9—C10121.9 (4)C23—C24—C25121.0 (4)
C9—C10—C11119.5 (4)C24—C25—C26119.9 (3)
Cl1—C11—C12119.8 (4)C21—C26—C25120.7 (3)
C10—C11—C12120.1 (4)C14—C15—H15120.00
Cl1—C11—C10120.1 (4)C16—C15—H15120.00
C11—C12—C13119.4 (4)C15—C16—H16119.00
C8—C13—C12121.5 (4)C17—C16—H16119.00
C3—C2—H2120.00C16—C17—H17122.00
C1—C2—H2120.00C18—C17—H17122.00
C2—C3—H3119.00C17—C18—H18119.00
C4—C3—H3119.00C19—C18—H18119.00
C3—C4—H4121.00C14—C19—H19120.00
C5—C4—H4121.00C18—C19—H19120.00
C4—C5—H5119.00N4—C20—H20119.00
C6—C5—H5119.00C21—C20—H20119.00
C5—C6—H6120.00C21—C22—H22119.00
C1—C6—H6120.00C23—C22—H22119.00
C8—C7—H7119.00C22—C23—H23121.00
N2—C7—H7119.00C24—C23—H23121.00
C8—C9—H9119.00C24—C25—H25120.00
C10—C9—H9119.00C26—C25—H25120.00
C11—C10—H10120.00C21—C26—H26120.00
C9—C10—H10120.00C25—C26—H26120.00
C1—N1—N2—C7172.3 (3)C9—C10—C11—C122.5 (6)
N2—N1—C1—C210.7 (5)C10—C11—C12—C132.2 (7)
N2—N1—C1—C6171.1 (3)Cl1—C11—C12—C13177.8 (4)
N1—N2—C7—C8179.6 (3)C11—C12—C13—C80.3 (7)
N4—N3—C14—C19178.2 (3)N3—C14—C15—C16179.9 (3)
C14—N3—N4—C20178.2 (3)C19—C14—C15—C160.5 (5)
N4—N3—C14—C151.4 (5)N3—C14—C19—C18179.7 (3)
N3—N4—C20—C21179.8 (3)C15—C14—C19—C180.0 (5)
N1—C1—C2—C3178.2 (4)C14—C15—C16—C170.1 (6)
N1—C1—C6—C5179.3 (4)C15—C16—C17—C180.7 (6)
C2—C1—C6—C51.0 (6)C16—C17—C18—C191.1 (6)
C6—C1—C2—C30.1 (6)C17—C18—C19—C140.8 (6)
C1—C2—C3—C40.2 (6)N4—C20—C21—C22179.3 (3)
C2—C3—C4—C50.8 (6)N4—C20—C21—C260.5 (5)
C3—C4—C5—C61.9 (6)C20—C21—C22—C23179.7 (3)
C4—C5—C6—C12.0 (6)C26—C21—C22—C230.6 (5)
N2—C7—C8—C13170.3 (4)C20—C21—C26—C25178.8 (3)
N2—C7—C8—C98.9 (6)C22—C21—C26—C251.4 (5)
C13—C8—C9—C100.9 (6)C21—C22—C23—C240.7 (6)
C7—C8—C13—C12178.0 (4)C22—C23—C24—Cl2177.7 (3)
C7—C8—C9—C10178.3 (4)C22—C23—C24—C251.6 (6)
C9—C8—C13—C121.3 (6)Cl2—C24—C25—C26176.9 (3)
C8—C9—C10—C111.0 (6)C23—C24—C25—C262.5 (6)
C9—C10—C11—Cl1177.5 (3)C24—C25—C26—C212.4 (6)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C14–C19 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C10—H10···Cg1i0.932.913.668 (4)139
C20—H20···Cg2ii0.932.733.660 (4)174
Symmetry codes: (i) x+1/2, y1, z1/2; (ii) x1/2, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H11ClN2
Mr230.69
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)296
a, b, c (Å)18.6896 (9), 15.0250 (7), 8.4679 (4)
V3)2377.9 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.30 × 0.22 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.972, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
10661, 4631, 2234
Rint0.047
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.107, 0.96
No. of reflections4631
No. of parameters295
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.12
Absolute structureFlack (1983), 2120 Friedel pairs
Absolute structure parameter0.08 (8)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C14–C19 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C10—H10···Cg1i0.932.913.668 (4)139
C20—H20···Cg2ii0.932.733.660 (4)174
Symmetry codes: (i) x+1/2, y1, z1/2; (ii) x1/2, y+1, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, former Vice Chancellor, University of Sargodha. Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMufakkar, M., Tahir, M. N., Tariq, M. I., Ahmad, S. & Sarfraz, M. (2010). Acta Cryst. E66, o1887.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShad, H. A., Tahir, M. N., Tariq, M. I., Sarfraz, M. & Ahmad, S. (2010). Acta Cryst. E66, o1955.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYin, Z.-G., Qian, H.-Y., Chen, Y.-Z. & Feng, Y.-L. (2007). Acta Cryst. E63, o4119.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds