metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(μ-2-phen­­oxy­propionato)-κ3O,O′:O′;κ3O:O,O′,κ4O:O′-bis­­[(1,10-phenanthroline-κ2N,N′)(2-phen­­oxy­propionato-κ2O,O′)dysprosium(III)]

aCollege of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China, and bZhejiang Normal University Xingzhi College, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: sky53@zjnu.cn

(Received 14 August 2011; accepted 24 August 2011; online 31 August 2011)

In the centrosymmetric binuclear title complex, [Dy2(C9H9O3)6(C12H8N2)2], the two DyIII ions are linked by four 2-phen­oxy­propionate (L) groups through their bi- and tridentate bridging modes. Each DyIII ion is nine-coordinated by one 1,10-phenanthroline mol­ecule, one bidentate carboxyl­ate group and four bridging carboxyl­ate groups in a distorted DyN2O7 monocapped square-anti­prismatic geometry. The title compound is isotypic with its terbium-containing analogue.

Related literature

For the terbium analogue of the title compound, see: Shen et al. (2011[Shen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011). Acta Cryst. E67, m1234.]). For a related structure, see: Liu et al. (2010[Liu, J.-F., Xu, X.-D., Li, H.-Q. & Zhao, G.-L. (2010). Acta Cryst. E66, m291.]).

[Scheme 1]

Experimental

Crystal data
  • [Dy2(C9H9O3)6(C12H8N2)2]

  • Mr = 1676.38

  • Monoclinic, P 21 /c

  • a = 11.4738 (1) Å

  • b = 25.8057 (3) Å

  • c = 13.8525 (2) Å

  • β = 120.657 (1)°

  • V = 3528.32 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.18 mm−1

  • T = 296 K

  • 0.32 × 0.14 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.710, Tmax = 0.840

  • 47810 measured reflections

  • 6224 independent reflections

  • 5057 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.053

  • S = 1.05

  • 6224 reflections

  • 463 parameters

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Selected bond lengths (Å)

Dy1—O8i 2.3252 (18)
Dy1—O4 2.3328 (18)
Dy1—O5i 2.3731 (19)
Dy1—O1 2.412 (2)
Dy1—O7 2.4421 (19)
Dy1—O2 2.462 (2)
Dy1—N2 2.518 (2)
Dy1—N1 2.594 (2)
Dy1—O8 2.622 (2)
Symmetry code: (i) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our ongoing studies of 2-phenoxypropionic acid complexes (Shen et al., 2011) we describe a new DyIII complex.

The structure of the title compound (1) is a dinuclear dysprosium complex with Dy—Dy separation of 3.9857 (3) Å. The structure of the complex (Fig. 1) reveals that the molecule contains six L, two phen molecules and two DyIII ions. Each Dy(III) ion is coordinated to nine atoms, of which five oxygen atoms are from the bridging carboxylates, two oxygen atoms from the bidentate chelating carboxylate group, and two nitrogen atoms from a 1,10- phenanthroline molecule. The L ligands are coordinated to the DyIII ions in three different modes: chelating,bridging and bridging tridentate.The analysis of structural features indicates that the central Dy(III) ion adopts a distorted monocapped square antiprism geometry(Fig. 2).The Dy—O distances are all within the range 2.3252 (18)–2.622 (2) Å, and the Dy—N distances rang from 2.518 (2)–2.594 (2) Å, all of which are within the range of those of other nine-coordinated DyIII complexes with carboxylic donor ligands and 1,10- phenanthroline (Liu et al., 2010). The selected bond lengths and angles for complex 1 are listed in Table 1. In addition, there are no classical hydrogen bonds in the crystal structure, because good hydrogen bond donors are absent. The most significant intermolecular interactions are C—H···O hydrogen bonds (Table 2) and weak π···π aromatic interactions from phen molecules and aromatic rings of the L ligands.

Related literature top

For the terbium analogue of the title compound, see: Shen et al. (2011). For a related structure, see: Liu et al. (2010).

Experimental top

Reagents and solvents used were of commercially available quality and without purified before using. 2-phenoxypropionic acid (1.5 mmol), Dy(NO3)3.5H2O (0.5 mmol) and 1,10-phenanthroline (0.5 mmol) were dissolved in 20 ml e nthanol, then 10 ml water was added to the above solution. The mixed solution was stirred for 12 h at room temperature. At last, deposit was filtered out and the colourless solution was kept in the open air. Colourless blocks of (I) were obtained after several days.

Refinement top

The structure was solved by direct methods and successive Fourier difference synthesis. The H atoms bonded to C and N atoms were positioned geometrically and refined using a riding model [aliphatic C—H =0.96 Å (Uiso(H) = 1.5Ueq(C)), aromatic C—H = 0.93 Å (Uiso(H) = 1.2Ueq(C))].

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The coordination environment of the Dy(III) ion.
Tetrakis(µ-2-phenoxypropionato)-κ3O,O':O'; κ3O:O,O',κ4O:O'- bis[(1,10-phenanthroline-κ2N,N')(2- phenoxypropionato-κ2O,O')dysprosium(III)] top
Crystal data top
[Dy2(C9H9O3)6(C12H8N2)2]F(000) = 1684
Mr = 1676.38Dx = 1.578 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9890 reflections
a = 11.4738 (1) Åθ = 1.6–25.0°
b = 25.8057 (3) ŵ = 2.18 mm1
c = 13.8525 (2) ÅT = 296 K
β = 120.657 (1)°Block, colourless
V = 3528.32 (7) Å30.32 × 0.14 × 0.08 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
6224 independent reflections
Radiation source: fine-focus sealed tube5057 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.710, Tmax = 0.840k = 3030
47810 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0204P)2 + 2.0937P]
where P = (Fo2 + 2Fc2)/3
6224 reflections(Δ/σ)max = 0.002
463 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Dy2(C9H9O3)6(C12H8N2)2]V = 3528.32 (7) Å3
Mr = 1676.38Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.4738 (1) ŵ = 2.18 mm1
b = 25.8057 (3) ÅT = 296 K
c = 13.8525 (2) Å0.32 × 0.14 × 0.08 mm
β = 120.657 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
6224 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5057 reflections with I > 2σ(I)
Tmin = 0.710, Tmax = 0.840Rint = 0.043
47810 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.053H-atom parameters constrained
S = 1.05Δρmax = 0.76 e Å3
6224 reflectionsΔρmin = 0.49 e Å3
463 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Dy10.453434 (12)0.502684 (5)0.840438 (10)0.02670 (5)
O10.6186 (2)0.51253 (8)0.78321 (18)0.0434 (5)
O20.5317 (2)0.58487 (8)0.80244 (17)0.0396 (5)
O30.5945 (2)0.63358 (8)0.65590 (18)0.0525 (6)
O40.5818 (2)0.43014 (7)0.93621 (16)0.0378 (5)
O60.8286 (2)0.34859 (9)1.15437 (19)0.0545 (6)
O70.24603 (19)0.45817 (7)0.80147 (15)0.0351 (5)
O80.38341 (19)0.46859 (7)0.98205 (15)0.0347 (5)
O90.0919 (2)0.38935 (8)0.84166 (18)0.0428 (5)
N10.3810 (2)0.43228 (9)0.68656 (19)0.0324 (6)
N20.2821 (2)0.53041 (9)0.64369 (19)0.0327 (6)
C10.6015 (3)0.56069 (13)0.7717 (2)0.0366 (7)
C20.6729 (3)0.59088 (13)0.7208 (3)0.0461 (8)
H2A0.69120.56770.67410.055*
C30.8052 (4)0.61361 (16)0.8136 (3)0.0701 (12)
H3A0.84990.63170.78100.105*
H3B0.86260.58620.86070.105*
H3C0.78670.63730.85760.105*
C40.4858 (3)0.62449 (13)0.5497 (3)0.0445 (8)
C50.4495 (4)0.57701 (14)0.4988 (3)0.0523 (9)
H5A0.49590.54730.53730.063*
C60.3424 (4)0.57372 (17)0.3886 (3)0.0648 (11)
H6A0.31850.54170.35270.078*
C70.2717 (4)0.6172 (2)0.3327 (3)0.0696 (12)
H7A0.19960.61480.25930.084*
C80.3082 (4)0.66421 (18)0.3855 (4)0.0695 (12)
H8A0.26070.69380.34740.083*
C90.4138 (4)0.66828 (14)0.4940 (3)0.0570 (10)
H9A0.43690.70030.52970.068*
C100.6565 (3)0.41422 (10)1.0358 (2)0.0310 (7)
C110.7397 (3)0.36640 (12)1.0443 (3)0.0409 (8)
H11A0.67650.33831.00240.049*
C120.8235 (4)0.37670 (15)0.9910 (3)0.0615 (10)
H12A0.87210.34580.99410.092*
H12B0.88680.40411.03090.092*
H12C0.76530.38670.91420.092*
C130.7780 (4)0.31777 (12)1.2062 (3)0.0483 (9)
C140.6469 (4)0.31529 (13)1.1806 (3)0.0580 (10)
H14A0.58020.33341.11920.070*
C150.6133 (5)0.28599 (16)1.2454 (5)0.0848 (14)
H15A0.52380.28451.22820.102*
C160.7106 (8)0.25915 (19)1.3345 (5)0.1028 (19)
H16A0.68720.23961.37850.123*
C170.8423 (7)0.26066 (17)1.3603 (4)0.0971 (18)
H17A0.90790.24151.42040.117*
C180.8778 (4)0.29032 (14)1.2974 (3)0.0677 (12)
H18A0.96770.29211.31550.081*
C190.2736 (3)0.45226 (10)0.9000 (2)0.0284 (6)
C200.1737 (3)0.42670 (11)0.9256 (2)0.0351 (7)
H20A0.22270.40980.99920.042*
C210.0777 (3)0.46674 (14)0.9259 (3)0.0513 (9)
H21A0.01400.45020.94120.077*
H21B0.03000.48330.85380.077*
H21C0.12830.49220.98270.077*
C220.1558 (3)0.34625 (12)0.8335 (3)0.0464 (9)
C230.0787 (4)0.31532 (14)0.7417 (3)0.0624 (11)
H23A0.01010.32460.68970.075*
C240.1336 (5)0.27023 (16)0.7269 (4)0.0831 (14)
H24A0.08140.24940.66450.100*
C250.2633 (5)0.25611 (16)0.8029 (4)0.0919 (16)
H25A0.30030.22600.79250.110*
C260.3375 (5)0.28667 (17)0.8938 (5)0.1056 (19)
H26A0.42500.27660.94720.127*
C270.2861 (4)0.33248 (15)0.9089 (4)0.0812 (15)
H27A0.34000.35370.97000.097*
C280.4289 (3)0.38448 (12)0.7054 (3)0.0426 (8)
H28A0.50340.37690.77560.051*
C290.3745 (4)0.34462 (13)0.6264 (3)0.0553 (10)
H29A0.41270.31170.64360.066*
C300.2646 (3)0.35470 (13)0.5238 (3)0.0503 (9)
H30A0.22630.32850.47040.060*
C310.0942 (3)0.41847 (14)0.3935 (3)0.0485 (9)
H31A0.05100.39310.33880.058*
C320.0467 (3)0.46716 (14)0.3716 (3)0.0454 (8)
H32A0.02840.47490.30200.055*
C330.0656 (3)0.55867 (13)0.4337 (3)0.0433 (8)
H33A0.00740.56840.36450.052*
C340.1306 (3)0.59444 (13)0.5165 (3)0.0447 (8)
H34A0.10400.62900.50400.054*
C350.2374 (3)0.57857 (12)0.6203 (2)0.0383 (7)
H35A0.27980.60340.67650.046*
C360.2097 (3)0.40457 (12)0.4990 (3)0.0398 (8)
C370.2721 (3)0.44260 (11)0.5833 (2)0.0313 (7)
C380.1095 (3)0.50737 (12)0.4535 (2)0.0368 (7)
C390.2203 (3)0.49463 (11)0.5605 (2)0.0316 (7)
O50.66605 (19)0.43284 (7)1.12245 (15)0.0339 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Dy10.02533 (8)0.02954 (8)0.02117 (7)0.00035 (6)0.00892 (6)0.00075 (6)
O10.0494 (14)0.0361 (13)0.0527 (14)0.0023 (10)0.0320 (12)0.0056 (10)
O20.0366 (13)0.0382 (12)0.0437 (13)0.0001 (10)0.0202 (11)0.0038 (10)
O30.0620 (16)0.0452 (14)0.0407 (13)0.0113 (11)0.0193 (12)0.0073 (10)
O40.0455 (13)0.0359 (11)0.0262 (11)0.0119 (10)0.0140 (10)0.0033 (9)
O60.0462 (15)0.0519 (14)0.0520 (15)0.0093 (11)0.0153 (12)0.0090 (11)
O70.0322 (12)0.0440 (12)0.0247 (11)0.0062 (9)0.0114 (9)0.0027 (9)
O80.0288 (11)0.0389 (12)0.0263 (11)0.0038 (9)0.0067 (9)0.0005 (9)
O90.0275 (12)0.0396 (13)0.0488 (13)0.0041 (10)0.0105 (10)0.0008 (10)
N10.0328 (14)0.0361 (14)0.0268 (13)0.0017 (11)0.0140 (11)0.0000 (10)
N20.0316 (14)0.0359 (14)0.0276 (13)0.0011 (11)0.0128 (11)0.0004 (11)
C10.0288 (17)0.049 (2)0.0237 (16)0.0053 (15)0.0078 (14)0.0047 (14)
C20.046 (2)0.051 (2)0.0406 (19)0.0046 (16)0.0222 (17)0.0091 (16)
C30.046 (2)0.101 (3)0.052 (2)0.023 (2)0.0169 (19)0.016 (2)
C40.048 (2)0.052 (2)0.0347 (18)0.0060 (16)0.0219 (17)0.0071 (15)
C50.054 (2)0.055 (2)0.045 (2)0.0009 (18)0.0238 (18)0.0013 (17)
C60.060 (3)0.083 (3)0.050 (2)0.010 (2)0.027 (2)0.019 (2)
C70.049 (2)0.117 (4)0.039 (2)0.002 (3)0.0195 (19)0.009 (2)
C80.056 (3)0.081 (3)0.066 (3)0.008 (2)0.027 (2)0.030 (2)
C90.061 (3)0.050 (2)0.061 (2)0.0015 (18)0.031 (2)0.0117 (18)
C100.0313 (17)0.0276 (15)0.0307 (17)0.0014 (12)0.0133 (14)0.0010 (12)
C110.0383 (19)0.0416 (18)0.0350 (17)0.0110 (14)0.0130 (15)0.0021 (14)
C120.050 (2)0.071 (3)0.069 (3)0.0174 (19)0.035 (2)0.007 (2)
C130.064 (3)0.0311 (18)0.051 (2)0.0070 (17)0.031 (2)0.0046 (15)
C140.065 (3)0.038 (2)0.069 (3)0.0000 (18)0.033 (2)0.0031 (18)
C150.108 (4)0.052 (3)0.124 (4)0.005 (3)0.081 (4)0.003 (3)
C160.183 (7)0.060 (3)0.101 (4)0.001 (4)0.098 (5)0.013 (3)
C170.144 (5)0.059 (3)0.053 (3)0.004 (3)0.025 (3)0.018 (2)
C180.073 (3)0.041 (2)0.064 (3)0.0025 (19)0.016 (2)0.0033 (19)
C190.0257 (16)0.0265 (15)0.0291 (16)0.0027 (12)0.0113 (14)0.0003 (12)
C200.0312 (17)0.0406 (17)0.0306 (16)0.0025 (14)0.0137 (14)0.0023 (13)
C210.047 (2)0.063 (2)0.058 (2)0.0026 (18)0.0369 (19)0.0013 (18)
C220.038 (2)0.0361 (18)0.054 (2)0.0052 (15)0.0153 (17)0.0058 (15)
C230.057 (2)0.055 (2)0.058 (2)0.0035 (19)0.017 (2)0.0062 (19)
C240.094 (4)0.054 (3)0.075 (3)0.009 (2)0.024 (3)0.019 (2)
C250.092 (4)0.049 (3)0.111 (4)0.009 (2)0.034 (3)0.019 (3)
C260.075 (3)0.058 (3)0.130 (4)0.022 (2)0.013 (3)0.020 (3)
C270.055 (3)0.048 (2)0.091 (3)0.0095 (19)0.001 (2)0.016 (2)
C280.044 (2)0.0434 (19)0.0331 (17)0.0058 (15)0.0142 (15)0.0015 (14)
C290.067 (3)0.0393 (19)0.056 (2)0.0042 (17)0.029 (2)0.0084 (16)
C300.055 (2)0.048 (2)0.043 (2)0.0107 (17)0.0217 (18)0.0172 (16)
C310.047 (2)0.063 (2)0.0309 (18)0.0149 (18)0.0162 (16)0.0160 (16)
C320.039 (2)0.067 (2)0.0246 (17)0.0079 (17)0.0119 (15)0.0001 (16)
C330.0367 (19)0.057 (2)0.0293 (17)0.0050 (16)0.0117 (15)0.0118 (15)
C340.045 (2)0.047 (2)0.0380 (18)0.0113 (16)0.0185 (16)0.0110 (15)
C350.0413 (19)0.0390 (18)0.0293 (16)0.0033 (14)0.0142 (15)0.0022 (13)
C360.0402 (19)0.0454 (19)0.0343 (17)0.0115 (15)0.0194 (15)0.0095 (14)
C370.0316 (17)0.0387 (17)0.0282 (16)0.0058 (13)0.0185 (14)0.0044 (13)
C380.0293 (16)0.055 (2)0.0247 (15)0.0046 (14)0.0127 (13)0.0020 (14)
C390.0297 (16)0.0407 (17)0.0253 (14)0.0014 (13)0.0148 (13)0.0027 (13)
O50.0376 (12)0.0351 (11)0.0260 (11)0.0050 (9)0.0141 (9)0.0009 (9)
Geometric parameters (Å, º) top
Dy1—O8i2.3252 (18)C13—C141.359 (5)
Dy1—O42.3328 (18)C13—C181.391 (5)
Dy1—O5i2.3731 (19)C14—C151.370 (5)
Dy1—O12.412 (2)C14—H14A0.9300
Dy1—O72.4421 (19)C15—C161.358 (7)
Dy1—O22.462 (2)C15—H15A0.9300
Dy1—N22.518 (2)C16—C171.365 (7)
Dy1—N12.594 (2)C16—H16A0.9300
Dy1—O82.622 (2)C17—C181.368 (6)
Dy1—Dy1i3.9857 (3)C17—H17A0.9300
O1—C11.256 (4)C18—H18A0.9300
O2—C11.249 (4)C19—C201.514 (4)
O3—C41.379 (4)C20—C211.511 (4)
O3—C21.417 (4)C20—H20A0.9800
O4—C101.265 (3)C21—H21A0.9600
O6—C131.382 (4)C21—H21B0.9600
O6—C111.411 (4)C21—H21C0.9600
O7—C191.243 (3)C22—C271.364 (5)
O8—C191.263 (3)C22—C231.375 (5)
O8—Dy1i2.3252 (18)C23—C241.388 (5)
O9—C221.368 (4)C23—H23A0.9300
O9—C201.431 (3)C24—C251.364 (6)
N1—C281.321 (4)C24—H24A0.9300
N1—C371.362 (3)C25—C261.356 (6)
N2—C351.320 (4)C25—H25A0.9300
N2—C391.360 (4)C26—C271.384 (5)
C1—C21.537 (4)C26—H26A0.9300
C2—C31.520 (5)C27—H27A0.9300
C2—H2A0.9800C28—C291.396 (4)
C3—H3A0.9600C28—H28A0.9300
C3—H3B0.9600C29—C301.360 (5)
C3—H3C0.9600C29—H29A0.9300
C4—C51.369 (5)C30—C361.397 (4)
C4—C91.380 (5)C30—H30A0.9300
C5—C61.391 (5)C31—C321.341 (5)
C5—H5A0.9300C31—C361.430 (4)
C6—C71.370 (5)C31—H31A0.9300
C6—H6A0.9300C32—C381.432 (4)
C7—C81.368 (6)C32—H32A0.9300
C7—H7A0.9300C33—C341.361 (4)
C8—C91.371 (5)C33—C381.393 (4)
C8—H8A0.9300C33—H33A0.9300
C9—H9A0.9300C34—C351.393 (4)
C10—O51.245 (3)C34—H34A0.9300
C10—C111.528 (4)C35—H35A0.9300
C11—C121.504 (5)C36—C371.410 (4)
C11—H11A0.9800C37—C391.437 (4)
C12—H12A0.9600C38—C391.414 (4)
C12—H12B0.9600O5—Dy1i2.3731 (19)
C12—H12C0.9600
O8i—Dy1—O473.74 (7)C7—C8—C9120.9 (4)
O8i—Dy1—O5i77.87 (7)C7—C8—H8A119.6
O4—Dy1—O5i134.95 (7)C9—C8—H8A119.6
O8i—Dy1—O188.29 (7)C8—C9—C4119.5 (4)
O4—Dy1—O184.10 (7)C8—C9—H9A120.2
O5i—Dy1—O1129.42 (7)C4—C9—H9A120.2
O8i—Dy1—O7123.51 (7)O5—C10—O4127.1 (3)
O4—Dy1—O790.56 (7)O5—C10—C11119.5 (2)
O5i—Dy1—O776.83 (7)O4—C10—C11113.3 (3)
O1—Dy1—O7144.82 (7)O6—C11—C12107.3 (3)
O8i—Dy1—O276.51 (7)O6—C11—C10115.2 (3)
O4—Dy1—O2128.28 (7)C12—C11—C10110.5 (3)
O5i—Dy1—O275.89 (7)O6—C11—H11A107.9
O1—Dy1—O253.54 (7)C12—C11—H11A107.9
O7—Dy1—O2141.10 (7)C10—C11—H11A107.9
O8i—Dy1—N2144.82 (7)C11—C12—H12A109.5
O4—Dy1—N2139.62 (7)C11—C12—H12B109.5
O5i—Dy1—N279.44 (7)H12A—C12—H12B109.5
O1—Dy1—N285.71 (8)C11—C12—H12C109.5
O7—Dy1—N276.07 (7)H12A—C12—H12C109.5
O2—Dy1—N272.09 (7)H12B—C12—H12C109.5
O8i—Dy1—N1147.16 (7)C14—C13—O6126.4 (3)
O4—Dy1—N175.53 (7)C14—C13—C18120.1 (4)
O5i—Dy1—N1133.69 (7)O6—C13—C18113.3 (4)
O1—Dy1—N177.28 (7)C13—C14—C15119.9 (4)
O7—Dy1—N167.74 (7)C13—C14—H14A120.1
O2—Dy1—N1115.25 (7)C15—C14—H14A120.1
N2—Dy1—N164.11 (7)C16—C15—C14120.1 (5)
O8i—Dy1—O872.80 (7)C16—C15—H15A119.9
O4—Dy1—O869.56 (7)C14—C15—H15A119.9
O5i—Dy1—O869.02 (6)C15—C16—C17120.6 (5)
O1—Dy1—O8150.83 (7)C15—C16—H16A119.7
O7—Dy1—O851.08 (6)C17—C16—H16A119.7
O2—Dy1—O8137.15 (7)C16—C17—C18119.9 (5)
N2—Dy1—O8122.48 (7)C16—C17—H17A120.0
N1—Dy1—O8106.73 (7)C18—C17—H17A120.0
O8i—Dy1—C183.52 (8)C17—C18—C13119.3 (5)
O4—Dy1—C1107.99 (9)C17—C18—H18A120.4
O5i—Dy1—C1102.64 (9)C13—C18—H18A120.4
O1—Dy1—C126.90 (8)O7—C19—O8121.7 (3)
O7—Dy1—C1151.28 (7)O7—C19—C20120.8 (2)
O2—Dy1—C126.79 (8)O8—C19—C20117.5 (2)
N2—Dy1—C175.64 (8)O7—C19—Dy156.71 (14)
N1—Dy1—C195.25 (9)O8—C19—Dy165.02 (15)
O8—Dy1—C1155.99 (7)C20—C19—Dy1177.16 (19)
O8i—Dy1—C1998.53 (7)O9—C20—C21106.6 (2)
O4—Dy1—C1979.17 (7)O9—C20—C19111.3 (2)
O5i—Dy1—C1971.26 (7)C21—C20—C19110.0 (2)
O1—Dy1—C19159.31 (7)O9—C20—H20A109.6
O7—Dy1—C1925.19 (7)C21—C20—H20A109.6
O2—Dy1—C19147.06 (7)C19—C20—H20A109.6
N2—Dy1—C1999.19 (8)C20—C21—H21A109.5
N1—Dy1—C1986.74 (8)C20—C21—H21B109.5
O8—Dy1—C1925.89 (6)H21A—C21—H21B109.5
C1—Dy1—C19172.83 (9)C20—C21—H21C109.5
O8i—Dy1—Dy1i38.94 (5)H21A—C21—H21C109.5
O4—Dy1—Dy1i66.85 (5)H21B—C21—H21C109.5
O5i—Dy1—Dy1i69.01 (4)C27—C22—O9125.0 (3)
O1—Dy1—Dy1i123.85 (5)C27—C22—C23119.6 (3)
O7—Dy1—Dy1i84.77 (4)O9—C22—C23115.4 (3)
O2—Dy1—Dy1i110.26 (5)C22—C23—C24119.8 (4)
N2—Dy1—Dy1i146.11 (6)C22—C23—H23A120.1
N1—Dy1—Dy1i132.80 (5)C24—C23—H23A120.1
O8—Dy1—Dy1i33.87 (4)C25—C24—C23120.6 (4)
C1—Dy1—Dy1i122.35 (6)C25—C24—H24A119.7
C19—Dy1—Dy1i59.65 (5)C23—C24—H24A119.7
C1—O1—Dy192.75 (19)C26—C25—C24118.9 (4)
C1—O2—Dy190.56 (18)C26—C25—H25A120.6
C4—O3—C2118.7 (3)C24—C25—H25A120.6
C10—O4—Dy1139.55 (18)C25—C26—C27121.5 (4)
C13—O6—C11119.1 (3)C25—C26—H26A119.2
C19—O7—Dy198.10 (16)C27—C26—H26A119.2
C19—O8—Dy1i162.47 (19)C22—C27—C26119.5 (4)
C19—O8—Dy189.09 (16)C22—C27—H27A120.3
Dy1i—O8—Dy1107.20 (7)C26—C27—H27A120.3
C22—O9—C20117.3 (2)N1—C28—C29123.9 (3)
C28—N1—C37117.2 (3)N1—C28—H28A118.0
C28—N1—Dy1124.38 (19)C29—C28—H28A118.0
C37—N1—Dy1117.64 (18)C30—C29—C28119.0 (3)
C35—N2—C39117.5 (2)C30—C29—H29A120.5
C35—N2—Dy1121.60 (19)C28—C29—H29A120.5
C39—N2—Dy1120.41 (18)C29—C30—C36119.7 (3)
O2—C1—O1122.5 (3)C29—C30—H30A120.2
O2—C1—C2119.2 (3)C36—C30—H30A120.2
O1—C1—C2118.3 (3)C32—C31—C36121.6 (3)
O2—C1—Dy162.65 (16)C32—C31—H31A119.2
O1—C1—Dy160.35 (16)C36—C31—H31A119.2
C2—C1—Dy1173.9 (2)C31—C32—C38121.1 (3)
O3—C2—C3105.9 (3)C31—C32—H32A119.4
O3—C2—C1111.8 (3)C38—C32—H32A119.4
C3—C2—C1110.1 (3)C34—C33—C38119.4 (3)
O3—C2—H2A109.7C34—C33—H33A120.3
C3—C2—H2A109.7C38—C33—H33A120.3
C1—C2—H2A109.7C33—C34—C35119.1 (3)
C2—C3—H3A109.5C33—C34—H34A120.5
C2—C3—H3B109.5C35—C34—H34A120.5
H3A—C3—H3B109.5N2—C35—C34123.9 (3)
C2—C3—H3C109.5N2—C35—H35A118.1
H3A—C3—H3C109.5C34—C35—H35A118.1
H3B—C3—H3C109.5C30—C36—C37117.6 (3)
C5—C4—O3125.0 (3)C30—C36—C31123.3 (3)
C5—C4—C9120.4 (3)C37—C36—C31119.1 (3)
O3—C4—C9114.5 (3)N1—C37—C36122.7 (3)
C4—C5—C6119.1 (3)N1—C37—C39117.9 (2)
C4—C5—H5A120.4C36—C37—C39119.4 (3)
C6—C5—H5A120.4C33—C38—C39118.0 (3)
C7—C6—C5120.5 (4)C33—C38—C32123.2 (3)
C7—C6—H6A119.7C39—C38—C32118.9 (3)
C5—C6—H6A119.7N2—C39—C38122.1 (3)
C8—C7—C6119.5 (4)N2—C39—C37118.0 (2)
C8—C7—H7A120.3C38—C39—C37119.8 (3)
C6—C7—H7A120.3C10—O5—Dy1i134.66 (18)
Symmetry code: (i) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Dy2(C9H9O3)6(C12H8N2)2]
Mr1676.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.4738 (1), 25.8057 (3), 13.8525 (2)
β (°) 120.657 (1)
V3)3528.32 (7)
Z2
Radiation typeMo Kα
µ (mm1)2.18
Crystal size (mm)0.32 × 0.14 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.710, 0.840
No. of measured, independent and
observed [I > 2σ(I)] reflections
47810, 6224, 5057
Rint0.043
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.053, 1.05
No. of reflections6224
No. of parameters463
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 0.49

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Dy1—O8i2.3252 (18)Dy1—O22.462 (2)
Dy1—O42.3328 (18)Dy1—N22.518 (2)
Dy1—O5i2.3731 (19)Dy1—N12.594 (2)
Dy1—O12.412 (2)Dy1—O82.622 (2)
Dy1—O72.4421 (19)
Symmetry code: (i) x+1, y+1, z+2.
 

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, J.-F., Xu, X.-D., Li, H.-Q. & Zhao, G.-L. (2010). Acta Cryst. E66, m291.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011). Acta Cryst. E67, m1234.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds