organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[5-Methyl-2-(propan-2-yl)phen­­oxy]-N′-{2-[5-methyl-2-(propan-2-yl)phen­­oxy]acet­yl}acetohydrazide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 18 August 2011; accepted 19 August 2011; online 27 August 2011)

The complete mol­ecule of the title compound, C24H32N2O4, is generated by a crystallographic inversion center. The 1,2-diethyl­hydrazine moiety is nearly planar, with a maximum deviation of 0.024 (1) Å, and is inclined at a dihedral angle of 54.20 (4)° with the phenyl ring. In the crystal, [001] chains are formed, with adjacent mol­ecules in the chain linked by pair of inter­molecular N—H⋯O hydrogen bonds, generating R22(10) ring motifs. Inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions are also observed.

Related literature

For general background to and the biological activity of hydrazides, see: Bedia et al. (2006[Bedia, K.-K., Elcin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253-1261.]); Rollas et al. (2002[Rollas, S., Gulerman, N. & Erdeniz, H. (2002). Il Farmaco, 57, 171-174.]); Terzioglu & Gürsoy (2003[Terzioglu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem. 38, 781-786.]); Bratenko et al. (1999[Bratenko, M. K., Chornous, V. A., Voloshin, N. P. & Vovk, M. V. (1999). Chem. Heterocycl. Compd, 35, 1075-1077.]); Rai et al. (2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C24H32N2O4

  • Mr = 412.52

  • Orthorhombic, P b c n

  • a = 23.6018 (8) Å

  • b = 11.2077 (4) Å

  • c = 8.6653 (3) Å

  • V = 2292.16 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.98 × 0.23 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.914, Tmax = 0.986

  • 38738 measured reflections

  • 3337 independent reflections

  • 2946 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.111

  • S = 1.04

  • 3337 reflections

  • 143 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2i 0.902 (16) 1.916 (15) 2.7759 (11) 158.8 (13)
C11—H11A⋯O2ii 0.96 2.58 3.4830 (14) 157
C7—H7BCg1iii 0.97 2.68 3.3706 (10) 129
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) x, y, z+1; (iii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, z-1].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hydrazides have been demonstrated to possess antimicrobial, anticonvulsant, analgesic, antiinflammatory, antiplatelet, antitubercular, anticancer and antitumoral activities (Bedia et al., 2006; Rollas et al., 2002; Terzioglu & Gürsoy, 2003). These are key intermediates in the preparation of hydrazones. Hydrazones are versatile intermediates and important building blocks. Hydrazones of aliphatic and aromatic methyl ketones yield pyrazole-4-carboxaldehyde on formylation with Vilsmeier reagent (Bratenko et al., 1999). Aryl hydrazones are important building blocks for the synthesis of a variety of heterocyclic compounds such as pyrazolines and pyrazoles (Rai et al., 2008). The condensation of ethyl [5-methyl-2-(propan-2-yl)phenoxy]acetate with hydrazides of corresponding ester in presence of a catalytic amount of sodium acetate yielded the titled compound. The hydrazides are in turn obtained by refluxing ester with hydrazine hydrate in presence of ethanol .

The title molecule, Fig. 1, is lying across a crystallographic inversion center (symmetry code: -x+1, -y+1, -z). The 1,2-diethylhydrazine moeity (O2/O2A/N1/N1A/C7/C7A/C8/C8A) is nearly planar, with a maximum deviation of 0.024 (1) Å at atoms N1 and N1A, and is inclined at an angle of 54.20 (4)° with the phenyl ring (C1-C6). Bond lengths (Allen et al., 1987) and angles are within normal ranges.

In the crystal packing, the molecules are linked via a pair of intermolecular N1–H1N1···O2 hydrogen bonds (Table 1), generating R22 (10) ring motifs (Bernstein et al., 1995). The molecules are further linked into one-dimensional chains along [001] via adjacent ring motifs and intermolecular C11–H11A···O2 hydrogen bonds (Table 1). The crystal structure is further stabilized by C7—H7B···Cg1 (Table 1) interactions, where Cg1 is the centroid of the C1-C6 phenyl ring.

Related literature top

For general background to and the biological activity of hydrazides, see: Bedia et al. (2006); Rollas et al. (2002); Terzioglu & Gürsoy (2003); Bratenko et al. (1999); Rai et al. (2008). For standard bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

2-[5-Methyl-2-(propan-2-yl)phenoxy]acethydrazide (0.01 mol) and ethyl [5-methyl-2-(propan-2-yl)phenoxy]acetate (0.01 mol) in ethanol and a catalytic amount of anhydrous sodium acetate was refluxed for 2-3 h. The excess of ethanol was removed by distillation and the reaction mixture was kept overnight. The solid product separated was filtered. It was then recrystallized from ethanol. Colourless needles were obtained from ethanol by slow evaporation.

Refinement top

Atom H1N1 was located from the difference Fourier map and refined freely [N1–H1N1 = 0.902 (15) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.93-0.97 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
2-[5-Methyl-2-(propan-2-yl)phenoxy]-N'- {2-[5-methyl-2-(propan-2-yl)phenoxy]acetyl}acetohydrazide top
Crystal data top
C24H32N2O4F(000) = 888
Mr = 412.52Dx = 1.195 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 9950 reflections
a = 23.6018 (8) Åθ = 3.1–33.9°
b = 11.2077 (4) ŵ = 0.08 mm1
c = 8.6653 (3) ÅT = 100 K
V = 2292.16 (14) Å3Needle, colourless
Z = 40.98 × 0.23 × 0.18 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3337 independent reflections
Radiation source: fine-focus sealed tube2946 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 30.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 3333
Tmin = 0.914, Tmax = 0.986k = 1515
38738 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.8669P]
where P = (Fo2 + 2Fc2)/3
3337 reflections(Δ/σ)max = 0.001
143 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C24H32N2O4V = 2292.16 (14) Å3
Mr = 412.52Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 23.6018 (8) ŵ = 0.08 mm1
b = 11.2077 (4) ÅT = 100 K
c = 8.6653 (3) Å0.98 × 0.23 × 0.18 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3337 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2946 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 0.986Rint = 0.030
38738 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.34 e Å3
3337 reflectionsΔρmin = 0.21 e Å3
143 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.60698 (3)0.34104 (6)0.17205 (7)0.01862 (15)
O20.56593 (3)0.42523 (7)0.18634 (8)0.02124 (16)
N10.52505 (3)0.48416 (8)0.03709 (9)0.01797 (17)
C10.62322 (4)0.26903 (8)0.42242 (10)0.01853 (18)
C20.65864 (5)0.26034 (9)0.55037 (12)0.0247 (2)
H2A0.64620.21840.63660.030*
C30.71232 (5)0.31277 (10)0.55309 (12)0.0268 (2)
H3A0.73500.30500.64030.032*
C40.73205 (4)0.37621 (9)0.42683 (12)0.0239 (2)
C50.69717 (4)0.38699 (9)0.29676 (11)0.02033 (19)
H5A0.70980.42940.21110.024*
C60.64369 (4)0.33435 (8)0.29522 (10)0.01671 (18)
C70.62177 (4)0.41673 (8)0.04618 (10)0.01788 (18)
H7A0.64980.37800.01860.021*
H7B0.63770.49090.08430.021*
C80.56832 (4)0.44162 (8)0.04601 (10)0.01595 (17)
C90.56630 (4)0.20691 (9)0.41279 (11)0.02125 (19)
H9A0.54110.25730.35070.026*
C100.57351 (5)0.08855 (11)0.32753 (16)0.0363 (3)
H10A0.58760.10340.22540.054*
H10B0.53760.04870.32110.054*
H10C0.59990.03910.38250.054*
C110.53764 (6)0.18644 (10)0.56823 (13)0.0320 (2)
H11A0.53530.26070.62320.048*
H11C0.55940.13030.62740.048*
H11B0.50020.15540.55200.048*
C120.78972 (5)0.43480 (12)0.42762 (15)0.0352 (3)
H12A0.81300.39840.50540.053*
H12B0.78560.51830.44960.053*
H12C0.80720.42490.32840.053*
H1N10.5294 (6)0.5096 (13)0.1351 (18)0.032 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0197 (3)0.0228 (3)0.0134 (3)0.0028 (2)0.0038 (2)0.0055 (2)
O20.0235 (3)0.0287 (4)0.0115 (3)0.0021 (3)0.0007 (2)0.0008 (3)
N10.0171 (3)0.0263 (4)0.0106 (3)0.0022 (3)0.0028 (3)0.0007 (3)
C10.0237 (4)0.0160 (4)0.0159 (4)0.0038 (3)0.0018 (3)0.0012 (3)
C20.0354 (5)0.0215 (4)0.0173 (4)0.0048 (4)0.0064 (4)0.0033 (4)
C30.0312 (5)0.0261 (5)0.0231 (5)0.0085 (4)0.0128 (4)0.0026 (4)
C40.0205 (4)0.0257 (5)0.0256 (5)0.0057 (4)0.0065 (3)0.0069 (4)
C50.0184 (4)0.0234 (4)0.0192 (4)0.0015 (3)0.0014 (3)0.0018 (4)
C60.0190 (4)0.0176 (4)0.0135 (4)0.0035 (3)0.0033 (3)0.0006 (3)
C70.0180 (4)0.0227 (4)0.0130 (4)0.0008 (3)0.0005 (3)0.0038 (3)
C80.0185 (4)0.0165 (4)0.0128 (4)0.0018 (3)0.0006 (3)0.0019 (3)
C90.0239 (4)0.0211 (4)0.0187 (4)0.0008 (3)0.0007 (3)0.0036 (3)
C100.0315 (6)0.0348 (6)0.0426 (7)0.0078 (5)0.0047 (5)0.0164 (5)
C110.0442 (6)0.0270 (5)0.0247 (5)0.0059 (5)0.0093 (5)0.0048 (4)
C120.0208 (5)0.0460 (7)0.0389 (6)0.0005 (4)0.0086 (4)0.0107 (5)
Geometric parameters (Å, º) top
O1—C61.3767 (10)C5—H5A0.9300
O1—C71.4252 (11)C7—C81.5189 (12)
O2—C81.2311 (11)C7—H7A0.9700
N1—C81.3375 (11)C7—H7B0.9700
N1—N1i1.3922 (14)C9—C111.5246 (14)
N1—H1N10.902 (15)C9—C101.5279 (15)
C1—C21.3920 (13)C9—H9A0.9800
C1—C61.4087 (13)C10—H10A0.9600
C1—C91.5153 (13)C10—H10B0.9600
C2—C31.3968 (16)C10—H10C0.9600
C2—H2A0.9300C11—H11A0.9600
C3—C41.3854 (16)C11—H11C0.9600
C3—H3A0.9300C11—H11B0.9600
C4—C51.4009 (13)C12—H12A0.9600
C4—C121.5115 (15)C12—H12B0.9600
C5—C61.3934 (13)C12—H12C0.9600
C6—O1—C7118.14 (7)O2—C8—N1123.37 (8)
C8—N1—N1i119.41 (9)O2—C8—C7122.02 (8)
C8—N1—H1N1122.2 (9)N1—C8—C7114.61 (8)
N1i—N1—H1N1116.8 (9)C1—C9—C11114.44 (9)
C2—C1—C6116.97 (9)C1—C9—C10109.08 (8)
C2—C1—C9122.97 (9)C11—C9—C10110.24 (9)
C6—C1—C9119.98 (8)C1—C9—H9A107.6
C1—C2—C3121.93 (10)C11—C9—H9A107.6
C1—C2—H2A119.0C10—C9—H9A107.6
C3—C2—H2A119.0C9—C10—H10A109.5
C4—C3—C2120.49 (9)C9—C10—H10B109.5
C4—C3—H3A119.8H10A—C10—H10B109.5
C2—C3—H3A119.8C9—C10—H10C109.5
C3—C4—C5118.83 (9)H10A—C10—H10C109.5
C3—C4—C12121.47 (9)H10B—C10—H10C109.5
C5—C4—C12119.69 (10)C9—C11—H11A109.5
C6—C5—C4120.22 (9)C9—C11—H11C109.5
C6—C5—H5A119.9H11A—C11—H11C109.5
C4—C5—H5A119.9C9—C11—H11B109.5
O1—C6—C5123.67 (8)H11A—C11—H11B109.5
O1—C6—C1114.77 (8)H11C—C11—H11B109.5
C5—C6—C1121.55 (8)C4—C12—H12A109.5
O1—C7—C8107.97 (7)C4—C12—H12B109.5
O1—C7—H7A110.1H12A—C12—H12B109.5
C8—C7—H7A110.1C4—C12—H12C109.5
O1—C7—H7B110.1H12A—C12—H12C109.5
C8—C7—H7B110.1H12B—C12—H12C109.5
H7A—C7—H7B108.4
C6—C1—C2—C30.57 (14)C9—C1—C6—O13.50 (12)
C9—C1—C2—C3176.25 (9)C2—C1—C6—C50.57 (13)
C1—C2—C3—C40.24 (16)C9—C1—C6—C5176.35 (8)
C2—C3—C4—C50.13 (15)C6—O1—C7—C8161.38 (7)
C2—C3—C4—C12179.36 (10)N1i—N1—C8—O22.20 (16)
C3—C4—C5—C60.14 (14)N1i—N1—C8—C7176.73 (10)
C12—C4—C5—C6179.38 (9)O1—C7—C8—O2127.62 (9)
C7—O1—C6—C57.22 (13)O1—C7—C8—N153.43 (10)
C7—O1—C6—C1172.93 (8)C2—C1—C9—C1128.23 (13)
C4—C5—C6—O1179.93 (9)C6—C1—C9—C11155.04 (9)
C4—C5—C6—C10.23 (14)C2—C1—C9—C1095.77 (12)
C2—C1—C6—O1179.58 (8)C6—C1—C9—C1080.96 (11)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 phenyl ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2ii0.902 (16)1.916 (15)2.7759 (11)158.8 (13)
C11—H11A···O2iii0.962.583.4830 (14)157
C7—H7B···Cg1iv0.972.683.3706 (10)129
Symmetry codes: (ii) x, y+1, z+1/2; (iii) x, y, z+1; (iv) x1/2, y+1/2, z1.

Experimental details

Crystal data
Chemical formulaC24H32N2O4
Mr412.52
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)100
a, b, c (Å)23.6018 (8), 11.2077 (4), 8.6653 (3)
V3)2292.16 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.98 × 0.23 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.914, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
38738, 3337, 2946
Rint0.030
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.111, 1.04
No. of reflections3337
No. of parameters143
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.21

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 phenyl ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i0.902 (16)1.916 (15)2.7759 (11)158.8 (13)
C11—H11A···O2ii0.962.583.4830 (14)157
C7—H7B···Cg1iii0.972.683.3706 (10)129
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y, z+1; (iii) x1/2, y+1/2, z1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009

§Thomson Reuters ResearcherID: A-5525-2009

Acknowledgements

HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBedia, K.-K., Elcin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBratenko, M. K., Chornous, V. A., Voloshin, N. P. & Vovk, M. V. (1999). Chem. Heterocycl. Compd, 35, 1075–1077.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationRollas, S., Gulerman, N. & Erdeniz, H. (2002). Il Farmaco, 57, 171–174.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTerzioglu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem. 38, 781–786.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds