organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[5-(4-Meth­­oxy­phen­yl)-3-phenyl-4,5-di­hydro-1H-pyrazol-1-yl]-6-methyl-1,3-benzo­thia­zole

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bChemistry Division, School of Advanced Sciences, VIT University, Vellore 632014, Tamil Nadu, India, and cDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, D. K., Mangalore, India
*Correspondence e-mail: hkfun@usm.my

(Received 16 August 2011; accepted 18 August 2011; online 27 August 2011)

In the title compound, C24H21N3OS, the pyrazole ring makes dihedral angles of 5.40 (7) and 6.72 (8)° with the benzo[d]thiazole ring system and the benzene ring, respectively, and a dihedral angle of 85.72 (8)° with the meth­oxy-substituted benzene ring. In the crystal structure, the mol­ecules are linked by C—H⋯π inter­actions.

Related literature

For background to the properties and applications of pyrazolines, see: Taylor et al. (1992[Taylor, E. C., Patel, H. & Kumar, H. (1992). Tetrahedron, 48, 8089-8100.]); Rajendera Prasad et al. (2005[Rajendera Prasad, Y., Lakshmana Rao, A., Prasoona, L., Murali, K. & Ravi Kumar, P. (2005). Bioorg. Med. Chem. Lett. 15, 5030-5034.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Scheme 1]

Experimental

Crystal data
  • C24H21N3OS

  • Mr = 399.50

  • Orthorhombic, P b c n

  • a = 22.632 (3) Å

  • b = 11.1961 (12) Å

  • c = 16.1137 (18) Å

  • V = 4083.1 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 296 K

  • 0.37 × 0.24 × 0.19 mm

Data collection
  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.936, Tmax = 0.967

  • 25081 measured reflections

  • 5949 independent reflections

  • 3835 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.123

  • S = 1.00

  • 5949 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the S1/C17/N1/C18/C23, C1–C6 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15ACg1i 0.93 2.91 3.6318 (17) 138
C22—H22ACg2i 0.93 2.89 3.6438 (18) 140
C2—H2ACg3ii 0.93 2.74 3.4884 (18) 138
Symmetry codes: (i) [x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [x, -y-1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrazolines are an important class of heterocyclic compounds, some of which exhibit important pharmacological activities such as antitumor (Taylor et al., 1992) and antidepressant (Rajendera Prasad et al., 2005) agents. The title compound, (I), was synthesized by the condensation of 1-(6-methylbenzo[d]thiazol-2-yl)hydrazine with (E)-3-(4-methoxyphenyl)-1-phenylprop-2-en-1-one in presence of ethanol and its crystal structure is now described.

In the molecular structure (Fig 1), the pyrazole ring (N2/N3/C7–C9) is approximately planar with the benzo[d]thiozole ring system (S1/N1/C17–C23) and the benzene ring (C1–C6) with dihedral angles of 5.40 (7)° and 6.72 (8)°, respectively. On the other hand, the pyrazole ring (N2/N3/C7–C9) is approximately perpendicular to the methoxy substituted benzene ring (C10–C15) with dihedral angle of 85.72 (8)°. The bond lengths (Allen et al., 1987) and angles are within normal ranges.

The crystal packing is shown in Fig. 2. The crystal structure is stabilized by the intermolecular C15–H15A···Cg1, C22—H22A···Cg2 and C2—H2A···Cg3 (Table 1) interactions (Cg1, Cg2 and Cg3 are the centroids of S1/C17/N1/C18/C23, C1—C6 and C10—C15 rings, respectively).

Related literature top

For background to the properties and applications of pyrazolines, see: Taylor et al. (1992); Rajendera Prasad et al. (2005). For reference bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of (E)-3-(4-methoxyphenyl)-1-phenylprop-2-en-1-one (5 mmol) and 1-(6-methylbenzo[d]thiazol-2-yl)hydrazine (5 mmol) was refluxed for 16 h in ethanol (20 ml). After completion of the reaction, the reaction mixture was poured into cold water. The precipitate obtained was filtered and washed with cold water. The product was recrystalized from ethanol to yield colourless blocks of (I) and dried. m.p. 131–132 °C, HRMS Calcd for C24H21N3OS 399.5080 found 399.5079.

Refinement top

All H atoms were positioned geometrically [C—H = 0.93–0.98 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound.
2-[5-(4-Methoxyphenyl)-3-phenyl-4,5-dihydro-1H-pyrazol-1-yl]-6-methyl- 1,3-benzothiazole top
Crystal data top
C24H21N3OSF(000) = 1680
Mr = 399.50Dx = 1.300 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 4472 reflections
a = 22.632 (3) Åθ = 2.4–27.1°
b = 11.1961 (12) ŵ = 0.18 mm1
c = 16.1137 (18) ÅT = 296 K
V = 4083.1 (8) Å3Block, colourless
Z = 80.37 × 0.24 × 0.19 mm
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
5949 independent reflections
Radiation source: fine-focus sealed tube3835 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 30.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 3131
Tmin = 0.936, Tmax = 0.967k = 1510
25081 measured reflectionsl = 2218
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0593P)2 + 0.3403P]
where P = (Fo2 + 2Fc2)/3
5949 reflections(Δ/σ)max = 0.002
264 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C24H21N3OSV = 4083.1 (8) Å3
Mr = 399.50Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 22.632 (3) ŵ = 0.18 mm1
b = 11.1961 (12) ÅT = 296 K
c = 16.1137 (18) Å0.37 × 0.24 × 0.19 mm
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
5949 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3835 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.967Rint = 0.041
25081 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.00Δρmax = 0.25 e Å3
5949 reflectionsΔρmin = 0.29 e Å3
264 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.537594 (17)0.00428 (3)0.11748 (3)0.04063 (11)
N10.51267 (5)0.20397 (10)0.05137 (8)0.0394 (3)
N20.43376 (5)0.11316 (10)0.11985 (8)0.0408 (3)
N30.41278 (5)0.01631 (10)0.16416 (8)0.0382 (3)
O10.43721 (6)0.61031 (10)0.32050 (8)0.0589 (3)
C10.26306 (7)0.02592 (14)0.24336 (11)0.0463 (4)
H1A0.24590.04370.22310.056*
C20.22952 (7)0.10444 (16)0.29063 (11)0.0529 (4)
H2A0.19020.08670.30230.063*
C30.25414 (8)0.20806 (16)0.32013 (11)0.0537 (4)
H3A0.23150.26080.35140.064*
C40.31269 (8)0.23390 (15)0.30326 (11)0.0535 (4)
H4A0.32930.30410.32350.064*
C50.34660 (7)0.15656 (13)0.25674 (10)0.0450 (4)
H5A0.38590.17480.24560.054*
C60.32201 (6)0.05056 (12)0.22615 (9)0.0378 (3)
C70.35724 (6)0.03383 (12)0.17774 (10)0.0377 (3)
C80.33397 (7)0.14714 (13)0.13926 (10)0.0427 (4)
H8A0.31170.19380.17920.051*
H8B0.30910.13010.09170.051*
C90.39093 (6)0.21231 (12)0.11292 (10)0.0384 (3)
H9A0.38790.23900.05520.046*
C100.40585 (6)0.31648 (12)0.16894 (9)0.0340 (3)
C110.39769 (7)0.43310 (13)0.14186 (10)0.0423 (4)
H11A0.38510.44700.08780.051*
C120.40797 (8)0.52875 (14)0.19391 (10)0.0471 (4)
H12A0.40200.60620.17490.056*
C130.42714 (6)0.50954 (13)0.27438 (10)0.0396 (3)
C140.43514 (7)0.39440 (13)0.30260 (10)0.0411 (3)
H14A0.44770.38070.35670.049*
C150.42441 (7)0.29915 (13)0.24975 (10)0.0399 (3)
H15A0.42980.22170.26910.048*
C160.45090 (10)0.5966 (2)0.40532 (13)0.0768 (6)
H16A0.45690.67370.42990.115*
H16B0.48630.54990.41090.115*
H16C0.41890.55670.43290.115*
C170.49059 (6)0.11551 (12)0.09394 (9)0.0348 (3)
C180.57140 (6)0.17917 (13)0.03344 (9)0.0388 (3)
C190.60917 (8)0.25405 (16)0.01089 (10)0.0508 (4)
H19A0.59560.32650.03170.061*
C200.66700 (8)0.21907 (17)0.02351 (11)0.0550 (4)
H20A0.69190.26880.05380.066*
C210.68940 (7)0.11232 (16)0.00738 (10)0.0498 (4)
C220.65199 (7)0.03749 (15)0.05197 (10)0.0455 (4)
H22A0.66600.03430.07340.055*
C230.59353 (6)0.07106 (13)0.06414 (9)0.0375 (3)
C240.75341 (8)0.0795 (2)0.00596 (13)0.0688 (5)
H24A0.76160.00460.02070.103*
H24B0.77820.14050.01730.103*
H24C0.76110.07270.06440.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0411 (2)0.03568 (19)0.0451 (2)0.00003 (15)0.00495 (16)0.00259 (15)
N10.0411 (7)0.0400 (7)0.0372 (7)0.0024 (5)0.0005 (5)0.0015 (5)
N20.0386 (7)0.0320 (6)0.0519 (8)0.0002 (5)0.0072 (6)0.0028 (5)
N30.0376 (6)0.0334 (6)0.0435 (8)0.0027 (5)0.0044 (5)0.0023 (5)
O10.0692 (8)0.0499 (7)0.0575 (8)0.0019 (6)0.0072 (6)0.0192 (6)
C10.0370 (7)0.0434 (8)0.0585 (11)0.0011 (6)0.0023 (7)0.0003 (7)
C20.0336 (8)0.0619 (11)0.0631 (12)0.0049 (7)0.0055 (7)0.0002 (9)
C30.0483 (9)0.0560 (10)0.0568 (11)0.0135 (8)0.0059 (8)0.0069 (8)
C40.0527 (10)0.0435 (9)0.0642 (12)0.0015 (7)0.0048 (8)0.0091 (8)
C50.0399 (8)0.0400 (8)0.0551 (10)0.0008 (6)0.0041 (7)0.0010 (7)
C60.0353 (7)0.0369 (7)0.0411 (9)0.0048 (6)0.0001 (6)0.0053 (6)
C70.0359 (7)0.0348 (7)0.0423 (9)0.0030 (6)0.0017 (6)0.0057 (6)
C80.0356 (7)0.0377 (8)0.0548 (10)0.0020 (6)0.0040 (7)0.0013 (7)
C90.0388 (7)0.0360 (7)0.0405 (8)0.0002 (6)0.0031 (6)0.0009 (6)
C100.0311 (7)0.0339 (7)0.0369 (8)0.0001 (5)0.0003 (6)0.0027 (6)
C110.0536 (9)0.0375 (8)0.0358 (8)0.0010 (6)0.0030 (7)0.0059 (6)
C120.0623 (10)0.0324 (7)0.0465 (10)0.0029 (7)0.0002 (8)0.0036 (6)
C130.0337 (7)0.0419 (8)0.0434 (9)0.0010 (6)0.0013 (6)0.0056 (7)
C140.0370 (7)0.0487 (8)0.0374 (8)0.0031 (6)0.0052 (6)0.0008 (6)
C150.0399 (8)0.0372 (7)0.0425 (9)0.0025 (6)0.0052 (6)0.0062 (6)
C160.0759 (14)0.0946 (16)0.0600 (13)0.0059 (12)0.0087 (11)0.0341 (12)
C170.0376 (7)0.0346 (7)0.0322 (8)0.0022 (6)0.0009 (6)0.0048 (6)
C180.0409 (8)0.0436 (8)0.0319 (8)0.0050 (6)0.0007 (6)0.0028 (6)
C190.0548 (10)0.0510 (10)0.0466 (10)0.0072 (7)0.0057 (8)0.0075 (8)
C200.0513 (10)0.0659 (11)0.0477 (10)0.0166 (8)0.0107 (8)0.0010 (8)
C210.0401 (8)0.0671 (11)0.0422 (9)0.0069 (8)0.0043 (7)0.0114 (8)
C220.0420 (8)0.0516 (9)0.0429 (9)0.0011 (7)0.0006 (7)0.0048 (7)
C230.0399 (7)0.0413 (8)0.0314 (8)0.0042 (6)0.0021 (6)0.0019 (6)
C240.0437 (9)0.0941 (15)0.0686 (13)0.0049 (10)0.0110 (9)0.0166 (11)
Geometric parameters (Å, º) top
S1—C231.7473 (15)C9—H9A0.9800
S1—C171.7534 (15)C10—C151.382 (2)
N1—C171.3042 (18)C10—C111.3891 (19)
N1—C181.3884 (19)C11—C121.380 (2)
N2—C171.3525 (18)C11—H11A0.9300
N2—N31.3824 (16)C12—C131.384 (2)
N2—C91.4780 (18)C12—H12A0.9300
N3—C71.2909 (18)C13—C141.379 (2)
O1—C131.3701 (17)C14—C151.386 (2)
O1—C161.410 (2)C14—H14A0.9300
C1—C21.389 (2)C15—H15A0.9300
C1—C61.390 (2)C16—H16A0.9600
C1—H1A0.9300C16—H16B0.9600
C2—C31.372 (2)C16—H16C0.9600
C2—H2A0.9300C18—C191.394 (2)
C3—C41.383 (2)C18—C231.400 (2)
C3—H3A0.9300C19—C201.381 (2)
C4—C51.379 (2)C19—H19A0.9300
C4—H4A0.9300C20—C211.390 (3)
C5—C61.400 (2)C20—H20A0.9300
C5—H5A0.9300C21—C221.391 (2)
C6—C71.462 (2)C21—C241.510 (2)
C7—C81.507 (2)C22—C231.389 (2)
C8—C91.541 (2)C22—H22A0.9300
C8—H8A0.9700C24—H24A0.9600
C8—H8B0.9700C24—H24B0.9600
C9—C101.513 (2)C24—H24C0.9600
C23—S1—C1787.93 (7)C11—C12—C13120.11 (14)
C17—N1—C18108.92 (12)C11—C12—H12A119.9
C17—N2—N3120.09 (11)C13—C12—H12A119.9
C17—N2—C9125.85 (12)O1—C13—C14124.69 (14)
N3—N2—C9113.76 (11)O1—C13—C12115.62 (13)
C7—N3—N2107.63 (12)C14—C13—C12119.69 (13)
C13—O1—C16118.20 (14)C13—C14—C15119.58 (14)
C2—C1—C6120.55 (15)C13—C14—H14A120.2
C2—C1—H1A119.7C15—C14—H14A120.2
C6—C1—H1A119.7C10—C15—C14121.61 (13)
C3—C2—C1120.21 (15)C10—C15—H15A119.2
C3—C2—H2A119.9C14—C15—H15A119.2
C1—C2—H2A119.9O1—C16—H16A109.5
C2—C3—C4119.85 (15)O1—C16—H16B109.5
C2—C3—H3A120.1H16A—C16—H16B109.5
C4—C3—H3A120.1O1—C16—H16C109.5
C5—C4—C3120.58 (16)H16A—C16—H16C109.5
C5—C4—H4A119.7H16B—C16—H16C109.5
C3—C4—H4A119.7N1—C17—N2122.78 (13)
C4—C5—C6120.16 (15)N1—C17—S1117.53 (11)
C4—C5—H5A119.9N2—C17—S1119.69 (10)
C6—C5—H5A119.9N1—C18—C19124.98 (14)
C1—C6—C5118.64 (14)N1—C18—C23116.23 (13)
C1—C6—C7120.11 (14)C19—C18—C23118.78 (14)
C5—C6—C7121.25 (13)C20—C19—C18119.07 (16)
N3—C7—C6121.56 (13)C20—C19—H19A120.5
N3—C7—C8113.48 (13)C18—C19—H19A120.5
C6—C7—C8124.96 (13)C19—C20—C21122.44 (15)
C7—C8—C9102.69 (12)C19—C20—H20A118.8
C7—C8—H8A111.2C21—C20—H20A118.8
C9—C8—H8A111.2C20—C21—C22118.73 (15)
C7—C8—H8B111.2C20—C21—C24120.51 (16)
C9—C8—H8B111.2C22—C21—C24120.74 (17)
H8A—C8—H8B109.1C23—C22—C21119.32 (16)
N2—C9—C10112.80 (12)C23—C22—H22A120.3
N2—C9—C899.91 (11)C21—C22—H22A120.3
C10—C9—C8112.79 (12)C22—C23—C18121.65 (14)
N2—C9—H9A110.3C22—C23—S1128.96 (12)
C10—C9—H9A110.3C18—C23—S1109.38 (11)
C8—C9—H9A110.3C21—C24—H24A109.5
C15—C10—C11117.93 (13)C21—C24—H24B109.5
C15—C10—C9121.45 (12)H24A—C24—H24B109.5
C11—C10—C9120.50 (13)C21—C24—H24C109.5
C12—C11—C10121.07 (15)H24A—C24—H24C109.5
C12—C11—H11A119.5H24B—C24—H24C109.5
C10—C11—H11A119.5
C17—N2—N3—C7177.07 (13)C11—C12—C13—O1178.73 (15)
C9—N2—N3—C78.82 (17)C11—C12—C13—C140.9 (2)
C6—C1—C2—C30.7 (3)O1—C13—C14—C15178.95 (14)
C1—C2—C3—C40.5 (3)C12—C13—C14—C150.6 (2)
C2—C3—C4—C50.2 (3)C11—C10—C15—C140.5 (2)
C3—C4—C5—C60.1 (3)C9—C10—C15—C14176.56 (13)
C2—C1—C6—C50.6 (2)C13—C14—C15—C100.1 (2)
C2—C1—C6—C7178.78 (15)C18—N1—C17—N2179.24 (13)
C4—C5—C6—C10.3 (2)C18—N1—C17—S10.64 (16)
C4—C5—C6—C7179.05 (15)N3—N2—C17—N1179.42 (13)
N2—N3—C7—C6177.70 (13)C9—N2—C17—N17.2 (2)
N2—N3—C7—C82.31 (17)N3—N2—C17—S10.46 (18)
C1—C6—C7—N3176.59 (15)C9—N2—C17—S1172.88 (11)
C5—C6—C7—N32.8 (2)C23—S1—C17—N10.27 (12)
C1—C6—C7—C83.4 (2)C23—S1—C17—N2179.61 (12)
C5—C6—C7—C8177.19 (14)C17—N1—C18—C19179.67 (15)
N3—C7—C8—C911.49 (17)C17—N1—C18—C230.79 (18)
C6—C7—C8—C9168.52 (13)N1—C18—C19—C20179.20 (15)
C17—N2—C9—C1068.81 (19)C23—C18—C19—C200.3 (2)
N3—N2—C9—C10104.90 (14)C18—C19—C20—C210.9 (3)
C17—N2—C9—C8171.19 (14)C19—C20—C21—C220.6 (3)
N3—N2—C9—C815.11 (16)C19—C20—C21—C24178.27 (17)
C7—C8—C9—N214.51 (15)C20—C21—C22—C230.2 (2)
C7—C8—C9—C10105.50 (14)C24—C21—C22—C23179.10 (15)
N2—C9—C10—C1542.67 (19)C21—C22—C23—C180.8 (2)
C8—C9—C10—C1569.62 (17)C21—C22—C23—S1179.64 (12)
N2—C9—C10—C11141.35 (14)N1—C18—C23—C22178.48 (13)
C8—C9—C10—C11106.37 (16)C19—C18—C23—C220.5 (2)
C15—C10—C11—C120.2 (2)N1—C18—C23—S10.60 (16)
C9—C10—C11—C12176.33 (14)C19—C18—C23—S1179.55 (12)
C10—C11—C12—C130.5 (2)C17—S1—C23—C22178.81 (15)
C16—O1—C13—C146.9 (2)C17—S1—C23—C180.18 (11)
C16—O1—C13—C12173.59 (16)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the S1/C17/N1/C18/C23, C1–C6 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15A···Cg1i0.932.913.6318 (17)138
C22—H22A···Cg2i0.932.893.6438 (18)140
C2—H2A···Cg3ii0.932.743.4884 (18)138
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x, y1, z1/2.

Experimental details

Crystal data
Chemical formulaC24H21N3OS
Mr399.50
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)296
a, b, c (Å)22.632 (3), 11.1961 (12), 16.1137 (18)
V3)4083.1 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.37 × 0.24 × 0.19
Data collection
DiffractometerBruker SMART APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.936, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
25081, 5949, 3835
Rint0.041
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.123, 1.00
No. of reflections5949
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.29

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the S1/C17/N1/C18/C23, C1–C6 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15A···Cg1i0.932.913.6318 (17)138
C22—H22A···Cg2i0.932.893.6438 (18)140
C2—H2A···Cg3ii0.932.743.4884 (18)138
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x, y1, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for a Research University Grant (No. 1001/PFIZIK/811160). SA thanks the Malaysian government and USM for the award of a research scholarship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRajendera Prasad, Y., Lakshmana Rao, A., Prasoona, L., Murali, K. & Ravi Kumar, P. (2005). Bioorg. Med. Chem. Lett. 15, 5030–5034.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaylor, E. C., Patel, H. & Kumar, H. (1992). Tetrahedron, 48, 8089–8100.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds