organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

O,O′-2-Iodo-1,3-phenyl­ene bis­­(di­phenyl­phosphino­thio­ate)

aDepartment of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Zhengzhou University, Zhengzhou, 450052, People's Republic of China, and bPharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou, 450008, People's Republic of China
*Correspondence e-mail: maopingsong@zzu.edu.cn

(Received 17 August 2011; accepted 18 August 2011; online 27 August 2011)

The title compound, C30H23IO2P2S2, was synthesized by the reaction of 2-iodo­benzene-1,3-diol, chloro­diphenyl­phosphine, Et3N and sulfur. The P=S bonds project to opposite sides of the central aromatic ring. The O—P—S and C—P—S bond angles are significantly larger than the O—P—C and C—P—C bond angles, indicating significant distortion of the tetra­hedral geometries of the P atoms. The P=S bond lengths of 1.9311 (13) and 1.9302 (12) Å in the title compound are shorter than that found in Ph3P=S [1.950 (3) Å] because the replacement of one C atom attached the P atom by an O atom increases the effective electronegativity of the P atom.

Related literature

For related compounds, see: Eisler & Puddephatt (2006[Eisler, D. J. & Puddephatt, R. J. (2006). Inorg. Chem. 45, 7295-7305.]); Aleksanyan et al. (2011[Aleksanyan, D. V., Kozlov, V. A., Nelyubina, Y. V., Lyssenko, K. A., Puntus, L. N., Gutsul, E. I., Shepel, N. E., Vasil'ev, A. A., Petrovskii, P. V. & Odinets, I. L. (2011). Dalton Trans. 40, 1535-1546.]); Mague et al. (2007[Mague, J. T., Punji, B., Ganesamoorthy, C. & Balakrishna, M. S. (2007). Acta Cryst. E63, o4644.]).

[Scheme 1]

Experimental

Crystal data
  • C30H23IO2P2S2

  • Mr = 668.44

  • Monoclinic, P 21 /c

  • a = 12.5467 (11) Å

  • b = 13.4389 (9) Å

  • c = 18.0010 (13) Å

  • β = 108.299 (8)°

  • V = 2881.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.39 mm−1

  • T = 293 K

  • 0.2 × 0.2 × 0.15 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Abingdon, Oxfordshire, England.]) Tmin = 0.739, Tmax = 1.000

  • 13529 measured reflections

  • 5949 independent reflections

  • 4846 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.086

  • S = 1.08

  • 5949 reflections

  • 335 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.66 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Phosphinothioates play significant roles in coordination chemistry and transition-metal catalysis (Eisler & Puddephatt, 2006). Furthermore, the ability of thiophosphinoyl moieties to act as bridging ligands has prompted the development of the pincer-type chemistry (Aleksanyan et al., 2011). In this work, through a facile one-pot phosphorylation/oxidiation procedure, we obtained the title compound, which is reported here. The title compound, C30H23IO2P2S2, was synthesized by the reaction of 2-iodobenzene-1,3-diol, chlorodiphenylphosphine, Et3N with sulfur. The compound exhibits distorted tetrahedral geometry about the P1 and P2 atoms (Fig. 1), and the O—P—S, C—P—S bond angles are significantly larger than the O—P—C, C—P—C bond angles. The P=S bonds of 1.9311 (13) and 1.9302 (12) Å are shorter than that found in Ph3P=S [1.950 (3) Å] because the replacement of one carbon on phosphorus by oxygen increases the effective electronegativity of the P atom.

Related literature top

For related compounds, see: Eisler & Puddephatt (2006); Aleksanyan et al. (2011); Mague et al. (2007).

Experimental top

A mixture of 2-iodobenzene-1,3-diol (118 mg, 0.5 mmol), Et3N (0.2 ml, 1.5 mmol) and chlorodiphenylphosphine (0.14 ml, 0.75 mmol) in toluene (5 ml) was heated to reflux for 3 h. Then sulfur (48 mg, 1.5 mmol) was added and the mixture was heated to 90\ %C for 30 min. The product was isolated and recrystallized from dicholomethane/hexane, colorless crystals of the title compound was obtained.

Computing details top

Data collection: CrysAlis PRO (Agilent Technologies, 2011); cell refinement: CrysAlis PRO (Agilent Technologies, 2011); data reduction: CrysAlis PRO (Agilent Technologies, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound, showing 30% probability ellipsolids.
[Figure 2] Fig. 2. A view of the crystal packing along the b axis.
O,O'-2-iodo-1,3-phenylene bis(diphenylphosphinothioate) top
Crystal data top
C30H23IO2P2S2F(000) = 1336
Mr = 668.44Dx = 1.541 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
a = 12.5467 (11) ÅCell parameters from 4397 reflections
b = 13.4389 (9) Åθ = 3.0–29.1°
c = 18.0010 (13) ŵ = 1.39 mm1
β = 108.299 (8)°T = 293 K
V = 2881.7 (4) Å3Prismatic, colorless
Z = 40.2 × 0.2 × 0.15 mm
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
5949 independent reflections
Radiation source: Enhance (Mo) X-ray Source4846 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 16.2312 pixels mm-1θmax = 26.5°, θmin = 3.0°
ω scansh = 1415
Absorption correction: multi-scan
(CrysAlis PRO; Agilent Technologies, 2011)
k = 1612
Tmin = 0.739, Tmax = 1.000l = 2022
13529 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0312P)2 + 1.3829P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
5949 reflectionsΔρmax = 0.46 e Å3
335 parametersΔρmin = 0.66 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00127 (16)
Crystal data top
C30H23IO2P2S2V = 2881.7 (4) Å3
Mr = 668.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.5467 (11) ŵ = 1.39 mm1
b = 13.4389 (9) ÅT = 293 K
c = 18.0010 (13) Å0.2 × 0.2 × 0.15 mm
β = 108.299 (8)°
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
5949 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent Technologies, 2011)
4846 reflections with I > 2σ(I)
Tmin = 0.739, Tmax = 1.000Rint = 0.029
13529 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.08Δρmax = 0.46 e Å3
5949 reflectionsΔρmin = 0.66 e Å3
335 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.19393 (2)0.150065 (17)0.148128 (12)0.04653 (10)
S10.07696 (8)0.12781 (8)0.35968 (6)0.0583 (3)
S20.52162 (7)0.42008 (7)0.36702 (5)0.0485 (2)
P10.16934 (7)0.13367 (6)0.29185 (5)0.0375 (2)
P20.36544 (7)0.41688 (6)0.30439 (5)0.03448 (19)
O10.20214 (19)0.02722 (15)0.26108 (12)0.0426 (5)
O20.31642 (19)0.30818 (15)0.27040 (12)0.0420 (5)
C10.2609 (2)0.1405 (2)0.26925 (17)0.0327 (7)
C20.3132 (3)0.2224 (2)0.31251 (18)0.0351 (7)
C30.3597 (3)0.2160 (2)0.3933 (2)0.0461 (8)
H30.39420.27110.42220.055*
C40.3540 (3)0.1268 (3)0.4300 (2)0.0519 (9)
H40.38550.12220.48400.062*
C50.3026 (3)0.0446 (2)0.3880 (2)0.0474 (9)
H50.29970.01500.41360.057*
C60.2555 (3)0.0513 (2)0.30779 (19)0.0368 (7)
C70.1040 (3)0.1909 (2)0.1982 (2)0.0399 (7)
C80.0146 (4)0.2534 (3)0.1896 (3)0.0756 (14)
H80.01300.26360.23130.091*
C90.0347 (4)0.3012 (4)0.1193 (3)0.0989 (18)
H90.09450.34450.11410.119*
C100.0039 (4)0.2852 (4)0.0571 (3)0.0801 (14)
H100.03030.31670.00950.096*
C110.0925 (4)0.2230 (3)0.0651 (2)0.0680 (12)
H110.11880.21220.02290.082*
C120.1433 (4)0.1762 (3)0.1353 (2)0.0579 (10)
H120.20430.13450.14040.069*
C130.3030 (3)0.1930 (2)0.33497 (18)0.0356 (7)
C140.3933 (3)0.1716 (3)0.3081 (2)0.0489 (9)
H140.38470.12640.26750.059*
C150.4951 (3)0.2175 (3)0.3418 (2)0.0565 (10)
H150.55530.20270.32390.068*
C160.5088 (3)0.2845 (3)0.4011 (2)0.0508 (9)
H160.57770.31570.42310.061*
C170.4206 (3)0.3054 (3)0.4278 (2)0.0529 (9)
H170.43010.35070.46850.063*
C180.3181 (3)0.2603 (2)0.3955 (2)0.0449 (8)
H180.25890.27510.41430.054*
C190.2699 (3)0.4596 (2)0.35398 (18)0.0356 (7)
C200.3034 (3)0.4685 (2)0.4346 (2)0.0447 (8)
H200.37720.45450.46390.054*
C210.2278 (3)0.4980 (3)0.4715 (2)0.0572 (10)
H210.25060.50280.52580.069*
C220.1204 (3)0.5202 (3)0.4293 (3)0.0651 (12)
H220.06970.54040.45460.078*
C230.0868 (3)0.5128 (4)0.3497 (3)0.0743 (14)
H230.01300.52780.32100.089*
C240.1605 (3)0.4835 (3)0.3112 (2)0.0591 (11)
H240.13690.47970.25690.071*
C250.3351 (3)0.4819 (2)0.21277 (19)0.0385 (7)
C260.2499 (3)0.4536 (3)0.1471 (2)0.0529 (9)
H260.20610.39830.14870.064*
C270.2295 (4)0.5079 (3)0.0784 (2)0.0693 (12)
H270.17220.48840.03400.083*
C280.2926 (4)0.5895 (3)0.0756 (3)0.0697 (12)
H280.27850.62520.02930.084*
C290.3764 (4)0.6185 (3)0.1407 (3)0.0748 (13)
H290.41860.67470.13890.090*
C300.3990 (3)0.5647 (3)0.2097 (2)0.0595 (10)
H300.45700.58420.25380.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.05978 (17)0.04644 (15)0.03023 (13)0.01443 (11)0.00964 (10)0.00163 (10)
S10.0519 (6)0.0797 (7)0.0486 (6)0.0026 (5)0.0233 (4)0.0004 (5)
S20.0397 (5)0.0591 (6)0.0440 (5)0.0006 (4)0.0093 (4)0.0029 (4)
P10.0433 (5)0.0336 (4)0.0358 (5)0.0042 (4)0.0125 (4)0.0015 (4)
P20.0402 (5)0.0314 (4)0.0306 (4)0.0035 (3)0.0094 (3)0.0027 (3)
O10.0583 (14)0.0299 (11)0.0344 (12)0.0070 (10)0.0072 (10)0.0007 (10)
O20.0622 (15)0.0297 (11)0.0307 (12)0.0063 (11)0.0100 (10)0.0008 (10)
C10.0345 (16)0.0352 (16)0.0273 (15)0.0034 (13)0.0080 (12)0.0005 (13)
C20.0403 (17)0.0308 (16)0.0341 (17)0.0019 (14)0.0114 (13)0.0015 (14)
C30.060 (2)0.0348 (18)0.0366 (19)0.0048 (16)0.0051 (16)0.0025 (15)
C40.071 (3)0.0418 (19)0.0324 (18)0.0017 (18)0.0019 (17)0.0019 (15)
C50.066 (2)0.0321 (17)0.0385 (19)0.0002 (17)0.0078 (16)0.0056 (15)
C60.0410 (18)0.0301 (16)0.0363 (17)0.0015 (14)0.0077 (14)0.0011 (14)
C70.0435 (19)0.0334 (16)0.0415 (19)0.0041 (15)0.0115 (15)0.0001 (15)
C80.081 (3)0.092 (3)0.059 (3)0.046 (3)0.029 (2)0.017 (3)
C90.095 (4)0.119 (4)0.083 (4)0.064 (3)0.028 (3)0.035 (3)
C100.087 (3)0.080 (3)0.059 (3)0.020 (3)0.002 (2)0.025 (3)
C110.091 (3)0.065 (3)0.048 (2)0.010 (2)0.023 (2)0.007 (2)
C120.072 (3)0.056 (2)0.050 (2)0.021 (2)0.026 (2)0.0100 (19)
C130.0431 (18)0.0311 (16)0.0325 (17)0.0061 (14)0.0117 (14)0.0010 (13)
C140.051 (2)0.056 (2)0.043 (2)0.0003 (18)0.0194 (17)0.0130 (17)
C150.043 (2)0.074 (3)0.058 (2)0.0026 (19)0.0231 (18)0.006 (2)
C160.050 (2)0.048 (2)0.048 (2)0.0067 (17)0.0075 (17)0.0000 (18)
C170.060 (2)0.044 (2)0.046 (2)0.0019 (18)0.0036 (18)0.0102 (17)
C180.048 (2)0.0415 (18)0.045 (2)0.0076 (16)0.0138 (16)0.0072 (16)
C190.0350 (17)0.0344 (16)0.0371 (18)0.0057 (14)0.0107 (13)0.0038 (14)
C200.050 (2)0.0466 (19)0.0387 (19)0.0003 (17)0.0150 (16)0.0035 (16)
C210.072 (3)0.062 (2)0.045 (2)0.004 (2)0.030 (2)0.0026 (19)
C220.054 (2)0.073 (3)0.082 (3)0.009 (2)0.041 (2)0.022 (2)
C230.036 (2)0.102 (4)0.080 (3)0.003 (2)0.013 (2)0.037 (3)
C240.042 (2)0.080 (3)0.048 (2)0.000 (2)0.0040 (17)0.021 (2)
C250.051 (2)0.0304 (16)0.0357 (18)0.0016 (15)0.0161 (15)0.0004 (14)
C260.069 (2)0.044 (2)0.040 (2)0.0105 (19)0.0086 (17)0.0030 (17)
C270.091 (3)0.066 (3)0.039 (2)0.004 (2)0.003 (2)0.005 (2)
C280.104 (4)0.060 (3)0.049 (2)0.009 (3)0.030 (2)0.020 (2)
C290.098 (4)0.056 (2)0.074 (3)0.018 (2)0.031 (3)0.017 (2)
C300.074 (3)0.052 (2)0.049 (2)0.019 (2)0.0130 (19)0.0046 (19)
Geometric parameters (Å, º) top
I1—C12.080 (3)C13—C181.383 (4)
S1—P11.9311 (13)C14—H140.9300
S2—P21.9302 (12)C14—C151.376 (5)
P1—O11.633 (2)C15—H150.9300
P1—C71.799 (3)C15—C161.366 (5)
P1—C131.798 (3)C16—H160.9300
P2—O21.628 (2)C16—C171.368 (5)
P2—C191.799 (3)C17—H170.9300
P2—C251.798 (3)C17—C181.375 (5)
O1—C61.384 (4)C18—H180.9300
O2—C21.387 (4)C19—C201.383 (4)
C1—C21.389 (4)C19—C241.384 (4)
C1—C61.397 (4)C20—H200.9300
C2—C31.388 (4)C20—C211.377 (5)
C3—H30.9300C21—H210.9300
C3—C41.381 (5)C21—C221.357 (5)
C4—H40.9300C22—H220.9300
C4—C51.380 (5)C22—C231.365 (6)
C5—H50.9300C23—H230.9300
C5—C61.381 (5)C23—C241.375 (5)
C7—C81.371 (5)C24—H240.9300
C7—C121.385 (5)C25—C261.375 (5)
C8—H80.9300C25—C301.382 (5)
C8—C91.381 (6)C26—H260.9300
C9—H90.9300C26—C271.388 (5)
C9—C101.370 (6)C27—H270.9300
C10—H100.9300C27—C281.363 (6)
C10—C111.361 (6)C28—H280.9300
C11—H110.9300C28—C291.363 (6)
C11—C121.375 (5)C29—H290.9300
C12—H120.9300C29—C301.388 (5)
C13—C141.395 (4)C30—H300.9300
O1—P1—S1116.36 (10)C18—C13—C14118.9 (3)
O1—P1—C798.39 (13)C13—C14—H14120.0
O1—P1—C13103.58 (13)C15—C14—C13119.9 (3)
C7—P1—S1114.98 (12)C15—C14—H14120.0
C13—P1—S1114.12 (11)C14—C15—H15119.6
C13—P1—C7107.69 (15)C16—C15—C14120.7 (3)
O2—P2—S2115.72 (10)C16—C15—H15119.6
O2—P2—C19103.94 (13)C15—C16—H16120.2
O2—P2—C2598.35 (13)C15—C16—C17119.6 (3)
C19—P2—S2114.56 (11)C17—C16—H16120.2
C19—P2—C25108.52 (15)C16—C17—H17119.6
C25—P2—S2114.13 (11)C16—C17—C18120.9 (3)
C6—O1—P1126.0 (2)C18—C17—H17119.6
C2—O2—P2127.78 (19)C13—C18—H18120.0
C2—C1—I1120.2 (2)C17—C18—C13120.0 (3)
C2—C1—C6119.3 (3)C17—C18—H18120.0
C6—C1—I1120.5 (2)C20—C19—P2121.2 (2)
O2—C2—C1116.2 (3)C20—C19—C24119.0 (3)
O2—C2—C3123.3 (3)C24—C19—P2119.8 (3)
C1—C2—C3120.5 (3)C19—C20—H20119.9
C2—C3—H3120.4C21—C20—C19120.2 (3)
C4—C3—C2119.2 (3)C21—C20—H20119.9
C4—C3—H3120.4C20—C21—H21119.8
C3—C4—H4119.4C22—C21—C20120.4 (4)
C5—C4—C3121.2 (3)C22—C21—H21119.8
C5—C4—H4119.4C21—C22—H22120.1
C4—C5—H5120.2C21—C22—C23119.8 (4)
C4—C5—C6119.6 (3)C23—C22—H22120.1
C6—C5—H5120.2C22—C23—H23119.5
O1—C6—C1116.2 (3)C22—C23—C24121.0 (4)
C5—C6—O1123.5 (3)C24—C23—H23119.5
C5—C6—C1120.3 (3)C19—C24—H24120.3
C8—C7—P1118.9 (3)C23—C24—C19119.5 (4)
C8—C7—C12118.9 (4)C23—C24—H24120.3
C12—C7—P1122.1 (3)C26—C25—P2122.5 (3)
C7—C8—H8119.9C26—C25—C30119.5 (3)
C7—C8—C9120.3 (4)C30—C25—P2118.0 (3)
C9—C8—H8119.9C25—C26—H26120.1
C8—C9—H9119.8C25—C26—C27119.8 (3)
C10—C9—C8120.3 (4)C27—C26—H26120.1
C10—C9—H9119.8C26—C27—H27119.7
C9—C10—H10120.1C28—C27—C26120.6 (4)
C11—C10—C9119.8 (4)C28—C27—H27119.7
C11—C10—H10120.1C27—C28—H28120.1
C10—C11—H11119.8C29—C28—C27119.8 (4)
C10—C11—C12120.4 (4)C29—C28—H28120.1
C12—C11—H11119.8C28—C29—H29119.8
C7—C12—H12119.8C28—C29—C30120.5 (4)
C11—C12—C7120.3 (4)C30—C29—H29119.8
C11—C12—H12119.8C25—C30—C29119.8 (4)
C14—C13—P1120.6 (2)C25—C30—H30120.1
C18—C13—P1120.6 (2)C29—C30—H30120.1
I1—C1—C2—O20.5 (4)C4—C5—C6—O1179.9 (3)
I1—C1—C2—C3179.0 (2)C4—C5—C6—C10.7 (5)
I1—C1—C6—O11.1 (4)C6—C1—C2—O2179.4 (3)
I1—C1—C6—C5178.3 (3)C6—C1—C2—C30.0 (5)
S1—P1—O1—C656.1 (3)C7—P1—O1—C6179.5 (3)
S1—P1—C7—C821.0 (4)C7—P1—C13—C1475.2 (3)
S1—P1—C7—C12161.0 (3)C7—P1—C13—C18105.1 (3)
S1—P1—C13—C14155.9 (2)C7—C8—C9—C101.2 (9)
S1—P1—C13—C1823.9 (3)C8—C7—C12—C110.6 (6)
S2—P2—O2—C258.9 (3)C8—C9—C10—C111.0 (9)
S2—P2—C19—C2015.9 (3)C9—C10—C11—C120.0 (8)
S2—P2—C19—C24164.6 (3)C10—C11—C12—C70.8 (7)
S2—P2—C25—C26149.2 (3)C12—C7—C8—C90.4 (7)
S2—P2—C25—C3032.3 (3)C13—P1—O1—C670.0 (3)
P1—O1—C6—C1171.1 (2)C13—P1—C7—C8107.4 (3)
P1—O1—C6—C59.5 (5)C13—P1—C7—C1270.6 (3)
P1—C7—C8—C9177.6 (4)C13—C14—C15—C160.4 (6)
P1—C7—C12—C11178.6 (3)C14—C13—C18—C170.4 (5)
P1—C13—C14—C15179.9 (3)C14—C15—C16—C170.7 (6)
P1—C13—C18—C17179.8 (3)C15—C16—C17—C180.4 (6)
P2—O2—C2—C1176.5 (2)C16—C17—C18—C130.1 (5)
P2—O2—C2—C34.1 (5)C18—C13—C14—C150.1 (5)
P2—C19—C20—C21177.7 (3)C19—P2—O2—C267.6 (3)
P2—C19—C24—C23177.8 (3)C19—P2—C25—C2681.7 (3)
P2—C25—C26—C27178.9 (3)C19—P2—C25—C3096.8 (3)
P2—C25—C30—C29178.3 (3)C19—C20—C21—C221.1 (6)
O1—P1—C7—C8145.4 (3)C20—C19—C24—C231.8 (6)
O1—P1—C7—C1236.6 (3)C20—C21—C22—C230.3 (6)
O1—P1—C13—C1428.4 (3)C21—C22—C23—C240.3 (7)
O1—P1—C13—C18151.4 (3)C22—C23—C24—C191.0 (7)
O2—P2—C19—C20111.3 (3)C24—C19—C20—C211.8 (5)
O2—P2—C19—C2468.2 (3)C25—P2—O2—C2179.2 (3)
O2—P2—C25—C2626.1 (3)C25—P2—C19—C20144.7 (3)
O2—P2—C25—C30155.4 (3)C25—P2—C19—C2435.7 (3)
O2—C2—C3—C4178.9 (3)C25—C26—C27—C280.4 (7)
C1—C2—C3—C40.5 (5)C26—C25—C30—C290.3 (6)
C2—C1—C6—O1180.0 (3)C26—C27—C28—C290.3 (7)
C2—C1—C6—C50.6 (5)C27—C28—C29—C300.9 (7)
C2—C3—C4—C50.4 (6)C28—C29—C30—C250.9 (7)
C3—C4—C5—C60.2 (6)C30—C25—C26—C270.4 (6)

Experimental details

Crystal data
Chemical formulaC30H23IO2P2S2
Mr668.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.5467 (11), 13.4389 (9), 18.0010 (13)
β (°) 108.299 (8)
V3)2881.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.39
Crystal size (mm)0.2 × 0.2 × 0.15
Data collection
DiffractometerAgilent Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent Technologies, 2011)
Tmin, Tmax0.739, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13529, 5949, 4846
Rint0.029
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.086, 1.08
No. of reflections5949
No. of parameters335
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.66

Computer programs: CrysAlis PRO (Agilent Technologies, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

The authors thank Professor Yu Zhu of Zhengzhou University for help.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Abingdon, Oxfordshire, England.  Google Scholar
First citationAleksanyan, D. V., Kozlov, V. A., Nelyubina, Y. V., Lyssenko, K. A., Puntus, L. N., Gutsul, E. I., Shepel, N. E., Vasil'ev, A. A., Petrovskii, P. V. & Odinets, I. L. (2011). Dalton Trans. 40, 1535–1546.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEisler, D. J. & Puddephatt, R. J. (2006). Inorg. Chem. 45, 7295–7305.  CrossRef CAS Google Scholar
First citationMague, J. T., Punji, B., Ganesamoorthy, C. & Balakrishna, M. S. (2007). Acta Cryst. E63, o4644.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds