organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(5,6-Di­hydro­benzimidazo[1,2-c]quinazolin-6-yl)-6-eth­­oxy­phenol

aSchool of Chemical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia, bDepartment of Chemistry, International University of Africa, Sudan, and cChemistry Department, Faculty of Science, University of Malaya, Malaysia
*Correspondence e-mail: sgteoh@usm.my

(Received 16 August 2011; accepted 24 August 2011; online 31 August 2011)

In the title compound, C22H19N3O2, the phenol ring forms dihedral angles of 88.93 (10) and 87.95 (12)° with the benzimidazole system and the quinazoline benzene ring, respectively. In the crystal, mol­ecules are linked via O—H⋯N hydrogen bonds into infinite chains along [100]. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring.

Related literature

For a related structure, references to our previous structural studies of similar compounds and background references to benzimidazoles, see: Eltayeb et al. (2011[Eltayeb, N. E., Teoh, S. G., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o2243-o2244.]).

[Scheme 1]

Experimental

Crystal data
  • C22H19N3O2

  • Mr = 357.40

  • Triclinic, [P \overline 1]

  • a = 8.6935 (3) Å

  • b = 10.9167 (3) Å

  • c = 11.3401 (5) Å

  • α = 107.193 (2)°

  • β = 108.923 (2)°

  • γ = 104.723 (2)°

  • V = 896.66 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.25 × 0.2 × 0.17 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.614, Tmax = 0.746

  • 7367 measured reflections

  • 3505 independent reflections

  • 2804 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.164

  • S = 1.00

  • 3505 reflections

  • 250 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯N1i 0.82 1.85 2.646 (3) 165
N2—H1N2⋯O1 1.01 (4) 2.12 (3) 2.811 (3) 124 (2)
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing structural studies of benzimidazoles and their derivatives (Eltayeb et al., 2011, and references therein) we now describe in this paper the structure of the title compound, (I), (Fig. 1).

In the title compound, C22H19N3O2, the phenol-substituted ring forms dihedral angles of 88.93 (10) and 87.95 (12)° with the benzimidazole system and the quinazoline benzene ring, respectively. The phenol-substituted ring is perpendicular to the 10-membered quinazoline ring with dihedral angle 89.49 (9) °. The dihedral angle between the 9-membered benzimidazole and 10-membered quinazoline rings is 9.72 (8) °. The exthoxy group is planarly attached to the phenol ring.

In the crystal, molecules are linked via intermolecular O—H···N hydrogen bonds into infinite one-dimensional chain along [100]. The intramolecular N—H···O hydrogen bond generates an S(6) ring (Table 1).

C—H···π interactions are also present; C11—H11··· Cg5i =2.63 Å, C20—H20···Cg1ii = 2.79 Å and C21—H21A···Cg5iii = 2.88 Å. Cg5 and Cg1 are centroids of C15—C20 and N1/C6/C1/N3/C7 rings respectively, [symmetry codes: (i) = 1-X,-Y,-Z; (ii) = X,Y,Z; (iii) =1-X,1-Y,1-Z].

Related literature top

For a related structure, references to our previous structural studies of similar compounds and background references to benzimidazoles, see: Eltayeb et al. (2011).

Experimental top

The title compound was synthesized by adding 3-ethoxthysalicylaldehyde (0.166 g, 1.0 mmol) to a solution of 2-(2-aminophenyl)-1H-benzimidazole 0.209 g, 1.0 mmol) in ethanol (30 ml). The color of the resulting solution is pale-yellow. Then upon adding zinc chloride (0.136 g, 1.0 mmol), the color of the solution became golden-yellow. The mixture was refluxed with stirring for 3 hrs. The resultant solution was filtered and the filtrate was evaporated to give a yellow solid product. Yellow blocks of (I) were obtained from ethanol by slow evaporation at room temperature after three weeks.

Refinement top

N bound H atom was located in a difference Fourier map and were refined freely. The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 or 0.97 Å and Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O). The highest residual electron density peak is 1.17Å from H2 and the deepest hole is 0.71Å from C1.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the b axis. Hydrogen bonds are shown as dashed lines.
2-(5,6-Dihydrobenzimidazo[1,2-c]quinazolin-6-yl)-6-ethoxyphenol top
Crystal data top
C22H19N3O2Z = 2
Mr = 357.40F(000) = 376
Triclinic, P1Dx = 1.324 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6935 (3) ÅCell parameters from 2997 reflections
b = 10.9167 (3) Åθ = 2.6–28.3°
c = 11.3401 (5) ŵ = 0.09 mm1
α = 107.193 (2)°T = 296 K
β = 108.923 (2)°Block, yellow
γ = 104.723 (2)°0.25 × 0.2 × 0.17 mm
V = 896.66 (6) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3505 independent reflections
Radiation source: fine-focus sealed tube2804 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.614, Tmax = 0.746k = 1313
7367 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0842P)2 + 1.0545P]
where P = (Fo2 + 2Fc2)/3
3505 reflections(Δ/σ)max < 0.001
250 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C22H19N3O2γ = 104.723 (2)°
Mr = 357.40V = 896.66 (6) Å3
Triclinic, P1Z = 2
a = 8.6935 (3) ÅMo Kα radiation
b = 10.9167 (3) ŵ = 0.09 mm1
c = 11.3401 (5) ÅT = 296 K
α = 107.193 (2)°0.25 × 0.2 × 0.17 mm
β = 108.923 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3505 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2804 reflections with I > 2σ(I)
Tmin = 0.614, Tmax = 0.746Rint = 0.022
7367 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.73 e Å3
3505 reflectionsΔρmin = 0.39 e Å3
250 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.2462 (2)0.30314 (16)0.30490 (16)0.0186 (4)
O10.3194 (2)0.36858 (17)0.10937 (16)0.0198 (4)
H1O10.24990.39740.13120.030*
N20.5360 (3)0.3168 (2)0.0210 (2)0.0212 (4)
N30.8203 (3)0.4820 (2)0.1277 (2)0.0199 (4)
C220.0082 (3)0.1800 (3)0.3379 (3)0.0300 (6)
H22A0.04270.24630.32580.045*
H22B0.02370.14610.39920.045*
H22C0.03500.10370.25100.045*
C210.2056 (3)0.2487 (2)0.3970 (2)0.0207 (5)
H21A0.25140.32320.48690.025*
H21B0.25840.18160.40590.025*
C170.4186 (3)0.3471 (2)0.3259 (2)0.0159 (5)
C160.4501 (3)0.3791 (2)0.2227 (2)0.0156 (5)
C150.6199 (3)0.4154 (2)0.2305 (2)0.0158 (5)
C140.6409 (3)0.4416 (2)0.1107 (2)0.0177 (5)
H140.60120.51630.10250.021*
C130.6001 (3)0.2101 (2)0.0438 (2)0.0196 (5)
C80.7844 (3)0.2458 (2)0.0104 (2)0.0210 (5)
C90.8501 (3)0.1412 (3)0.0197 (3)0.0235 (5)
H90.97120.16370.01560.028*
C100.7343 (3)0.0051 (2)0.1018 (3)0.0264 (6)
H100.77700.06470.12120.032*
C180.5574 (3)0.3556 (2)0.4365 (2)0.0181 (5)
H180.53710.33640.50600.022*
C190.7260 (3)0.3924 (2)0.4435 (2)0.0193 (5)
H190.81830.39780.51770.023*
C200.7578 (3)0.4213 (2)0.3406 (2)0.0184 (5)
H200.87070.44440.34490.022*
C110.5555 (3)0.0273 (3)0.1549 (3)0.0276 (6)
H110.47860.11940.21060.033*
C120.4880 (3)0.0721 (2)0.1280 (2)0.0243 (5)
H120.36650.04740.16610.029*
C70.8974 (3)0.3931 (2)0.0916 (2)0.0193 (5)
N11.0679 (3)0.4543 (2)0.1332 (2)0.0214 (4)
C61.1063 (3)0.5952 (2)0.2058 (2)0.0202 (5)
C51.2674 (3)0.7073 (3)0.2714 (2)0.0228 (5)
H51.36910.69580.26950.027*
C41.2708 (3)0.8375 (3)0.3399 (3)0.0312 (6)
H41.37670.91470.38550.037*
C31.1143 (4)0.8535 (3)0.3410 (3)0.0303 (6)
H31.11970.94110.38900.036*
C20.9543 (3)0.7420 (3)0.2726 (3)0.0257 (5)
H20.85100.75230.27170.031*
C10.9549 (3)0.6149 (2)0.2056 (2)0.0222 (5)
H1N20.409 (4)0.280 (3)0.035 (3)0.043 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0157 (8)0.0213 (8)0.0235 (8)0.0083 (6)0.0111 (7)0.0116 (7)
O10.0160 (8)0.0301 (9)0.0206 (8)0.0148 (7)0.0098 (7)0.0129 (7)
N20.0169 (10)0.0223 (10)0.0212 (10)0.0076 (8)0.0073 (8)0.0062 (8)
N30.0174 (10)0.0228 (10)0.0222 (10)0.0087 (8)0.0097 (8)0.0110 (8)
C220.0255 (13)0.0367 (15)0.0420 (15)0.0142 (11)0.0213 (12)0.0250 (12)
C210.0246 (12)0.0199 (11)0.0237 (12)0.0095 (9)0.0141 (10)0.0117 (9)
C170.0167 (11)0.0114 (10)0.0186 (11)0.0066 (8)0.0074 (9)0.0040 (8)
C160.0178 (11)0.0137 (10)0.0162 (11)0.0091 (8)0.0067 (9)0.0056 (8)
C150.0173 (11)0.0134 (10)0.0181 (11)0.0076 (8)0.0079 (9)0.0065 (8)
C140.0164 (11)0.0216 (11)0.0226 (11)0.0121 (9)0.0107 (9)0.0122 (9)
C130.0242 (12)0.0247 (12)0.0168 (11)0.0144 (10)0.0113 (10)0.0106 (9)
C80.0279 (13)0.0161 (11)0.0140 (10)0.0047 (9)0.0066 (10)0.0061 (9)
C90.0192 (12)0.0267 (12)0.0294 (13)0.0120 (10)0.0109 (10)0.0147 (10)
C100.0370 (15)0.0177 (12)0.0274 (13)0.0126 (10)0.0168 (11)0.0081 (10)
C180.0211 (11)0.0158 (10)0.0169 (11)0.0057 (9)0.0081 (9)0.0072 (9)
C190.0161 (11)0.0187 (11)0.0167 (11)0.0052 (9)0.0014 (9)0.0066 (9)
C200.0134 (11)0.0182 (11)0.0211 (11)0.0061 (9)0.0059 (9)0.0066 (9)
C110.0325 (14)0.0195 (12)0.0263 (13)0.0055 (10)0.0127 (11)0.0073 (10)
C120.0203 (12)0.0244 (12)0.0220 (12)0.0026 (10)0.0094 (10)0.0063 (10)
C70.0198 (11)0.0271 (12)0.0178 (11)0.0139 (10)0.0095 (9)0.0125 (10)
N10.0182 (10)0.0255 (10)0.0226 (10)0.0091 (8)0.0087 (8)0.0125 (8)
C60.0217 (12)0.0210 (11)0.0152 (11)0.0044 (9)0.0048 (9)0.0107 (9)
C50.0185 (12)0.0310 (13)0.0195 (11)0.0085 (10)0.0064 (9)0.0142 (10)
C40.0291 (14)0.0238 (13)0.0233 (12)0.0064 (10)0.0030 (11)0.0107 (10)
C30.0426 (16)0.0178 (12)0.0272 (13)0.0100 (11)0.0131 (12)0.0085 (10)
C20.0251 (13)0.0269 (13)0.0275 (13)0.0097 (10)0.0119 (11)0.0138 (11)
C10.0215 (12)0.0228 (12)0.0202 (11)0.0040 (9)0.0068 (10)0.0126 (10)
Geometric parameters (Å, º) top
O2—C171.367 (3)C8—C71.461 (3)
O2—C211.438 (3)C9—C101.379 (3)
O1—C161.362 (3)C9—H90.9300
O1—H1O10.8200C10—C111.375 (4)
N2—C131.407 (3)C10—H100.9300
N2—C141.483 (3)C18—C191.386 (3)
N2—H1N21.02 (3)C18—H180.9300
N3—C71.354 (3)C19—C201.386 (3)
N3—C11.401 (3)C19—H190.9300
N3—C141.439 (3)C20—H200.9300
C22—C211.503 (3)C11—C121.364 (4)
C22—H22A0.9600C11—H110.9300
C22—H22B0.9600C12—H120.9300
C22—H22C0.9600C7—N11.312 (3)
C21—H21A0.9700N1—C61.403 (3)
C21—H21B0.9700C6—C11.385 (3)
C17—C181.389 (3)C6—C51.389 (3)
C17—C161.402 (3)C5—C41.391 (4)
C16—C151.394 (3)C5—H50.9300
C15—C201.394 (3)C4—C31.419 (4)
C15—C141.524 (3)C4—H40.9300
C14—H140.9800C3—C21.378 (4)
C13—C121.390 (3)C3—H30.9300
C13—C81.414 (3)C2—C11.373 (4)
C8—C91.404 (3)C2—H20.9300
C17—O2—C21116.69 (17)C10—C9—H9120.2
C16—O1—H1O1109.5C8—C9—H9120.2
C13—N2—C14117.46 (18)C11—C10—C9119.9 (2)
C13—N2—H1N2111.6 (18)C11—C10—H10120.0
C14—N2—H1N2109.0 (18)C9—C10—H10120.0
C7—N3—C1106.87 (19)C19—C18—C17120.2 (2)
C7—N3—C14125.18 (19)C19—C18—H18119.9
C1—N3—C14126.96 (19)C17—C18—H18119.9
C21—C22—H22A109.5C20—C19—C18120.4 (2)
C21—C22—H22B109.5C20—C19—H19119.8
H22A—C22—H22B109.5C18—C19—H19119.8
C21—C22—H22C109.5C19—C20—C15119.7 (2)
H22A—C22—H22C109.5C19—C20—H20120.1
H22B—C22—H22C109.5C15—C20—H20120.1
O2—C21—C22107.31 (19)C12—C11—C10121.7 (2)
O2—C21—H21A110.3C12—C11—H11119.2
C22—C21—H21A110.3C10—C11—H11119.2
O2—C21—H21B110.3C11—C12—C13120.2 (2)
C22—C21—H21B110.3C11—C12—H12119.9
H21A—C21—H21B108.5C13—C12—H12119.9
O2—C17—C18124.7 (2)N1—C7—N3113.7 (2)
O2—C17—C16115.40 (19)N1—C7—C8128.5 (2)
C18—C17—C16119.8 (2)N3—C7—C8117.8 (2)
O1—C16—C15117.52 (19)C7—N1—C6104.17 (19)
O1—C16—C17122.89 (19)C1—C6—C5120.5 (2)
C15—C16—C17119.5 (2)C1—C6—N1110.7 (2)
C20—C15—C16120.3 (2)C5—C6—N1128.8 (2)
C20—C15—C14123.6 (2)C6—C5—C4117.4 (2)
C16—C15—C14116.07 (19)C6—C5—H5121.3
N3—C14—N2105.89 (17)C4—C5—H5121.3
N3—C14—C15112.84 (18)C5—C4—C3120.6 (2)
N2—C14—C15112.62 (18)C5—C4—H4119.7
N3—C14—H14108.4C3—C4—H4119.7
N2—C14—H14108.4C2—C3—C4121.4 (2)
C15—C14—H14108.4C2—C3—H3119.3
C12—C13—N2121.8 (2)C4—C3—H3119.3
C12—C13—C8118.9 (2)C1—C2—C3116.7 (2)
N2—C13—C8119.0 (2)C1—C2—H2121.7
C9—C8—C13119.6 (2)C3—C2—H2121.7
C9—C8—C7123.3 (2)C2—C1—C6123.3 (2)
C13—C8—C7117.1 (2)C2—C1—N3132.2 (2)
C10—C9—C8119.7 (2)C6—C1—N3104.5 (2)
C17—O2—C21—C22168.25 (19)C16—C15—C20—C190.8 (3)
C21—O2—C17—C186.7 (3)C14—C15—C20—C19178.3 (2)
C21—O2—C17—C16170.40 (18)C9—C10—C11—C120.4 (4)
O2—C17—C16—O10.5 (3)C10—C11—C12—C130.7 (4)
C18—C17—C16—O1177.77 (19)N2—C13—C12—C11175.7 (2)
O2—C17—C16—C15175.55 (18)C8—C13—C12—C111.5 (4)
C18—C17—C16—C151.7 (3)C1—N3—C7—N12.4 (3)
O1—C16—C15—C20176.86 (19)C14—N3—C7—N1171.7 (2)
C17—C16—C15—C200.6 (3)C1—N3—C7—C8179.14 (19)
O1—C16—C15—C140.8 (3)C14—N3—C7—C89.9 (3)
C17—C16—C15—C14177.08 (18)C9—C8—C7—N19.6 (4)
C7—N3—C14—N237.3 (3)C13—C8—C7—N1167.8 (2)
C1—N3—C14—N2155.6 (2)C9—C8—C7—N3172.1 (2)
C7—N3—C14—C1586.4 (3)C13—C8—C7—N310.4 (3)
C1—N3—C14—C1580.8 (3)N3—C7—N1—C61.5 (3)
C13—N2—C14—N348.0 (3)C8—C7—N1—C6179.8 (2)
C13—N2—C14—C1575.8 (2)C7—N1—C6—C10.0 (3)
C20—C15—C14—N33.9 (3)C7—N1—C6—C5179.5 (2)
C16—C15—C14—N3178.50 (18)C1—C6—C5—C42.3 (3)
C20—C15—C14—N2115.9 (2)N1—C6—C5—C4178.3 (2)
C16—C15—C14—N261.7 (2)C6—C5—C4—C30.5 (4)
C14—N2—C13—C12152.2 (2)C5—C4—C3—C21.2 (4)
C14—N2—C13—C833.6 (3)C4—C3—C2—C11.1 (4)
C12—C13—C8—C91.2 (3)C3—C2—C1—C60.8 (4)
N2—C13—C8—C9175.5 (2)C3—C2—C1—N3179.8 (2)
C12—C13—C8—C7176.4 (2)C5—C6—C1—C22.5 (4)
N2—C13—C8—C72.0 (3)N1—C6—C1—C2177.9 (2)
C13—C8—C9—C100.1 (4)C5—C6—C1—N3178.2 (2)
C7—C8—C9—C10177.3 (2)N1—C6—C1—N31.4 (2)
C8—C9—C10—C110.7 (4)C7—N3—C1—C2177.0 (3)
O2—C17—C18—C19175.5 (2)C14—N3—C1—C28.0 (4)
C16—C17—C18—C191.5 (3)C7—N3—C1—C62.2 (2)
C17—C18—C19—C200.1 (3)C14—N3—C1—C6171.2 (2)
C18—C19—C20—C151.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N1i0.821.852.646 (3)165
N2—H1N2···O11.01 (4)2.12 (3)2.811 (3)124 (2)
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC22H19N3O2
Mr357.40
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.6935 (3), 10.9167 (3), 11.3401 (5)
α, β, γ (°)107.193 (2), 108.923 (2), 104.723 (2)
V3)896.66 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.2 × 0.17
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.614, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
7367, 3505, 2804
Rint0.022
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.164, 1.00
No. of reflections3505
No. of parameters250
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.73, 0.39

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N1i0.821.852.646 (3)165
N2—H1N2···O11.01 (4)2.12 (3)2.811 (3)124 (2)
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia for the RU research grant (1001/PKIMIA/815067). NEE thanks Universiti Sains Malaysia for a post-doctoral fellowship and the Inter­national University of Africa (Sudan) for providing research leave.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o2243–o2244.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds