organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2447-o2448

N-{(2S)-3-Hy­dr­oxy-4-[(5-methyl-1,3,4-thia­diazol-2-yl)sulfan­yl]-1-phenyl-2-but­yl}-4-methyl­benzene­sulfonamide

aInstituto de Tecnologia em Fármacos - Farmanguinhos, FioCruz - Fundação, Oswaldo Cruz, R. Sizenando Nabuco, 100, Manguinhos, 21041-250, Rio de Janeiro, RJ, Brazil, bUniversidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, Outeiro de São João Batista, s/no, Centro, Niterói, 24020-141, Rio de Janeiro, Brazil, cNuQuiA - Núcleo de Qímica Aplicada, Departamento de Química Orgânica, UFPel, Campus Universitário s/n, 96010-900 Pelotas, RS, Brazil, dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900, Rio de Janeiro, RJ, Brazil, eCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, and fDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 15 August 2011; accepted 17 August 2011; online 27 August 2011)

The thia­diazoyl and sulfonyl-benzene rings in the title compound, C20H23N3O3S3, are aligned to the same side of the mol­ecule, forming a twisted `U' shape [dihedral angle = 77.6 (5)°]. The benzyl-benzene ring is orientated in the opposite direction from the mol­ecule but projects approximately along the same axis as the other rings [dihedral angle between benzene rings = 28.2 (5)°] so that, overall, the mol­ecule has a flattened shape. The hy­droxy and amine groups are almost syn which enables the formation of inter­molecular hy­droxy-OH⋯N(thia­diazo­yl) and amine-H⋯O(sulfon­yl) hydrogen bonds leading to a supra­molecular chain aligned along the a axis.

Related literature

For background to the use of amino alcohols in medicinal chemistry, see: Ferreira et al. (2009[Ferreira, M. L., Vasconcelos, T. R. A., de Carvalho, E. M., Lourenço, M. C. S., Wardell, S. M. S. V., Wardell, J. L., Ferreira, V. F. & de Souza, M. V. N. (2009). Carbohydr. Res. 344, 2042-2047.]); de Oliveira et al. (2008[Oliveira, P. S. M. de, Ferreira, V. F., de Souza, M. V. N. & de Carvalho, E. M. (2008). Quim. Nova, 31, 776-780.]); Brik & Wong (2003[Brik, A. & Wong, C.-H. (2003). Org. Biomol. Chem. 1, 5-14.]); Ghosh et al. (2001[Ghosh, A. K., Bilcer, G. & Schiltz, G. (2001). Synthesis, pp. 2203-2229.]); Parikh et al. (2005[Parikh, S., Gut, J., Istvan, E., Goldberg, D. E., Havlir, D. V. & Rosenthal, P. J. (2005). Antimicrob. Agents Chemother. 49, 2983-2985.]); Andrews et al. (2006[Andrews, K. T., Fairlie, D. P., Madala, P. K., Ray, J., Wyatt, D. M., Hilton, P. M., Melville, L. A., Beattie, L., Gardioner, D. L., Reid, R. C., Stoermer, M. J., Skinner-Adams, T., Berry, C. & McCarthy, J. S. (2006). Antimicrob. Agents Chemother. 50, 639-648.]). For the anti-malarial activity of hy­droxy­ethyl­piperazines, see: Cunico, Gomes, Moreth et al. (2009[Cunico, W., Gomes, C. R. B., Moreth, M., Manhanini, D. P., Figueiredo, I. H., Penido, C., Henriques, M. G. M. O., Varotti, F. P. & Krettli, A. U. (2009). Eur. J. Med. Chem. 44, 1363-1368.]). For the biological activity of hy­droxy­ethyl­sulfonamides, see: Cunico et al. (2008[Cunico, W., Ferreira, M. L. G., Ferreira, T. G., Penido, C., Henriques, M. G. M. O., Krettli, L. G., Varotti, F. P. & Krettli, A. U. (2008). Lett. Drug Des. Discov. 5, 178-181.], 2011[Cunico, W., Gomes, C. R. B., Ferreira, M. L. G., Ferreira, T. G., Cardinot, D., de Souza, M. V. N. & Lourenço, M. C. S. (2011). Eur. J. Med. Chem. 46, 974-978.]); Cunico, Gomes, Facchinetti et al. (2009[Cunico, W., Gomes, C. R. B., Facchinetti, V., Moreth, M., Penido, C., Henriques, M. G. M. O., Varotti, F. P., Krettli, L. G., Krettli, A. U., da Silva, F. S., Caffarena, E. R. & de Magalhães, C. S. (2009). Eur. J. Med. Chem. 44, 3816-3820.]). For related structures, see: Cunico, Gomes, Harrison et al. (2009[Cunico, W., Gomes, C. R. B., Harrison, W. T. A., Moreth, M., Wardell, J. L. & Wardell, S. M. S. C. (2009). Z. Kristallogr. 224, 461-470.]); Gomes et al. (2011[Gomes, C. R. B., Vasconcelos, T. R. A., Vellasco, W. T., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2313-o2314.]).

[Scheme 1]

Experimental

Crystal data
  • C20H23N3O3S3

  • Mr = 449.59

  • Orthorhombic, P 21 21 21

  • a = 5.0420 (2) Å

  • b = 18.4840 (8) Å

  • c = 22.9650 (8) Å

  • V = 2140.25 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 120 K

  • 0.14 × 0.02 × 0.02 mm

Data collection
  • Bruker–Nonius Roper CCD camera on κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.438, Tmax = 1.000

  • 12594 measured reflections

  • 2182 independent reflections

  • 1538 reflections with I > 2σ(I)

  • Rint = 0.144

Refinement
  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.206

  • S = 1.29

  • 2182 reflections

  • 270 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.47 e Å−3

  • Absolute structure: nd

  • Flack parameter: ?

  • Rogers parameter: ?

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N1i 0.84 (7) 2.11 (8) 2.860 (11) 148 (8)
N3—H3N⋯O3i 0.88 (2) 2.05 (4) 2.902 (10) 163 (9)
Symmetry code: (i) x-1, y, z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Amino alcohols play versatile roles in medicinal chemistry (Ferreira et al., 2009; de Oliveira et al., 2008; Brik & Wong, 2003, Ghosh et al., 2001; Parikh et al., 2005; Andrews et al., 2006). Some of us recently reported the anti-malarial activity of hydroxyethypiperazines against Plasmodium falciparum (Cunico, Gomes, Moreth et al., 2009) and of hydroxyethylsulfonamide derivatives against Plasmodium falciparum (Cunico et al., 2008; Cunico, Gomes, Facchinetti et al., 2009), and mycobacterium tuberculosis H37Rv (Cunico et al., 2011). In conjunction with these biological studies, crystal structure determinations of (2R,4S)-4-(arylmethyl)-1-(4-phenyl-3-amino-2-hydroxybutyl)-piperazine derivatives (Cunico, Gomes, Harrison et al., 2009) and an example of a pyrimidyl derivative (Gomes et al., 2011) have been carried out. In continuation of these structural studies, we now report the synthesis, Fig. 1, and structure of the title compound, (I).

In (I), Fig. 2, the thiadiazoyl and sulfonyl-benzene rings are orientated to the same side of the molecule but are not aligned in a parallel fashion as seen in the dihedral angle of 77.6 (5) ° formed between the rings. The benzyl-benzene is directed away from the rest of the twisted U-shaped molecule and forms a dihedral angle of 28.2 (5) ° with the sulfonyl-benzene ring. The key stereochemical feature of the molecule is the almost syn alignment of the hydroxyl and amine groups. This has an important consequence in the crystal packing.

As seen from Fig. 3, molecules assemble into a supramolecular chain via hydroxyl-OH···N(thiadiazoyl) and amine-H···O(sulfonyl) hydrogen bonds, Table 1. The chains are aligned along the a axis and assemble in the crystal structure without any specific interactions between them, Fig. 4.

Related literature top

For background to the use of amino alcohols in medicinal chemistry, see: Ferreira et al. (2009); de Oliveira et al. (2008); Brik & Wong (2003); Ghosh et al. (2001); Parikh et al. (2005); Andrews et al. (2006). For the anti-malarial activity of hydroxyethylpiperazines, see: Cunico, Gomes, Moreth et al. (2009). For the biological activity of hydroxyethylsulfonamides, see: Cunico et al. (2008, 2011); Cunico, Gomes, Facchinetti et al. (2009). For related structures, see: Cunico, Gomes, Harrison et al. (2009); Gomes et al. (2011).

Experimental top

Referring to Fig. 1, trifluoroacetic acid (1.5 ml, 20 mmol) was added to a solution of 2 (2 mmol), prepared from 1 and 5-methyl-1,3,4-thiadiazole-2(3H)-thione, in CH2Cl2 (6 ml). The mixture was stirred for 6 h, rotary evaporated to leave a residue, which was dissolved in EtOAc (20 ml), successively washed with 5% NaHCO3 aqueous solution, water and brine, and dried over MgSO4. The solvent was removed to afford the corresponding free amine, which was dissolved in EtOAc (10 mL) to which were added triethylamine (2.2 mmol) and N,N-dimethylformamide (0.2 mmol). The system was stirred for 30 minutes under nitrogen and p-toluenenesulfonyl chloride (2.0 mmol) was slowly added. The mixture was stirred for 8 h, successively washed with 5% HCl aqueous solution, water and brine, and dried over MgSO4. The solvent was removed in high vacuum and the title product 3 was obtained in 68% yield after recrystallization from hexane. The crystals used in the structure determination were grown from EtOH solution. M.pt: 412–414 K. EI—MS (m/z) (%): 472.1 (M++Na, 80%). 1H NMR [400.00 MHz, CDCl3] δ: 7.42 (d, 2H, J = 8.4 Hz, PhSO2); 7.11 (d, 2H, J = 8.0 Hz, PhSO2); 7.07–6.99 (m, 5H, Ph); 3.84–3.82 (m, 1H, H2); 3.58 (dd, 1H, 1J = 13.6 Hz, 2J = 4.4 Hz; H1b); 3.61–3.55 (m, 1H, H3); 3.22 (dd, 1H, 1J = 13.6 Hz, 2J = 8.4 Hz, H1a); 2.92 (dd, 1H, 1J = 14.0 Hz, 2J = 4.4 Hz, H4b); 2.72 (s, 3H, CH3(Het)); 2.59 (dd, 1H, J = 14.0 Hz, 2J = 8.4 Hz, H4a); 2.35 (s, 3H; CH3) p.p.m.. 13C NMR [100.0 MHz, CDCl3] δ: 168.6; 167.9; 144.1; 139.9; 139.2; 130.7; 129.4; 127.8; 127.3; 115.2; 73.4; 60.6; 39.4; 37.1; 21.6; 15.4 p.p.m. IR (cm-1; KBr pellets): νmax: 3273 (OH); 3023 (NH); 1330, 1161 (OSO); 686 (C—S).

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The O– and N-bound H atoms were located from a difference map and refined with the distance restraints O–H = 0.84 ± 0.01 and N–H = 0.88±0.01 Å, and with Uiso(H) = zUeq(carrier atom); z = 1.5 for O and z = 1.2 for N. The refinement of the Flack absolute sturcture was ambiguous [refined value = 0.24 (19)] and 1482 Friedel pairs were averaged in the final refinement and the absolute configuration was assigned on the basis of the chirality of the L-serine starting material. The small (0.02 x 0.02 x 0.14 mm) needle was weakly diffracting but it was not deemed necessary to secure a data set with synchrotron radiation. The poor nature of the sample is also reflected in the relatively high values of Rint and in the residuals. However, the structure has been determined unambiguously.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Synthesis. Reagents: (a) TFA/CH2Cl2 (1/3), RT, 6 h; (b) p-MeC6H4SO2Cl, Et3N, DMF, AcOEt, RT, 8 h.
[Figure 2] Fig. 2. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 3] Fig. 3. A view of the supramolecular chain along the a axis in (I). The O—H···N and N—H···O hydrogen bonding are shown as orange and blue dashed lines, respectively.
[Figure 4] Fig. 4. A view in projection down the a axis of the packing of supramolecular chains in (I). The The O—H···N hydrogen bonding is shown as orange dashed lines.
N-{(2S)-3-Hydroxy-4-[(5-methyl-1,3,4-thiadiazol-2-yl)sulfanyl]- 1-phenyl-2-butyl}-4-methylbenzenesulfonamide top
Crystal data top
C20H23N3O3S3F(000) = 944
Mr = 449.59Dx = 1.395 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 20956 reflections
a = 5.0420 (2) Åθ = 2.9–27.5°
b = 18.4840 (8) ŵ = 0.37 mm1
c = 22.9650 (8) ÅT = 120 K
V = 2140.25 (15) Å3Needle, colourless
Z = 40.14 × 0.02 × 0.02 mm
Data collection top
Bruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
2182 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode1538 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.144
Detector resolution: 9.091 pixels mm-1θmax = 25.0°, θmin = 3.4°
ϕ & ω scansh = 45
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 2021
Tmin = 0.438, Tmax = 1.000l = 2726
12594 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.078H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.206 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.29(Δ/σ)max < 0.001
2182 reflectionsΔρmax = 0.48 e Å3
270 parametersΔρmin = 0.47 e Å3
2 restraintsAbsolute structure: nd
Primary atom site location: structure-invariant direct methods
Crystal data top
C20H23N3O3S3V = 2140.25 (15) Å3
Mr = 449.59Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.0420 (2) ŵ = 0.37 mm1
b = 18.4840 (8) ÅT = 120 K
c = 22.9650 (8) Å0.14 × 0.02 × 0.02 mm
Data collection top
Bruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
2182 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
1538 reflections with I > 2σ(I)
Tmin = 0.438, Tmax = 1.000Rint = 0.144
12594 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0782 restraints
wR(F2) = 0.206H atoms treated by a mixture of independent and constrained refinement
S = 1.29Δρmax = 0.48 e Å3
2182 reflectionsΔρmin = 0.47 e Å3
270 parametersAbsolute structure: nd
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.1474 (5)0.17021 (13)0.05038 (10)0.0243 (6)
S20.3692 (5)0.07316 (15)0.14153 (11)0.0324 (7)
S30.2827 (4)0.01335 (13)0.18450 (11)0.0222 (6)
O10.1857 (12)0.1270 (3)0.0645 (3)0.0230 (15)
H1O0.23 (2)0.097 (4)0.039 (3)0.034*
O20.1680 (13)0.0208 (3)0.2346 (3)0.0246 (15)
O30.5507 (12)0.0390 (4)0.1872 (3)0.0302 (17)
N10.5551 (15)0.0748 (5)0.0380 (4)0.027 (2)
N20.7075 (16)0.0234 (4)0.0689 (4)0.030 (2)
N30.0990 (15)0.0809 (4)0.1688 (3)0.0205 (18)
H3N0.074 (3)0.078 (5)0.173 (4)0.025*
C10.3774 (19)0.1027 (5)0.0713 (4)0.023 (2)
C20.632 (2)0.0174 (5)0.1215 (4)0.029 (2)
C30.757 (2)0.0339 (6)0.1642 (5)0.036 (3)
H3A0.61870.06340.18250.054*
H3B0.85120.00630.19430.054*
H3C0.88270.06550.14380.054*
C40.215 (2)0.1833 (5)0.0267 (4)0.024 (2)
H4A0.14950.23160.03840.028*
H4B0.40990.18290.03260.028*
C50.0909 (18)0.1267 (5)0.0661 (4)0.019 (2)
H50.15530.07780.05390.023*
C60.1811 (18)0.1406 (5)0.1295 (4)0.020 (2)
H60.37910.14360.12990.024*
C70.264 (2)0.0480 (5)0.1259 (4)0.025 (2)
C80.058 (2)0.0988 (6)0.1256 (5)0.032 (3)
H80.05270.10450.15870.039*
C90.020 (2)0.1406 (6)0.0763 (5)0.038 (3)
H90.12150.17460.07500.046*
C100.189 (3)0.1329 (6)0.0285 (5)0.043 (3)
C110.395 (3)0.0845 (6)0.0296 (5)0.044 (3)
H110.51100.07970.00290.052*
C120.431 (2)0.0421 (6)0.0799 (5)0.033 (3)
H120.57490.00900.08160.040*
C130.135 (4)0.1739 (7)0.0276 (6)0.073 (5)
H13A0.28240.16660.05460.110*
H13B0.11590.22550.01900.110*
H13C0.02960.15590.04520.110*
C140.071 (2)0.2108 (5)0.1548 (5)0.025 (2)
H14A0.12300.20560.15980.031*
H14B0.10170.25040.12650.031*
C150.190 (2)0.2317 (5)0.2115 (4)0.022 (2)
C160.399 (2)0.2813 (6)0.2132 (5)0.034 (3)
H160.46150.30170.17770.041*
C170.519 (2)0.3018 (6)0.2654 (5)0.038 (3)
H170.65930.33590.26550.046*
C180.433 (2)0.2729 (7)0.3151 (6)0.045 (3)
H180.51460.28590.35090.054*
C190.227 (3)0.2243 (6)0.3145 (5)0.047 (3)
H190.16610.20420.35010.056*
C200.108 (3)0.2043 (6)0.2634 (5)0.039 (3)
H200.03480.17070.26420.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0275 (13)0.0300 (13)0.0153 (13)0.0022 (11)0.0008 (10)0.0003 (10)
S20.0342 (15)0.0430 (16)0.0201 (14)0.0050 (13)0.0017 (11)0.0089 (11)
S30.0178 (12)0.0274 (14)0.0213 (13)0.0001 (10)0.0010 (9)0.0063 (10)
O10.019 (3)0.029 (4)0.021 (4)0.005 (3)0.002 (3)0.006 (3)
O20.027 (4)0.032 (4)0.015 (3)0.010 (3)0.000 (3)0.008 (3)
O30.017 (3)0.045 (4)0.029 (4)0.002 (3)0.001 (3)0.006 (3)
N10.014 (4)0.044 (5)0.022 (5)0.007 (4)0.004 (3)0.004 (4)
N20.027 (5)0.035 (5)0.028 (5)0.009 (4)0.004 (4)0.004 (4)
N30.017 (4)0.026 (4)0.018 (4)0.007 (3)0.003 (3)0.005 (3)
C10.018 (5)0.027 (5)0.024 (6)0.013 (4)0.002 (4)0.003 (4)
C20.033 (6)0.031 (6)0.024 (6)0.001 (5)0.008 (5)0.003 (5)
C30.032 (6)0.041 (6)0.035 (7)0.009 (5)0.002 (5)0.007 (5)
C40.036 (6)0.026 (5)0.009 (5)0.000 (5)0.001 (4)0.003 (4)
C50.022 (5)0.018 (5)0.018 (5)0.008 (4)0.008 (4)0.004 (4)
C60.018 (5)0.021 (5)0.022 (5)0.002 (4)0.002 (4)0.012 (4)
C70.028 (5)0.020 (5)0.026 (6)0.009 (4)0.002 (4)0.001 (4)
C80.029 (6)0.043 (7)0.026 (6)0.006 (5)0.002 (5)0.002 (5)
C90.051 (7)0.030 (6)0.034 (8)0.006 (5)0.003 (5)0.003 (5)
C100.069 (9)0.039 (6)0.021 (7)0.024 (7)0.011 (6)0.004 (5)
C110.054 (8)0.042 (7)0.035 (7)0.015 (6)0.021 (6)0.001 (5)
C120.038 (6)0.032 (6)0.029 (7)0.001 (5)0.012 (5)0.003 (5)
C130.123 (14)0.057 (9)0.040 (9)0.016 (10)0.001 (9)0.005 (7)
C140.030 (6)0.019 (5)0.027 (6)0.002 (4)0.004 (4)0.002 (4)
C150.030 (6)0.025 (5)0.011 (5)0.008 (4)0.001 (4)0.004 (4)
C160.033 (6)0.042 (7)0.027 (6)0.010 (5)0.003 (5)0.006 (5)
C170.040 (7)0.036 (7)0.038 (8)0.011 (5)0.003 (5)0.009 (6)
C180.048 (7)0.050 (8)0.036 (8)0.003 (6)0.012 (6)0.012 (6)
C190.089 (10)0.041 (7)0.010 (6)0.002 (7)0.007 (6)0.001 (5)
C200.048 (7)0.039 (6)0.030 (7)0.009 (5)0.001 (6)0.009 (5)
Geometric parameters (Å, º) top
S1—C11.770 (10)C7—C81.397 (14)
S1—C41.818 (9)C8—C91.384 (16)
S2—C11.704 (10)C8—H80.9500
S2—C21.742 (11)C9—C101.397 (16)
S3—O31.433 (7)C9—H90.9500
S3—O21.435 (6)C10—C111.374 (18)
S3—N31.596 (8)C10—C131.518 (18)
S3—C71.763 (10)C11—C121.407 (16)
O1—C51.395 (11)C11—H110.9500
O1—H1O0.838 (11)C12—H120.9500
N1—C11.285 (12)C13—H13A0.9800
N1—N21.414 (11)C13—H13B0.9800
N2—C21.271 (13)C13—H13C0.9800
N3—C61.485 (11)C14—C151.484 (14)
N3—H3N0.878 (11)C14—H14A0.9900
C2—C31.504 (14)C14—H14B0.9900
C3—H3A0.9800C15—C201.361 (15)
C3—H3B0.9800C15—C161.398 (14)
C3—H3C0.9800C16—C171.395 (16)
C4—C51.520 (13)C16—H160.9500
C4—H4A0.9900C17—C181.332 (17)
C4—H4B0.9900C17—H170.9500
C5—C61.546 (13)C18—C191.374 (17)
C5—H51.0000C18—H180.9500
C6—C141.526 (13)C19—C201.369 (16)
C6—H61.0000C19—H190.9500
C7—C121.357 (15)C20—H200.9500
C1—S1—C4103.5 (5)C8—C7—S3118.4 (8)
C1—S2—C285.4 (5)C9—C8—C7118.9 (11)
O3—S3—O2119.4 (4)C9—C8—H8120.6
O3—S3—N3107.4 (4)C7—C8—H8120.6
O2—S3—N3107.0 (4)C8—C9—C10120.0 (12)
O3—S3—C7107.3 (5)C8—C9—H9120.0
O2—S3—C7107.9 (4)C10—C9—H9120.0
N3—S3—C7107.4 (4)C11—C10—C9120.9 (11)
C5—O1—H1O105 (8)C11—C10—C13118.5 (12)
C1—N1—N2110.5 (8)C9—C10—C13120.4 (14)
C2—N2—N1111.9 (8)C10—C11—C12118.3 (10)
C6—N3—S3123.9 (6)C10—C11—H11120.8
C6—N3—H3N112 (6)C12—C11—H11120.8
S3—N3—H3N121 (6)C7—C12—C11121.0 (10)
N1—C1—S2116.9 (8)C7—C12—H12119.5
N1—C1—S1125.3 (8)C11—C12—H12119.5
S2—C1—S1117.8 (6)C10—C13—H13A109.5
N2—C2—C3123.4 (10)C10—C13—H13B109.5
N2—C2—S2115.3 (7)H13A—C13—H13B109.5
C3—C2—S2121.3 (8)C10—C13—H13C109.5
C2—C3—H3A109.5H13A—C13—H13C109.5
C2—C3—H3B109.5H13B—C13—H13C109.5
H3A—C3—H3B109.5C15—C14—C6114.1 (8)
C2—C3—H3C109.5C15—C14—H14A108.7
H3A—C3—H3C109.5C6—C14—H14A108.7
H3B—C3—H3C109.5C15—C14—H14B108.7
C5—C4—S1114.2 (7)C6—C14—H14B108.7
C5—C4—H4A108.7H14A—C14—H14B107.6
S1—C4—H4A108.7C20—C15—C16116.7 (9)
C5—C4—H4B108.7C20—C15—C14123.3 (9)
S1—C4—H4B108.7C16—C15—C14120.0 (9)
H4A—C4—H4B107.6C17—C16—C15121.9 (10)
O1—C5—C4113.2 (8)C17—C16—H16119.1
O1—C5—C6108.6 (8)C15—C16—H16119.1
C4—C5—C6109.0 (7)C18—C17—C16119.3 (11)
O1—C5—H5108.7C18—C17—H17120.4
C4—C5—H5108.7C16—C17—H17120.4
C6—C5—H5108.7C17—C18—C19119.8 (12)
N3—C6—C14107.5 (8)C17—C18—H18120.1
N3—C6—C5111.4 (8)C19—C18—H18120.1
C14—C6—C5113.1 (7)C20—C19—C18121.2 (12)
N3—C6—H6108.2C20—C19—H19119.4
C14—C6—H6108.2C18—C19—H19119.4
C5—C6—H6108.2C15—C20—C19121.1 (11)
C12—C7—C8120.7 (10)C15—C20—H20119.4
C12—C7—S3120.7 (8)C19—C20—H20119.4
C1—N1—N2—C20.1 (12)O3—S3—C7—C8158.1 (8)
O3—S3—N3—C635.0 (9)O2—S3—C7—C828.3 (9)
O2—S3—N3—C6164.3 (7)N3—S3—C7—C886.7 (8)
C7—S3—N3—C680.1 (8)C12—C7—C8—C93.3 (15)
N2—N1—C1—S20.5 (10)S3—C7—C8—C9171.4 (8)
N2—N1—C1—S1179.0 (6)C7—C8—C9—C101.5 (16)
C2—S2—C1—N10.6 (8)C8—C9—C10—C110.5 (18)
C2—S2—C1—S1179.2 (6)C8—C9—C10—C13174.9 (11)
C4—S1—C1—N13.4 (9)C9—C10—C11—C120.7 (17)
C4—S1—C1—S2178.2 (5)C13—C10—C11—C12174.8 (11)
N1—N2—C2—C3179.3 (9)C8—C7—C12—C113.1 (16)
N1—N2—C2—S20.3 (11)S3—C7—C12—C11171.4 (8)
C1—S2—C2—N20.5 (8)C10—C11—C12—C71.1 (17)
C1—S2—C2—C3179.1 (9)N3—C6—C14—C1566.3 (10)
C1—S1—C4—C580.3 (8)C5—C6—C14—C15170.2 (8)
S1—C4—C5—O163.4 (9)C6—C14—C15—C2082.7 (12)
S1—C4—C5—C6175.7 (6)C6—C14—C15—C1696.6 (11)
S3—N3—C6—C14141.8 (7)C20—C15—C16—C170.1 (16)
S3—N3—C6—C593.7 (9)C14—C15—C16—C17179.2 (10)
O1—C5—C6—N364.8 (9)C15—C16—C17—C180.6 (17)
C4—C5—C6—N3171.5 (7)C16—C17—C18—C190.9 (18)
O1—C5—C6—C1456.5 (10)C17—C18—C19—C200.5 (19)
C4—C5—C6—C1467.3 (10)C16—C15—C20—C190.5 (16)
O3—S3—C7—C1227.3 (10)C14—C15—C20—C19178.8 (11)
O2—S3—C7—C12157.1 (8)C18—C19—C20—C150.2 (19)
N3—S3—C7—C1287.9 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N1i0.84 (7)2.11 (8)2.860 (11)148 (8)
N3—H3N···O3i0.88 (2)2.05 (4)2.902 (10)163 (9)
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC20H23N3O3S3
Mr449.59
Crystal system, space groupOrthorhombic, P212121
Temperature (K)120
a, b, c (Å)5.0420 (2), 18.4840 (8), 22.9650 (8)
V3)2140.25 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.14 × 0.02 × 0.02
Data collection
DiffractometerBruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.438, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12594, 2182, 1538
Rint0.144
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.206, 1.29
No. of reflections2182
No. of parameters270
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.47
Absolute structureNd

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N1i0.84 (7)2.11 (8)2.860 (11)148 (8)
N3—H3N···O3i0.879 (18)2.05 (4)2.902 (10)163 (9)
Symmetry code: (i) x1, y, z.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

References

First citationAndrews, K. T., Fairlie, D. P., Madala, P. K., Ray, J., Wyatt, D. M., Hilton, P. M., Melville, L. A., Beattie, L., Gardioner, D. L., Reid, R. C., Stoermer, M. J., Skinner-Adams, T., Berry, C. & McCarthy, J. S. (2006). Antimicrob. Agents Chemother. 50, 639–648.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrik, A. & Wong, C.-H. (2003). Org. Biomol. Chem. 1, 5–14.  CrossRef CAS Google Scholar
First citationCunico, W., Ferreira, M. L. G., Ferreira, T. G., Penido, C., Henriques, M. G. M. O., Krettli, L. G., Varotti, F. P. & Krettli, A. U. (2008). Lett. Drug Des. Discov. 5, 178–181.  CrossRef CAS Google Scholar
First citationCunico, W., Gomes, C. R. B., Facchinetti, V., Moreth, M., Penido, C., Henriques, M. G. M. O., Varotti, F. P., Krettli, L. G., Krettli, A. U., da Silva, F. S., Caffarena, E. R. & de Magalhães, C. S. (2009). Eur. J. Med. Chem. 44, 3816–3820.  CrossRef CAS Google Scholar
First citationCunico, W., Gomes, C. R. B., Ferreira, M. L. G., Ferreira, T. G., Cardinot, D., de Souza, M. V. N. & Lourenço, M. C. S. (2011). Eur. J. Med. Chem. 46, 974–978.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCunico, W., Gomes, C. R. B., Harrison, W. T. A., Moreth, M., Wardell, J. L. & Wardell, S. M. S. C. (2009). Z. Kristallogr. 224, 461–470.  CrossRef CAS Google Scholar
First citationCunico, W., Gomes, C. R. B., Moreth, M., Manhanini, D. P., Figueiredo, I. H., Penido, C., Henriques, M. G. M. O., Varotti, F. P. & Krettli, A. U. (2009). Eur. J. Med. Chem. 44, 1363–1368.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFerreira, M. L., Vasconcelos, T. R. A., de Carvalho, E. M., Lourenço, M. C. S., Wardell, S. M. S. V., Wardell, J. L., Ferreira, V. F. & de Souza, M. V. N. (2009). Carbohydr. Res. 344, 2042–2047.  CrossRef CAS Google Scholar
First citationGhosh, A. K., Bilcer, G. & Schiltz, G. (2001). Synthesis, pp. 2203–2229.  CrossRef Google Scholar
First citationGomes, C. R. B., Vasconcelos, T. R. A., Vellasco, W. T., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2313–o2314.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOliveira, P. S. M. de, Ferreira, V. F., de Souza, M. V. N. & de Carvalho, E. M. (2008). Quim. Nova, 31, 776–780.  CrossRef Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationParikh, S., Gut, J., Istvan, E., Goldberg, D. E., Havlir, D. V. & Rosenthal, P. J. (2005). Antimicrob. Agents Chemother. 49, 2983–2985.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2447-o2448
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds