organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(Di­phenyl­phosphan­yl)benzoic acid

aResearch Center for Engineering Technology of Polymeric Composites of Shanxi Province, School of Materials Science and Engineering, North University of China, Taiyuan 030051, People's Republic of China
*Correspondence e-mail: zph2004@yahoo.com.cn

(Received 19 August 2011; accepted 20 August 2011; online 27 August 2011)

In the title compound, C19H15O2P, the dihedral angles between the benzoic acid ring and the phenyl rings are 75.64 (7) and 80.88 (7)°; the dihedral angle between the phenyl rings is 81.35 (7)°. In the crystal, inversion dimers linked by pairs of O—H⋯O hydrogen bonds generate R22(8) loops between the head-to-head carb­oxy­lic acid groups.

Related literature

For background to phosphine ligands, see: Dydio et al. (2011[Dydio, P., Dzik, W. I., Lutz, M., De Bruin, B. & Peek, J. N. H. (2011). Angew. Chem. Int. Ed. 50, 396-400.]). For water-soluble phosphines, see: Katti et al. (1999[Katti, K. V., Gall, H., Smith, C. J. & Berning, D. E. (1999). Acc. Chem. Res. 32, 9-17.]); Pinault & Bruce (2003[Pinault, N. & Bruce, D. W. (2003). Coord. Chem. Rev. 241, 1-25.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15O2P

  • Mr = 306.28

  • Monoclinic, P 21 /c

  • a = 7.885 (2) Å

  • b = 28.629 (8) Å

  • c = 7.066 (2) Å

  • β = 97.338 (4)°

  • V = 1581.8 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 113 K

  • 0.24 × 0.20 × 0.20 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.959, Tmax = 0.965

  • 15613 measured reflections

  • 3714 independent reflections

  • 3066 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.109

  • S = 1.03

  • 3714 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.84 1.79 2.6190 (16) 170
Symmetry code: (i) -x-1, -y+1, -z.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Phosphine ligands are important intermediates in organic chemistry e.g. (Dydio et al., 2011), Water-soluble phosphines with the hydrophobic group are the most common phosphine lingands used in catalytic and biomedical aspects (Katti et al., 1999; Pinault & Bruce, 2003). The title compound, (I), belongs to the fuctionalized water-soluble phosphines.

The O—H···O hydrogen bonds between the O atom of the carbonyl group and the H atom of the carboxyl group link the molecules into inversion dimers (Table 1).

Related literature top

For background to phosphine ligands, see: Dydio et al. (2011). For water-soluble phosphines, see: Katti et al. (1999); Pinault & Bruce (2003).

Experimental top

4-iodobenzoic acid (5.0 mmol) and Et3N (10 mmol) were dissolved in CH3CN (30 ml). After the addition of Pb(OAc)2 (0.005 mmol) and Ph2PH (5.0 mmol), the reaction mixture was refluxed for 12 h. All volatiles were removed in vacuo and the obtained residue was dissolved in H2O (15 ml). After addition of KOH (10.0 mmol), the solution was extracted with Et2O. The aqueous solution was acidified with 2 N HCl and again extracted with Et2O. The collected ethereal phases were washed with H2O, dried over MgSO4 and evaporated to get a white precipite. Colourless prisms of (I) were obtained by recrystallization from MeOH at room temperature.

Refinement top

All the H atoms were positioned geometrically (O—H = 0.84 Å, C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal packing for (I). ,,;n,
4-(diphenylphosphanyl)benzoic acid top
Crystal data top
C19H15O2PF(000) = 640
Mr = 306.28Dx = 1.286 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.885 (2) ÅCell parameters from 5302 reflections
b = 28.629 (8) Åθ = 1.4–28.0°
c = 7.066 (2) ŵ = 0.18 mm1
β = 97.338 (4)°T = 113 K
V = 1581.8 (8) Å3Prism, colorless
Z = 40.24 × 0.20 × 0.20 mm
Data collection top
Rigaku Saturn724 CCD
diffractometer
3714 independent reflections
Radiation source: rotating anode3066 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.049
Detector resolution: 14.22 pixels mm-1θmax = 27.9°, θmin = 1.4°
ω and ϕ scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 3736
Tmin = 0.959, Tmax = 0.965l = 98
15613 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.046P]
where P = (Fo2 + 2Fc2)/3
3714 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C19H15O2PV = 1581.8 (8) Å3
Mr = 306.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.885 (2) ŵ = 0.18 mm1
b = 28.629 (8) ÅT = 113 K
c = 7.066 (2) Å0.24 × 0.20 × 0.20 mm
β = 97.338 (4)°
Data collection top
Rigaku Saturn724 CCD
diffractometer
3714 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
3066 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.965Rint = 0.049
15613 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.03Δρmax = 0.25 e Å3
3714 reflectionsΔρmin = 0.30 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.20334 (5)0.395759 (13)0.81304 (6)0.02428 (13)
O10.31468 (15)0.46619 (4)0.02047 (16)0.0387 (3)
H10.39630.47780.05270.058*
O20.45337 (13)0.49967 (3)0.24140 (15)0.0326 (3)
C10.04771 (17)0.41954 (5)0.6200 (2)0.0232 (3)
C20.04539 (18)0.40779 (5)0.4285 (2)0.0262 (3)
H20.12860.38670.39210.031*
C30.07624 (18)0.42632 (5)0.2905 (2)0.0259 (3)
H30.07580.41810.16030.031*
C40.19939 (17)0.45701 (5)0.3423 (2)0.0234 (3)
C50.19788 (18)0.46940 (5)0.5334 (2)0.0245 (3)
H50.28170.49030.56960.029*
C60.07421 (18)0.45129 (5)0.6702 (2)0.0248 (3)
H60.07190.46050.79970.030*
C70.33261 (18)0.47604 (5)0.1953 (2)0.0261 (3)
C80.07195 (17)0.35227 (5)0.9178 (2)0.0221 (3)
C90.09792 (18)0.34255 (5)0.8492 (2)0.0268 (3)
H90.15030.35810.73820.032*
C100.19171 (19)0.31060 (5)0.9399 (2)0.0302 (4)
H100.30800.30480.89200.036*
C110.1167 (2)0.28692 (5)1.1006 (2)0.0297 (3)
H110.18030.26461.16180.036*
C120.0520 (2)0.29624 (5)1.1706 (2)0.0295 (3)
H120.10420.28021.28060.035*
C130.14521 (18)0.32874 (5)1.0817 (2)0.0266 (3)
H130.26030.33511.13260.032*
C140.33456 (17)0.35885 (5)0.6768 (2)0.0233 (3)
C150.31532 (17)0.31046 (5)0.6575 (2)0.0250 (3)
H150.23090.29490.71870.030*
C160.41838 (19)0.28490 (5)0.5498 (2)0.0271 (3)
H160.40570.25200.54010.033*
C170.53902 (18)0.30724 (5)0.4571 (2)0.0281 (3)
H170.60820.28970.38220.034*
C180.55916 (18)0.35529 (5)0.4733 (2)0.0286 (3)
H180.64110.37080.40790.034*
C190.45977 (17)0.38077 (5)0.5848 (2)0.0264 (3)
H190.47700.41350.59890.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0209 (2)0.0242 (2)0.0281 (2)0.00146 (13)0.00446 (15)0.00451 (15)
O10.0387 (7)0.0520 (7)0.0271 (6)0.0213 (5)0.0104 (5)0.0035 (5)
O20.0329 (6)0.0343 (6)0.0329 (6)0.0142 (4)0.0136 (5)0.0035 (5)
C10.0228 (7)0.0185 (6)0.0295 (8)0.0019 (5)0.0077 (6)0.0022 (6)
C20.0253 (7)0.0236 (7)0.0308 (8)0.0051 (5)0.0071 (6)0.0041 (6)
C30.0282 (7)0.0253 (7)0.0261 (8)0.0035 (6)0.0105 (6)0.0032 (6)
C40.0234 (7)0.0201 (6)0.0285 (8)0.0018 (5)0.0106 (6)0.0026 (6)
C50.0249 (7)0.0190 (6)0.0323 (9)0.0022 (5)0.0143 (6)0.0002 (6)
C60.0281 (7)0.0224 (7)0.0261 (8)0.0005 (5)0.0119 (6)0.0023 (6)
C70.0275 (7)0.0227 (7)0.0305 (9)0.0042 (5)0.0126 (6)0.0028 (6)
C80.0217 (7)0.0232 (7)0.0217 (8)0.0015 (5)0.0038 (5)0.0049 (6)
C90.0243 (7)0.0301 (7)0.0255 (8)0.0008 (6)0.0008 (6)0.0034 (6)
C100.0260 (8)0.0323 (8)0.0323 (9)0.0033 (6)0.0037 (6)0.0014 (7)
C110.0371 (9)0.0264 (7)0.0276 (9)0.0009 (6)0.0121 (7)0.0003 (6)
C120.0381 (9)0.0291 (8)0.0214 (8)0.0092 (6)0.0042 (6)0.0000 (6)
C130.0241 (7)0.0302 (8)0.0249 (8)0.0061 (6)0.0004 (6)0.0065 (6)
C140.0177 (6)0.0264 (7)0.0254 (8)0.0013 (5)0.0012 (5)0.0015 (6)
C150.0216 (7)0.0257 (7)0.0279 (8)0.0022 (5)0.0039 (6)0.0002 (6)
C160.0268 (7)0.0248 (7)0.0297 (9)0.0028 (5)0.0035 (6)0.0016 (6)
C170.0224 (7)0.0345 (8)0.0274 (8)0.0064 (6)0.0031 (6)0.0021 (6)
C180.0195 (7)0.0338 (8)0.0330 (9)0.0004 (5)0.0060 (6)0.0047 (7)
C190.0205 (7)0.0261 (7)0.0328 (9)0.0023 (5)0.0037 (6)0.0013 (6)
Geometric parameters (Å, º) top
P1—C81.8348 (15)C9—H90.9500
P1—C141.8351 (15)C10—C111.388 (2)
P1—C11.8443 (15)C10—H100.9500
O1—C71.2920 (19)C11—C121.384 (2)
O1—H10.8400C11—H110.9500
O2—C71.2449 (17)C12—C131.385 (2)
C1—C21.392 (2)C12—H120.9500
C1—C61.4012 (19)C13—H130.9500
C2—C31.383 (2)C14—C191.3980 (19)
C2—H20.9500C14—C151.398 (2)
C3—C41.3927 (19)C15—C161.390 (2)
C3—H30.9500C15—H150.9500
C4—C51.395 (2)C16—C171.379 (2)
C4—C71.484 (2)C16—H160.9500
C5—C61.383 (2)C17—C181.388 (2)
C5—H50.9500C17—H170.9500
C6—H60.9500C18—C191.388 (2)
C8—C91.3930 (19)C18—H180.9500
C8—C131.399 (2)C19—H190.9500
C9—C101.384 (2)
C8—P1—C14101.89 (7)C9—C10—C11120.28 (14)
C8—P1—C1101.07 (6)C9—C10—H10119.9
C14—P1—C1101.02 (7)C11—C10—H10119.9
C7—O1—H1109.5C12—C11—C10119.20 (14)
C2—C1—C6118.58 (13)C12—C11—H11120.4
C2—C1—P1123.67 (11)C10—C11—H11120.4
C6—C1—P1117.75 (11)C11—C12—C13120.57 (14)
C3—C2—C1120.97 (13)C11—C12—H12119.7
C3—C2—H2119.5C13—C12—H12119.7
C1—C2—H2119.5C12—C13—C8120.79 (13)
C2—C3—C4120.02 (14)C12—C13—H13119.6
C2—C3—H3120.0C8—C13—H13119.6
C4—C3—H3120.0C19—C14—C15118.26 (13)
C3—C4—C5119.67 (13)C19—C14—P1117.67 (11)
C3—C4—C7120.17 (13)C15—C14—P1124.07 (11)
C5—C4—C7120.15 (13)C16—C15—C14120.74 (14)
C6—C5—C4119.94 (13)C16—C15—H15119.6
C6—C5—H5120.0C14—C15—H15119.6
C4—C5—H5120.0C17—C16—C15120.19 (14)
C5—C6—C1120.78 (14)C17—C16—H16119.9
C5—C6—H6119.6C15—C16—H16119.9
C1—C6—H6119.6C16—C17—C18119.93 (14)
O2—C7—O1123.34 (14)C16—C17—H17120.0
O2—C7—C4120.86 (14)C18—C17—H17120.0
O1—C7—C4115.80 (13)C19—C18—C17120.06 (14)
C9—C8—C13117.94 (13)C19—C18—H18120.0
C9—C8—P1124.24 (11)C17—C18—H18120.0
C13—C8—P1117.76 (10)C18—C19—C14120.79 (14)
C10—C9—C8121.20 (13)C18—C19—H19119.6
C10—C9—H9119.4C14—C19—H19119.6
C8—C9—H9119.4
C8—P1—C1—C2102.98 (13)C1—P1—C8—C13175.39 (11)
C14—P1—C1—C21.61 (13)C13—C8—C9—C100.1 (2)
C8—P1—C1—C677.23 (12)P1—C8—C9—C10177.35 (11)
C14—P1—C1—C6178.18 (11)C8—C9—C10—C111.0 (2)
C6—C1—C2—C31.1 (2)C9—C10—C11—C121.1 (2)
P1—C1—C2—C3179.08 (11)C10—C11—C12—C130.1 (2)
C1—C2—C3—C40.4 (2)C11—C12—C13—C81.0 (2)
C2—C3—C4—C50.9 (2)C9—C8—C13—C121.1 (2)
C2—C3—C4—C7178.49 (13)P1—C8—C13—C12178.52 (11)
C3—C4—C5—C60.1 (2)C8—P1—C14—C19176.36 (10)
C7—C4—C5—C6179.51 (12)C1—P1—C14—C1979.70 (11)
C4—C5—C6—C11.7 (2)C8—P1—C14—C154.54 (13)
C2—C1—C6—C52.2 (2)C1—P1—C14—C1599.40 (12)
P1—C1—C6—C5178.05 (10)C19—C14—C15—C160.10 (19)
C3—C4—C7—O2172.69 (14)P1—C14—C15—C16179.19 (10)
C5—C4—C7—O26.7 (2)C14—C15—C16—C171.4 (2)
C3—C4—C7—O16.9 (2)C15—C16—C17—C180.8 (2)
C5—C4—C7—O1173.76 (13)C16—C17—C18—C190.9 (2)
C14—P1—C8—C9102.00 (13)C17—C18—C19—C142.2 (2)
C1—P1—C8—C91.90 (14)C15—C14—C19—C181.7 (2)
C14—P1—C8—C1380.71 (12)P1—C14—C19—C18177.48 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.792.6190 (16)170
Symmetry code: (i) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC19H15O2P
Mr306.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)7.885 (2), 28.629 (8), 7.066 (2)
β (°) 97.338 (4)
V3)1581.8 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.24 × 0.20 × 0.20
Data collection
DiffractometerRigaku Saturn724 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.959, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
15613, 3714, 3066
Rint0.049
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.109, 1.03
No. of reflections3714
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.30

Computer programs: CrystalClear (Rigaku/MSC, 2005), CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.792.6190 (16)170
Symmetry code: (i) x1, y+1, z.
 

Acknowledgements

This work was supported financially by the start-up foundation of North University of China.

References

First citationDydio, P., Dzik, W. I., Lutz, M., De Bruin, B. & Peek, J. N. H. (2011). Angew. Chem. Int. Ed. 50, 396–400.  CrossRef CAS Google Scholar
First citationKatti, K. V., Gall, H., Smith, C. J. & Berning, D. E. (1999). Acc. Chem. Res. 32, 9–17.  CrossRef CAS Google Scholar
First citationPinault, N. & Bruce, D. W. (2003). Coord. Chem. Rev. 241, 1–25.  CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds