organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2410-o2411

2-(5,6-Di­hydro­benzimidazo[1,2-c]quinazolin-6-yl)-5-meth­­oxy­phenol

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Faculty of Pure and Applied Sciences, International University of Africa, Sudan, cCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 16 August 2011; accepted 19 August 2011; online 27 August 2011)

In the title quinazoline derivative, C21H17N3O2, the benzimidazole unit makes dihedral angles of 8.29 (5) and 81.79 (5)° with the benzene rings of the quinazoline and meth­oxy­phenol units, respectively. The nitro­gen-containing six-membered ring adopts a half-chair conformation. In the crystal, the mol­ecules are linked through O—H⋯N hydrogen bonds into screw chains along the b axis; adjacent chains are further connected by N—H⋯O hydrogen bonds, thereby forming a two-dimensional network lying parallel to the bc plane. Weak C—H⋯π and ππ inter­actions with centroid–centroid distances of 3.5258 (8) and 3.7184 (7) Å are present and N⋯O [2.6816 (15) and 3.0519 (15) Å] short contacts also occur.

Related literature

For background to benzoheterocyclic derivatives and their applications, see: Arienzo et al. (2007[Arienzo, R., Cramp, S., Dyke, H. J., Lockey, P. M., Norman, D., Roach, A. G., Smith, P., Wong, M. & Wren, S. P. (2007). Bioorg. Med. Chem. Lett. 17, 1403-1407.]); Chassaing et al. (2008[Chassaing, C., Berger, M., Heckeroth, A., IIg, T., Jaeger, M., Kern, C., Schmid, K. & Uphoff, M. (2008). J. Med. Chem. 51, 1111-1114.]); Galarcei et al. (2008[Galarcei, G. D., Foncea, R. E., Edwards, A. M., Pessoamahana, H., Mahana, C. D. P. & Ebenspergeri, R. A. (2008). Biol. Res. 41, 43-50.]); Kumar & Rajput (2009[Kumar, A. & Rajput, C. S. (2009). Eur. J. Med. Chem. 44, 83-90.]); Kung et al. (2009[Kung, P., Casper, M. D., Cook, K. L., Lingardo, L. W., Risen, L. M., Vickers, T. A. & Genady, A. R. (2009). Eur. J. Med. Chem. 44, 409-416.]); Podunavac-Kuzmanovic & Cvetkovic (2010[Podunavac-Kuzmanovic, S. & Cvetkovic, D. (2010). Rev. Roum. Chim. 55, 363-367.]); Via et al. (2001[Via, L. D., Gia, O., Mango, S. M., Settimo, A. D., Marini, A. M., Primofiore, G., Settimo, F. D. A. & Salerno, S. (2001). Il Farmaco, 56, 159-167.]); Xue et al. (2011[Xue, F., Luo, X., Ye, C., Ye, W. & Wang, Y. (2011). Bioorg. Med. Chem. 19, 2641-2649.]); Zhang et al. (2009[Zhang, Y., Chen, Z., Lou, Y. & Yu, Y. (2009). Eur. J. Med. Chem. 44, 448-452.]). For related structures, see: Eltayeb et al. (2007[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2007). Acta Cryst. E63, o4141-o4142.], 2009[Eltayeb, N. E., Teoh, S. G., Quah, C. K., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, o1613-o1614.], 2011a[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2011a). Acta Cryst. E67, m1062-m1063.],b[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2011b). Acta Cryst. E67, m1182-m1183.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C21H17N3O2

  • Mr = 343.38

  • Monoclinic, P 21 /c

  • a = 9.5408 (1) Å

  • b = 15.6503 (2) Å

  • c = 11.7609 (1) Å

  • β = 110.408 (1)°

  • V = 1645.87 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.28 × 0.25 × 0.22 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.974, Tmax = 0.980

  • 31713 measured reflections

  • 6610 independent reflections

  • 4637 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.139

  • S = 1.05

  • 6610 reflections

  • 244 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C15–C20 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯O2i 0.907 (19) 2.211 (19) 3.0519 (15) 153.8 (17)
O1—H1O1⋯N2ii 0.98 (2) 1.72 (2) 2.6816 (15) 168 (2)
C2—H2ACg4 0.95 2.85 3.6277 (16) 140
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzoheterocyclic derivatives have been used widely in the pharmaceutical industry and medicine due to their diverse pharmaceutical activities (Arienzo et al., 2007; Chassaing et al., 2008; Kumar et al., 2009; Kung et al., 2009; Podunavac-Kuzmanovic & Cvetkovic, 2010; Zhang et al., 2009) including inhibition against enteroviruses (Xue et al., 2011) and potent antitumor activity (Galarcei et al., 2008; Via et al., 2001). Due to their interesting activities, the benzimidazole and quinazoline scaffolds were selected for our ongoing structural studies (Eltayeb et al., 2007; 2009; 2011a; 2011b).

In the title compound (I) (Fig. 1), the benzimidazole ring system (C1–C7/N1–N2) is planar with the r.m.s. of 0.0086 (1) Å with the most deviation for atom C1 of 0.0183 (1) Å. The benzimidazole makes the dihedral angle of 8.29 (5)° with the C8–C13 benzene ring of the quinazoline moiety (C7–C14/N1/N3). The nitrogen six-membered ring adopts a half-chair conformation with the puckering parameter Q = 0.3941 (13) Å, θ = 59.34 (19)° and ϕ = 277.7 (2)° (Cremer & Pople, 1975). The orientation of the 5-methoxyphenol can be indicated by the dihedral angle between the phenol ring and benzimidazole of 81.79 (5)°. The methoxy substituted is slightly twisted from its attached benzene ring with the torsion angle C21–O2–C18–C19 = 8.93 (17)°. The bond lengths agree with the literature values (Allen et al., 1987).

In the crystal structure of (I) as shown Fig. 2, the molecules are linked through O—H···N hydrogen bonds (Table 1) into screw chains along the b axis. The adjacent screw chains are further connected by N—H···O hydrogen bonds (Table 1) forming the two-dimensional network parallel to the bc plane. The crystal is further stabilized by C—H···π weak interactions (Table 1). π···π interactions were also observed with centroid···centroid distances: Cg1···Cg3iii = 3.7184 (7) Å and Cg2···Cg2iv = 3.5258 (8) Å; Cg1, Cg2 and Cg3 are the centroids of C1/C6/C7/N1–N2, C1–C6 and C8–C13 rings, respectively (symmetry codes: (iii) = -x, 1-y, -z and (iv) = -x, 1-y 1-z). N···O[2.6816 (15) and 3.0519 (15) Å] short contacts were also observed.

Related literature top

For background to benzoheterocyclic derivatives and their applications, see: Arienzo et al. (2007); Chassaing et al. (2008); Galarcei et al. (2008); Kumar et al. (2009); Kung et al. (2009); Podunavac-Kuzmanovic & Cvetkovic (2010); Via et al. (2001); Xue et al. (2011); Zhang et al. (2009). For related structures, see: Eltayeb et al. (2007, 2009, 2011a,b). For reference bond-length data, see: Allen et al. (1987). For ring conformations, see Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986).

Experimental top

The title compound was synthesized by adding 2-hydroxy-4-methoxybenzaldehyde (0.304 g, 2.0 mmol) to a solution of 2-(2-aminophenyl)-1H-benzimidazole (0.418 g, 2.0 mmol) in ethanol (30 mL). The mixture was refluxed with stirring for 2 hrs. The color of the resulting solution was pale-yellow. Pale-yellow blocks were formed after three weeks of slow evaporation of ethanol at room temperature.

Refinement top

H atom attached to O1 and N3 were located in a difference maps and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C-H) = 0.95 Å for aromatic and CH; and 0.98 Å for CH3. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.67 Å from C13 and the deepest hole is located at 0.45 Å from C14.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the a axis, showing 2D network parallel to the bc plane. Hydrogen bonds are shown as dashed lines.
2-(5,6-dihydrobenzimidazo[1,2-c]quinazolin-6-yl)-5-methoxyphenol top
Crystal data top
C21H17N3O2F(000) = 720
Mr = 343.38Dx = 1.386 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6610 reflections
a = 9.5408 (1) Åθ = 2.3–33.8°
b = 15.6503 (2) ŵ = 0.09 mm1
c = 11.7609 (1) ÅT = 100 K
β = 110.408 (1)°Block, pale yellow
V = 1645.87 (3) Å30.28 × 0.25 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
6610 independent reflections
Radiation source: sealed tube4637 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 33.8°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1414
Tmin = 0.974, Tmax = 0.980k = 2422
31713 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.6883P]
where P = (Fo2 + 2Fc2)/3
6610 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C21H17N3O2V = 1645.87 (3) Å3
Mr = 343.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5408 (1) ŵ = 0.09 mm1
b = 15.6503 (2) ÅT = 100 K
c = 11.7609 (1) Å0.28 × 0.25 × 0.22 mm
β = 110.408 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
6610 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4637 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.980Rint = 0.039
31713 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.43 e Å3
6610 reflectionsΔρmin = 0.30 e Å3
244 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.14755 (11)0.22525 (6)0.27396 (8)0.0225 (2)
O20.48793 (10)0.20256 (6)0.67860 (8)0.01967 (19)
N10.09967 (11)0.45602 (7)0.26995 (9)0.0155 (2)
N20.06837 (12)0.56241 (7)0.21091 (10)0.0195 (2)
N30.32315 (12)0.45264 (7)0.22680 (10)0.0181 (2)
C10.00334 (14)0.44114 (8)0.32723 (11)0.0169 (2)
C20.01453 (15)0.37959 (9)0.40964 (12)0.0214 (3)
H2A0.05590.33440.43610.026*
C30.13327 (16)0.38755 (9)0.45104 (13)0.0261 (3)
H3A0.14380.34710.50780.031*
C40.23825 (16)0.45360 (10)0.41148 (14)0.0276 (3)
H4A0.31930.45620.44070.033*
C50.22662 (15)0.51499 (9)0.33108 (13)0.0251 (3)
H5A0.29750.56000.30510.030*
C60.10683 (14)0.50852 (8)0.28924 (11)0.0185 (2)
C70.05266 (14)0.52788 (8)0.19987 (11)0.0165 (2)
C80.13443 (14)0.55651 (8)0.12348 (11)0.0170 (2)
C90.08353 (15)0.62216 (8)0.03824 (11)0.0206 (3)
H9A0.00700.65100.03030.025*
C100.16415 (16)0.64543 (9)0.03470 (11)0.0230 (3)
H10A0.12820.68940.09350.028*
C110.29812 (16)0.60404 (9)0.02133 (11)0.0233 (3)
H11A0.35340.61990.07130.028*
C120.35181 (16)0.53980 (9)0.06425 (11)0.0209 (3)
H12A0.44440.51280.07370.025*
C130.26941 (14)0.51475 (8)0.13664 (11)0.0171 (2)
C140.21403 (13)0.39827 (8)0.25378 (10)0.0157 (2)
H14A0.16590.35930.18360.019*
C150.29119 (13)0.34584 (8)0.36554 (10)0.0148 (2)
C160.25404 (13)0.25964 (8)0.37158 (11)0.0159 (2)
C170.32374 (13)0.21322 (8)0.47774 (10)0.0162 (2)
H17A0.29940.15470.48210.019*
C180.42921 (13)0.25281 (8)0.57752 (10)0.0154 (2)
C190.46985 (14)0.33780 (8)0.57194 (11)0.0171 (2)
H19A0.54380.36430.63890.021*
C200.39884 (13)0.38268 (8)0.46523 (11)0.0163 (2)
H20A0.42510.44080.46050.020*
C210.57945 (16)0.24524 (10)0.78736 (12)0.0258 (3)
H21A0.60140.20600.85630.039*
H21B0.52610.29530.80160.039*
H21C0.67330.26350.77830.039*
H1N30.3958 (19)0.4194 (12)0.2166 (15)0.028 (4)*
H1O10.126 (2)0.1665 (15)0.291 (2)0.059 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0248 (5)0.0166 (5)0.0191 (4)0.0058 (4)0.0014 (4)0.0006 (3)
O20.0217 (4)0.0185 (4)0.0154 (4)0.0019 (4)0.0021 (3)0.0027 (3)
N10.0152 (5)0.0139 (5)0.0175 (4)0.0018 (4)0.0059 (4)0.0019 (4)
N20.0190 (5)0.0167 (5)0.0214 (5)0.0031 (4)0.0054 (4)0.0003 (4)
N30.0185 (5)0.0166 (5)0.0214 (5)0.0033 (4)0.0098 (4)0.0042 (4)
C10.0155 (5)0.0172 (6)0.0180 (5)0.0007 (4)0.0057 (4)0.0019 (4)
C20.0211 (6)0.0196 (6)0.0253 (6)0.0019 (5)0.0103 (5)0.0025 (5)
C30.0277 (7)0.0241 (7)0.0316 (7)0.0024 (6)0.0166 (6)0.0014 (5)
C40.0239 (7)0.0271 (7)0.0378 (8)0.0020 (6)0.0184 (6)0.0052 (6)
C50.0201 (6)0.0220 (7)0.0345 (7)0.0032 (5)0.0113 (5)0.0031 (5)
C60.0168 (6)0.0164 (6)0.0214 (5)0.0010 (5)0.0054 (4)0.0025 (4)
C70.0175 (5)0.0130 (5)0.0165 (5)0.0007 (4)0.0028 (4)0.0004 (4)
C80.0203 (6)0.0133 (5)0.0160 (5)0.0011 (4)0.0048 (4)0.0005 (4)
C90.0243 (6)0.0156 (6)0.0185 (5)0.0002 (5)0.0031 (5)0.0011 (4)
C100.0311 (7)0.0169 (6)0.0169 (5)0.0034 (5)0.0034 (5)0.0021 (4)
C110.0313 (7)0.0207 (6)0.0181 (5)0.0069 (5)0.0091 (5)0.0005 (5)
C120.0244 (6)0.0194 (6)0.0201 (6)0.0012 (5)0.0094 (5)0.0002 (5)
C130.0215 (6)0.0134 (5)0.0160 (5)0.0015 (4)0.0061 (4)0.0002 (4)
C140.0170 (5)0.0134 (5)0.0170 (5)0.0017 (4)0.0063 (4)0.0006 (4)
C150.0150 (5)0.0127 (5)0.0173 (5)0.0009 (4)0.0064 (4)0.0009 (4)
C160.0144 (5)0.0154 (5)0.0166 (5)0.0001 (4)0.0039 (4)0.0002 (4)
C170.0173 (5)0.0126 (5)0.0181 (5)0.0005 (4)0.0056 (4)0.0010 (4)
C180.0145 (5)0.0162 (6)0.0155 (5)0.0014 (4)0.0053 (4)0.0013 (4)
C190.0169 (5)0.0164 (6)0.0173 (5)0.0027 (4)0.0049 (4)0.0024 (4)
C200.0171 (5)0.0124 (5)0.0202 (5)0.0012 (4)0.0077 (4)0.0003 (4)
C210.0268 (7)0.0277 (7)0.0165 (5)0.0066 (6)0.0005 (5)0.0030 (5)
Geometric parameters (Å, º) top
O1—C161.3516 (14)C8—C131.4038 (18)
O1—H1O10.98 (2)C9—C101.386 (2)
O2—C181.3716 (14)C9—H9A0.9500
O2—C211.4373 (15)C10—C111.392 (2)
N1—C71.3739 (15)C10—H10A0.9500
N1—C11.3913 (16)C11—C121.3880 (18)
N1—C141.4793 (15)C11—H11A0.9500
N2—C71.3217 (17)C12—C131.4012 (18)
N2—C61.3894 (17)C12—H12A0.9500
N3—C131.3974 (16)C14—C151.5060 (16)
N3—C141.4626 (16)C14—H14A1.0000
N3—H1N30.908 (18)C15—C201.3863 (16)
C1—C21.3967 (18)C15—C161.4030 (17)
C1—C61.4067 (18)C16—C171.3964 (16)
C2—C31.3859 (19)C17—C181.3964 (17)
C2—H2A0.9500C17—H17A0.9500
C3—C41.401 (2)C18—C191.3934 (17)
C3—H3A0.9500C19—C201.3909 (17)
C4—C51.379 (2)C19—H19A0.9500
C4—H4A0.9500C20—H20A0.9500
C5—C61.3967 (19)C21—H21A0.9800
C5—H5A0.9500C21—H21B0.9800
C7—C81.4509 (18)C21—H21C0.9800
C8—C91.3989 (17)
C16—O1—H1O1110.2 (13)C12—C11—C10120.74 (13)
C18—O2—C21116.28 (10)C12—C11—H11A119.6
C7—N1—C1106.83 (10)C10—C11—H11A119.6
C7—N1—C14121.61 (10)C11—C12—C13119.99 (13)
C1—N1—C14129.58 (10)C11—C12—H12A120.0
C7—N2—C6105.00 (10)C13—C12—H12A120.0
C13—N3—C14117.95 (10)N3—C13—C12121.37 (12)
C13—N3—H1N3113.2 (11)N3—C13—C8119.16 (11)
C14—N3—H1N3109.2 (11)C12—C13—C8119.36 (11)
N1—C1—C2133.57 (12)N3—C14—N1106.57 (10)
N1—C1—C6104.88 (11)N3—C14—C15109.75 (10)
C2—C1—C6121.49 (12)N1—C14—C15112.25 (9)
C3—C2—C1116.84 (12)N3—C14—H14A109.4
C3—C2—H2A121.6N1—C14—H14A109.4
C1—C2—H2A121.6C15—C14—H14A109.4
C2—C3—C4121.79 (13)C20—C15—C16118.87 (11)
C2—C3—H3A119.1C20—C15—C14120.27 (11)
C4—C3—H3A119.1C16—C15—C14120.85 (10)
C5—C4—C3121.50 (13)O1—C16—C17122.33 (11)
C5—C4—H4A119.3O1—C16—C15117.93 (11)
C3—C4—H4A119.3C17—C16—C15119.71 (11)
C4—C5—C6117.53 (13)C16—C17—C18119.96 (11)
C4—C5—H5A121.2C16—C17—H17A120.0
C6—C5—H5A121.2C18—C17—H17A120.0
N2—C6—C5128.86 (12)O2—C18—C19123.50 (11)
N2—C6—C1110.31 (11)O2—C18—C17115.52 (11)
C5—C6—C1120.83 (12)C19—C18—C17120.98 (11)
N2—C7—N1112.91 (11)C20—C19—C18117.94 (11)
N2—C7—C8127.69 (11)C20—C19—H19A121.0
N1—C7—C8119.39 (11)C18—C19—H19A121.0
C9—C8—C13119.79 (12)C15—C20—C19122.49 (11)
C9—C8—C7122.91 (12)C15—C20—H20A118.8
C13—C8—C7117.30 (11)C19—C20—H20A118.8
C10—C9—C8120.52 (13)O2—C21—H21A109.5
C10—C9—H9A119.7O2—C21—H21B109.5
C8—C9—H9A119.7H21A—C21—H21B109.5
C9—C10—C11119.58 (12)O2—C21—H21C109.5
C9—C10—H10A120.2H21A—C21—H21C109.5
C11—C10—H10A120.2H21B—C21—H21C109.5
C7—N1—C1—C2178.82 (14)C14—N3—C13—C835.42 (16)
C14—N1—C1—C217.3 (2)C11—C12—C13—N3177.47 (12)
C7—N1—C1—C61.59 (13)C11—C12—C13—C81.42 (19)
C14—N1—C1—C6165.47 (11)C9—C8—C13—N3176.42 (11)
N1—C1—C2—C3177.56 (13)C7—C8—C13—N34.28 (17)
C6—C1—C2—C30.70 (19)C9—C8—C13—C120.28 (18)
C1—C2—C3—C40.6 (2)C7—C8—C13—C12179.57 (11)
C2—C3—C4—C51.3 (2)C13—N3—C14—N149.22 (13)
C3—C4—C5—C60.7 (2)C13—N3—C14—C15171.00 (10)
C7—N2—C6—C5179.60 (13)C7—N1—C14—N337.49 (14)
C7—N2—C6—C11.18 (14)C1—N1—C14—N3160.71 (11)
C4—C5—C6—N2178.49 (13)C7—N1—C14—C15157.67 (11)
C4—C5—C6—C10.6 (2)C1—N1—C14—C1540.53 (16)
N1—C1—C6—N20.28 (14)N3—C14—C15—C2042.18 (15)
C2—C1—C6—N2177.93 (11)N1—C14—C15—C2076.13 (14)
N1—C1—C6—C5179.00 (11)N3—C14—C15—C16138.89 (12)
C2—C1—C6—C51.36 (19)N1—C14—C15—C16102.80 (13)
C6—N2—C7—N12.29 (14)C20—C15—C16—O1179.23 (11)
C6—N2—C7—C8176.73 (12)C14—C15—C16—O10.28 (17)
C1—N1—C7—N22.53 (14)C20—C15—C16—C171.05 (18)
C14—N1—C7—N2167.97 (10)C14—C15—C16—C17177.90 (11)
C1—N1—C7—C8176.58 (10)O1—C16—C17—C18177.68 (11)
C14—N1—C7—C811.14 (17)C15—C16—C17—C180.42 (18)
N2—C7—C8—C97.4 (2)C21—O2—C18—C198.93 (17)
N1—C7—C8—C9171.60 (11)C21—O2—C18—C17171.12 (11)
N2—C7—C8—C13173.36 (12)C16—C17—C18—O2178.11 (11)
N1—C7—C8—C137.68 (17)C16—C17—C18—C191.94 (18)
C13—C8—C9—C101.00 (19)O2—C18—C19—C20178.13 (11)
C7—C8—C9—C10178.26 (12)C17—C18—C19—C201.92 (18)
C8—C9—C10—C111.12 (19)C16—C15—C20—C191.06 (18)
C9—C10—C11—C120.0 (2)C14—C15—C20—C19177.89 (11)
C10—C11—C12—C131.3 (2)C18—C19—C20—C150.41 (18)
C14—N3—C13—C12148.52 (12)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
N3—H1N3···O2i0.907 (19)2.211 (19)3.0519 (15)153.8 (17)
O1—H1O1···N2ii0.98 (2)1.72 (2)2.6816 (15)168 (2)
C2—H2A···Cg40.952.853.6277 (16)140
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H17N3O2
Mr343.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.5408 (1), 15.6503 (2), 11.7609 (1)
β (°) 110.408 (1)
V3)1645.87 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.28 × 0.25 × 0.22
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.974, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
31713, 6610, 4637
Rint0.039
(sin θ/λ)max1)0.783
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.139, 1.05
No. of reflections6610
No. of parameters244
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.30

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
N3—H1N3···O2i0.907 (19)2.211 (19)3.0519 (15)153.8 (17)
O1—H1O1···N2ii0.98 (2)1.72 (2)2.6816 (15)168 (2)
C2—H2A···Cg40.952.853.6277 (16)140
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia for the RU research grant No. 1001/PKIMIA/815067. NEE thanks Universiti Sains Malaysia for a post-doctoral fellowship and the Inter­national University of Africa (Sudan) for providing study leave. The authors also thank the Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationArienzo, R., Cramp, S., Dyke, H. J., Lockey, P. M., Norman, D., Roach, A. G., Smith, P., Wong, M. & Wren, S. P. (2007). Bioorg. Med. Chem. Lett. 17, 1403–1407.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChassaing, C., Berger, M., Heckeroth, A., IIg, T., Jaeger, M., Kern, C., Schmid, K. & Uphoff, M. (2008). J. Med. Chem. 51, 1111–1114.  Web of Science CrossRef CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2007). Acta Cryst. E63, o4141–o4142.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2011a). Acta Cryst. E67, m1062–m1063.  CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2011b). Acta Cryst. E67, m1182–m1183.  CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Quah, C. K., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, o1613–o1614.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGalarcei, G. D., Foncea, R. E., Edwards, A. M., Pessoamahana, H., Mahana, C. D. P. & Ebenspergeri, R. A. (2008). Biol. Res. 41, 43–50.  Google Scholar
First citationKumar, A. & Rajput, C. S. (2009). Eur. J. Med. Chem. 44, 83–90.  Web of Science CrossRef CAS Google Scholar
First citationKung, P., Casper, M. D., Cook, K. L., Lingardo, L. W., Risen, L. M., Vickers, T. A. & Genady, A. R. (2009). Eur. J. Med. Chem. 44, 409–416.  Google Scholar
First citationPodunavac-Kuzmanovic, S. & Cvetkovic, D. (2010). Rev. Roum. Chim. 55, 363–367.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVia, L. D., Gia, O., Mango, S. M., Settimo, A. D., Marini, A. M., Primofiore, G., Settimo, F. D. A. & Salerno, S. (2001). Il Farmaco, 56, 159–167.  Google Scholar
First citationXue, F., Luo, X., Ye, C., Ye, W. & Wang, Y. (2011). Bioorg. Med. Chem. 19, 2641–2649.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhang, Y., Chen, Z., Lou, Y. & Yu, Y. (2009). Eur. J. Med. Chem. 44, 448–452.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2410-o2411
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds