organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2488-o2489

(E)-2-[4-(Di­ethyl­amino)­styr­yl]-1-methyl­pyridinium 4-chloro­benzene­sulfonate monohydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 19 August 2011; accepted 20 August 2011; online 27 August 2011)

In the title hydrated mol­ecular salt, C18H23N2+·C6H4ClO3S·H2O, which shows moderate biological activity against methicillin-resistant Staphylococcus aureus (MRSA), one ethyl group of the 2-[4-(diethyl­amino)­styr­yl]-1-methyl­pyridinium cation is disordered over two orientations in a 0.604 (13):0.396 (13) ratio. The main part of the cation is nearly planar with a dihedral angle of 4.50 (10)° between the pyridinium and benzene rings. In the crystal, the components are linked by O—H⋯O hydrogen bonds and C—H⋯O weak inter­actions. Aromatic ππ stacking inter­actions with centroid–centroid separations of 3.7363 (12) and 3.7490 (13) Å also occur.

Related literature

For background to and the application of quarternary ammonium compounds as disinfecta­nts, see: Brown & Skurray (2001[Brown, M. H. & Skurray, R. A. (2001). J. Mol. Microbiol. Biotechnol. 3, 163-170.]); Chanawanno, Chantrapromma, Anantapong, Kanjana-Opas & Fun (2010[Chanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199-4208.]); Domagk (1935[Domagk, G. (1935). Dtsch Med. Wochenschr. 24, 829-832.]); Endo et al. (1987[Endo, Y., Tani, T. & Kodama, K. (1987). Appl. Environ. Microbiol. 53, 2050-2055.]); Fun et al. (2011[Fun, H.-K., Kaewmanee, N., Chanawanno, K. & Chantrapromma, S. (2011). Acta Cryst. E67, o593-o594.]); Wainwright & Kristiansen (2003[Wainwright, M. & Kristiansen, J. E. (2003). Int. J. Antimicrob. Agents, 22, 479-486.]). For a related structure, see: Fun et al. (2011[Fun, H.-K., Kaewmanee, N., Chanawanno, K. & Chantrapromma, S. (2011). Acta Cryst. E67, o593-o594.]); Kaewmanee et al. (2010[Kaewmanee, N., Chanawanno, K., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o2639-o2640.]). For the synthesis, see: Chanawanno, Chantrapromma, Anantapong & Kanjana-Opas (2010[Chanawanno, K., Chantrapromma, S., Anantapong, T. & Kanjana-Opas, A. (2010). Lat. Am. J. Pharm. 29, 1166-1170.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H23N2+·C6H4ClO3S·H2O

  • Mr = 477.00

  • Triclinic, [P \overline 1]

  • a = 7.2511 (3) Å

  • b = 10.2272 (4) Å

  • c = 16.7169 (7) Å

  • α = 88.441 (3)°

  • β = 80.057 (2)°

  • γ = 77.062 (2)°

  • V = 1190.00 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 100 K

  • 0.53 × 0.25 × 0.04 mm

Data collection
  • Bruker APEX Duo CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.866, Tmax = 0.990

  • 15554 measured reflections

  • 4617 independent reflections

  • 3369 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.118

  • S = 1.04

  • 4617 reflections

  • 320 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W1⋯O1 0.81 (3) 1.98 (3) 2.783 (3) 174 (3)
O1W—H1W1⋯O2i 0.87 (3) 2.13 (4) 2.977 (3) 166 (3)
C2—H2A⋯O2ii 0.93 2.52 3.374 (3) 153
C4—H4A⋯O1Wiii 0.93 2.43 3.316 (3) 158
C13—H13A⋯O3 0.93 2.59 3.495 (3) 164
C18—H18A⋯O2iv 0.96 2.49 3.426 (3) 166
C18—H18C⋯O3 0.96 2.57 3.202 (3) 123
Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x+2, -y+1, -z; (iii) x, y-1, z; (iv) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As disinfectants, quaternary ammonium compounds (QACs) have been used for hygienic care in both medical and domestic purposes due to their low toxicity and wide-ranging antimicrobial properties for a long time (Domagk, 1935). However, the long-term use of any disinfectants will lead to the resistance phenomena of some bacterial strains that makes these disinfectants to become unpractical for real life usage. The appearance of resistant microganisms against QACs, especially Methicillin-resistant Staphylococcus aureus (MRSA), made the common QACs such as benzalkonium chloride and cetylpridinium chloride to be inadequate for MRSA treatment (Wainwright & Kristiansen, 2003; Brown & Skurray, 2001). Therefore, we decided to develop the novel pyridinium QACs which were expected to overcome this Staphylococcus-resistant phenomenon by modifying the QACs structures and to study their anti-MRSA activity. Among various chromophores employed in the research for chemotherapeutic drug design, tertiary amine seems to be an interesting group to be introduced into the structure (Endo et al., 1987). The title compound (I) was one among many pyridinium QACs synthesized in our laboratory (Chanawanno, Chantrapromma, Anantapong, Kanjana-Opas & Fun, 2010) hoping for a new antibacterial drug candidate and this compound showed moderate activity against MRSA with the MIC value of 150 mg/ml. Herein its crystal structure is reported.

The asymmetric unit of the title compound (I) (Fig. 1) consists of the C18H23N2+ cation, C6H4ClO3S- anion and one H2O molecule. The cation exists in the E configuration with respect to the C6C7 double bond [1.337 (3) Å]. The cation is nearly planar with the the dihedral angle between the C1–C5/N1 pyridinium and the C8–C13 benzene rings being 4.50 (10)° and the torsion angle C5–C6–C7–C8 = 177.3 (2)°. One ethyl unit of the diethylamino moiety is disordered over two orientations; the major component A and the minor component B (Fig. 1), with the refined site-occupancy ratio of 0.604 (13)/0.396 (13). The diethylamino moiety is deviated from the attached benzene ring. Its conformation can be indicated by the torsion angles C11–N2–C14–C15 = 78.6 (3)°, C11–N2–C16–C17 = -95.0 (4)° for the major component A and 107.1 (5)° for the minor component B. The cation and anion are inclined to each other as indicated by the dihedral angles between the pyridinium and benzene rings of cation, and the sulfonate substituted benzene ring being 83.96 (10) and 86.97 (11)°, respectively. The bond lengths are in normal ranges (Allen et al., 1987) and comparable with a related structures (Fun et al., 2011; Kaewmanee et al., 2010).

In the crystal packing, the cations, anions and water molecules are linked into a network by O—H..O hydrogen bonds and C—H···O weak interactions (Fig. 2 and Table 1). π···π interactions with the centroid distances of Cg1···Cg1ii = 3.7363 (12) Å and Cg1···Cg2iv = 3.7490 (13) Å were observed; Cg1 and Cg2 are the centroids of N1/C1–C5 and C8–C13 rings, respectively.

Related literature top

For background to and the application of quarternary ammonium compounds as disinfectants, see: Brown & Skurray (2001); Chanawanno, Chantrapromma, Anantapong, Kanjana-Opas & Fun (2010); Domagk (1935); Endo et al. (1987); Fun et al. (2011); Wainwright & Kristiansen (2003). For a related structure, see: Fun et al. (2011); Kaewmanee et al. (2010). For reference bond lengths, see: Allen et al. (1987).

For related literature, see: Chanawanno, Chantrapromma, Anantapong & Kanjana-Opas (2010).

Experimental top

(E)-2-(4-(diethylamino)styryl)-1-methylpyridinium iodide (compound A, 0.13 g, 0.33 mmol) was prepared by the previous method (Kaewmanee et al., 2010) and then was mixed with silver (I) 4-chlorobenzenesulfonate (Chanawanno, Chantrapromma, Anantapong & Kanjana-Opas, 2010) (0.10 g, 0.33 mmol) in methanol (100 ml). The mixture immediately yielded a grey precipitate of silver iodide. After stirring the mixture for 30 min, the precipitate of silver iodide was removed and the resulting solution was evaporated yielding an orange solid of the title compound. Orange plates of (I) were recrystallized from methanol by slow evaporation of the solvent at room temperature after a few weeks, Mp. 446-448 K.

Refinement top

Water H atoms were located in difference maps and refined isotropically. The remaining H atoms were placed in calculated positions with d(C—H) = 0.93 Å, Uiso=1.2Ueq(C) for aromatic and CH and 0.96 Å, Uiso = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.91 Å from O1 and the deepest hole is located at 0.71 Å from S1.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) showing 40% probability displacement ellipsoids. Open bonds show the minor component.
[Figure 2] Fig. 2. The crystal packing of the major component viewed along the b axis. The O—H···O hydrogen bonds and weak C—H···O interactions are drawn as dashed lines.
(E)-2-[4-(Diethylamino)styryl]-1-methylpyridinium 4-chlorobenzenesulfonate monohydrate top
Crystal data top
C18H23N2+·C6H4ClO3S·H2OZ = 2
Mr = 477.00F(000) = 504
Triclinic, P1Dx = 1.331 Mg m3
Hall symbol: -P 1Melting point = 446–448 K
a = 7.2511 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.2272 (4) ÅCell parameters from 4617 reflections
c = 16.7169 (7) Åθ = 2.0–26.0°
α = 88.441 (3)°µ = 0.28 mm1
β = 80.057 (2)°T = 296 K
γ = 77.062 (2)°Plate, orange
V = 1190.00 (8) Å30.53 × 0.25 × 0.04 mm
Data collection top
Bruker APEX Duo CCD
diffractometer
4617 independent reflections
Radiation source: sealed tube3369 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 88
Tmin = 0.866, Tmax = 0.990k = 1212
15554 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.3949P]
where P = (Fo2 + 2Fc2)/3
4617 reflections(Δ/σ)max = 0.001
320 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C18H23N2+·C6H4ClO3S·H2Oγ = 77.062 (2)°
Mr = 477.00V = 1190.00 (8) Å3
Triclinic, P1Z = 2
a = 7.2511 (3) ÅMo Kα radiation
b = 10.2272 (4) ŵ = 0.28 mm1
c = 16.7169 (7) ÅT = 296 K
α = 88.441 (3)°0.53 × 0.25 × 0.04 mm
β = 80.057 (2)°
Data collection top
Bruker APEX Duo CCD
diffractometer
4617 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3369 reflections with I > 2σ(I)
Tmin = 0.866, Tmax = 0.990Rint = 0.031
15554 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.23 e Å3
4617 reflectionsΔρmin = 0.32 e Å3
320 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.43901 (10)1.01358 (9)0.38727 (5)0.0885 (3)
S10.36666 (7)0.85852 (5)0.16430 (4)0.04745 (17)
O10.4113 (2)0.98202 (16)0.13126 (11)0.0731 (5)
O20.3361 (2)0.77323 (18)0.10248 (11)0.0719 (5)
O30.4986 (2)0.79002 (17)0.21510 (11)0.0669 (5)
N11.0111 (2)0.50652 (16)0.11414 (10)0.0417 (4)
N20.1490 (3)0.4451 (2)0.37633 (15)0.0787 (7)
C11.1941 (3)0.4789 (2)0.07236 (13)0.0502 (5)
H1A1.26460.54510.06760.060*
C21.2759 (3)0.3571 (2)0.03751 (14)0.0570 (6)
H2A1.40110.33950.00910.068*
C31.1701 (4)0.2594 (2)0.04490 (14)0.0587 (6)
H3A1.22390.17500.02150.070*
C40.9856 (3)0.2870 (2)0.08674 (14)0.0521 (6)
H4A0.91460.22100.09080.063*
C50.9018 (3)0.4124 (2)0.12341 (12)0.0413 (5)
C60.7102 (3)0.4465 (2)0.17040 (13)0.0471 (5)
H6A0.66270.53460.18890.056*
C70.5968 (3)0.3595 (2)0.18895 (13)0.0478 (5)
H7A0.64530.27310.16780.057*
C80.4073 (3)0.3844 (2)0.23826 (12)0.0430 (5)
C90.3068 (3)0.2820 (2)0.25040 (14)0.0506 (5)
H9A0.36400.19850.22630.061*
C100.1273 (3)0.2995 (2)0.29644 (14)0.0518 (5)
H10A0.06670.22790.30350.062*
C110.0335 (3)0.4238 (2)0.33314 (14)0.0524 (6)
C120.1351 (3)0.5271 (2)0.32114 (14)0.0530 (6)
H12A0.07850.61070.34510.064*
C130.3153 (3)0.5076 (2)0.27510 (13)0.0479 (5)
H13A0.37740.57850.26840.057*
C140.2465 (4)0.3354 (3)0.39602 (17)0.0684 (7)
H14A0.22270.27760.34860.082*
H14B0.38380.37220.40870.082*
C150.1841 (5)0.2521 (3)0.46642 (18)0.0881 (9)
H15A0.25250.18140.47580.132*
H15B0.21140.30780.51420.132*
H15C0.04870.21410.45410.132*
C180.9351 (3)0.6428 (2)0.14925 (15)0.0536 (6)
H18A1.03130.69470.13630.080*
H18B0.90160.63720.20720.080*
H18C0.82310.68520.12710.080*
C190.1250 (3)0.8958 (2)0.31157 (14)0.0518 (6)
H19A0.23460.86530.33460.062*
C200.0530 (4)0.9297 (3)0.36085 (14)0.0598 (6)
H20A0.06380.92280.41700.072*
C210.2136 (3)0.9736 (2)0.32577 (14)0.0526 (6)
C220.2011 (3)0.9859 (2)0.24371 (14)0.0505 (5)
H22A0.31141.01570.22100.061*
C230.0230 (3)0.9535 (2)0.19461 (13)0.0446 (5)
H23A0.01270.96290.13860.053*
C240.1407 (3)0.90710 (19)0.22881 (12)0.0400 (5)
O1W0.7231 (3)1.0760 (3)0.04924 (15)0.0793 (6)
C16A0.2701 (8)0.5883 (8)0.3938 (4)0.0633 (19)0.604 (13)
H16A0.22700.64900.35290.076*0.604 (13)
H16B0.40410.59060.39280.076*0.604 (13)
C17A0.2473 (8)0.6301 (8)0.4756 (4)0.084 (2)0.604 (13)
H17A0.32150.71970.48770.125*0.604 (13)
H17B0.11430.62750.47610.125*0.604 (13)
H17C0.29140.57000.51570.125*0.604 (13)
C16B0.2117 (11)0.5539 (10)0.4408 (6)0.054 (3)0.396 (13)
H16C0.10360.58700.45240.065*0.396 (13)
H16D0.27800.52290.49060.065*0.396 (13)
C17B0.3475 (16)0.6607 (11)0.3998 (6)0.084 (3)0.396 (13)
H17D0.40240.73550.43630.126*0.396 (13)
H17E0.44820.62320.38600.126*0.396 (13)
H17F0.27720.69040.35130.126*0.396 (13)
H2W10.630 (4)1.048 (3)0.0698 (17)0.073 (10)*
H1W10.697 (5)1.109 (4)0.003 (2)0.111 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0520 (4)0.1114 (6)0.0905 (5)0.0164 (4)0.0210 (4)0.0234 (4)
S10.0366 (3)0.0405 (3)0.0620 (4)0.0105 (2)0.0036 (2)0.0030 (2)
O10.0612 (11)0.0534 (10)0.0986 (14)0.0201 (8)0.0104 (10)0.0177 (9)
O20.0571 (10)0.0803 (12)0.0747 (11)0.0242 (9)0.0155 (9)0.0323 (10)
O30.0387 (9)0.0646 (11)0.0905 (12)0.0004 (8)0.0082 (8)0.0063 (9)
N10.0351 (9)0.0417 (9)0.0464 (9)0.0070 (7)0.0027 (7)0.0046 (8)
N20.0593 (13)0.0663 (14)0.1036 (18)0.0285 (11)0.0279 (12)0.0248 (13)
C10.0364 (11)0.0580 (14)0.0547 (13)0.0115 (10)0.0021 (10)0.0019 (11)
C20.0392 (12)0.0628 (15)0.0600 (14)0.0004 (11)0.0026 (10)0.0057 (12)
C30.0592 (15)0.0479 (13)0.0583 (14)0.0043 (12)0.0002 (12)0.0084 (11)
C40.0539 (14)0.0397 (12)0.0587 (13)0.0075 (10)0.0017 (11)0.0023 (10)
C50.0395 (11)0.0400 (11)0.0436 (11)0.0082 (9)0.0054 (9)0.0000 (9)
C60.0431 (12)0.0415 (12)0.0536 (12)0.0091 (10)0.0005 (10)0.0050 (10)
C70.0452 (12)0.0420 (12)0.0539 (13)0.0082 (10)0.0037 (10)0.0012 (10)
C80.0431 (12)0.0425 (12)0.0450 (11)0.0137 (9)0.0063 (9)0.0016 (9)
C90.0491 (13)0.0403 (12)0.0606 (14)0.0105 (10)0.0028 (11)0.0044 (10)
C100.0504 (13)0.0477 (13)0.0600 (14)0.0215 (10)0.0023 (11)0.0025 (11)
C110.0462 (13)0.0554 (14)0.0549 (13)0.0182 (11)0.0036 (10)0.0045 (11)
C120.0531 (13)0.0450 (13)0.0584 (13)0.0135 (11)0.0026 (11)0.0099 (10)
C130.0497 (13)0.0445 (12)0.0521 (12)0.0193 (10)0.0041 (10)0.0009 (10)
C140.0514 (14)0.0794 (18)0.0754 (17)0.0292 (13)0.0069 (13)0.0073 (14)
C150.094 (2)0.103 (2)0.0773 (19)0.0458 (19)0.0084 (17)0.0045 (18)
C180.0492 (13)0.0458 (12)0.0646 (14)0.0124 (10)0.0019 (11)0.0135 (11)
C190.0433 (12)0.0552 (14)0.0551 (13)0.0051 (10)0.0108 (10)0.0004 (11)
C200.0592 (15)0.0694 (16)0.0466 (13)0.0098 (12)0.0026 (11)0.0033 (11)
C210.0419 (12)0.0516 (13)0.0603 (14)0.0114 (10)0.0056 (11)0.0100 (11)
C220.0389 (12)0.0472 (13)0.0642 (15)0.0049 (10)0.0103 (11)0.0056 (11)
C230.0425 (12)0.0415 (11)0.0488 (12)0.0068 (9)0.0085 (10)0.0013 (9)
C240.0375 (11)0.0299 (10)0.0519 (12)0.0098 (8)0.0026 (9)0.0027 (9)
O1W0.0702 (14)0.1094 (18)0.0700 (14)0.0476 (13)0.0091 (11)0.0081 (12)
C16A0.042 (3)0.073 (5)0.070 (4)0.010 (3)0.000 (3)0.000 (3)
C17A0.077 (4)0.090 (5)0.076 (4)0.013 (3)0.004 (3)0.024 (4)
C16B0.049 (4)0.064 (6)0.048 (5)0.015 (4)0.005 (3)0.000 (4)
C17B0.072 (6)0.061 (6)0.102 (7)0.012 (5)0.001 (5)0.003 (5)
Geometric parameters (Å, º) top
Cl1—C211.743 (2)C13—H13A0.9300
S1—O31.4406 (17)C14—C151.507 (4)
S1—O11.4453 (16)C14—H14A0.9700
S1—O21.4466 (17)C14—H14B0.9700
S1—C241.775 (2)C15—H15A0.9600
N1—C11.361 (3)C15—H15B0.9600
N1—C51.367 (3)C15—H15C0.9600
N1—C181.477 (3)C18—H18A0.9600
N2—C111.367 (3)C18—H18B0.9600
N2—C141.456 (3)C18—H18C0.9600
N2—C16B1.508 (11)C19—C241.372 (3)
N2—C16A1.537 (8)C19—C201.383 (3)
C1—C21.354 (3)C19—H19A0.9300
C1—H1A0.9300C20—C211.375 (3)
C2—C31.381 (3)C20—H20A0.9300
C2—H2A0.9300C21—C221.363 (3)
C3—C41.370 (3)C22—C231.382 (3)
C3—H3A0.9300C22—H22A0.9300
C4—C51.398 (3)C23—C241.389 (3)
C4—H4A0.9300C23—H23A0.9300
C5—C61.446 (3)O1W—H2W10.81 (3)
C6—C71.337 (3)O1W—H1W10.86 (4)
C6—H6A0.9300C16A—C17A1.490 (11)
C7—C81.448 (3)C16A—H16A0.9700
C7—H7A0.9300C16A—H16B0.9700
C8—C131.391 (3)C17A—H17A0.9600
C8—C91.397 (3)C17A—H17B0.9600
C9—C101.370 (3)C17A—H17C0.9600
C9—H9A0.9300C16B—C17B1.531 (15)
C10—C111.402 (3)C16B—H16C0.9700
C10—H10A0.9300C16B—H16D0.9700
C11—C121.408 (3)C17B—H17D0.9600
C12—C131.372 (3)C17B—H17E0.9600
C12—H12A0.9300C17B—H17F0.9600
O3—S1—O1113.45 (11)N2—C14—H14A108.8
O3—S1—O2113.60 (11)C15—C14—H14A108.8
O1—S1—O2112.13 (12)N2—C14—H14B108.8
O3—S1—C24106.07 (10)C15—C14—H14B108.8
O1—S1—C24105.37 (10)H14A—C14—H14B107.7
O2—S1—C24105.31 (9)C14—C15—H15A109.5
C1—N1—C5121.61 (18)C14—C15—H15B109.5
C1—N1—C18117.11 (18)H15A—C15—H15B109.5
C5—N1—C18121.27 (17)C14—C15—H15C109.5
C11—N2—C14121.6 (2)H15A—C15—H15C109.5
C11—N2—C16B118.8 (3)H15B—C15—H15C109.5
C14—N2—C16B111.8 (3)N1—C18—H18A109.5
C11—N2—C16A120.6 (3)N1—C18—H18B109.5
C14—N2—C16A117.1 (3)H18A—C18—H18B109.5
C2—C1—N1121.5 (2)N1—C18—H18C109.5
C2—C1—H1A119.3H18A—C18—H18C109.5
N1—C1—H1A119.3H18B—C18—H18C109.5
C1—C2—C3118.8 (2)C24—C19—C20120.3 (2)
C1—C2—H2A120.6C24—C19—H19A119.9
C3—C2—H2A120.6C20—C19—H19A119.9
C4—C3—C2119.9 (2)C21—C20—C19119.1 (2)
C4—C3—H3A120.1C21—C20—H20A120.4
C2—C3—H3A120.1C19—C20—H20A120.4
C3—C4—C5121.3 (2)C22—C21—C20121.5 (2)
C3—C4—H4A119.3C22—C21—Cl1119.02 (18)
C5—C4—H4A119.3C20—C21—Cl1119.46 (19)
N1—C5—C4116.93 (19)C21—C22—C23119.3 (2)
N1—C5—C6119.05 (18)C21—C22—H22A120.4
C4—C5—C6124.0 (2)C23—C22—H22A120.4
C7—C6—C5124.14 (19)C22—C23—C24120.0 (2)
C7—C6—H6A117.9C22—C23—H23A120.0
C5—C6—H6A117.9C24—C23—H23A120.0
C6—C7—C8127.4 (2)C19—C24—C23119.73 (19)
C6—C7—H7A116.3C19—C24—S1120.97 (16)
C8—C7—H7A116.3C23—C24—S1119.28 (16)
C13—C8—C9116.57 (19)H2W1—O1W—H1W1105 (3)
C13—C8—C7123.52 (19)C17A—C16A—N2108.1 (7)
C9—C8—C7119.92 (19)C17A—C16A—H16A110.1
C10—C9—C8122.6 (2)N2—C16A—H16A110.1
C10—C9—H9A118.7C17A—C16A—H16B110.1
C8—C9—H9A118.7N2—C16A—H16B110.1
C9—C10—C11121.0 (2)H16A—C16A—H16B108.4
C9—C10—H10A119.5N2—C16B—C17B101.3 (8)
C11—C10—H10A119.5N2—C16B—H16C111.5
N2—C11—C10121.9 (2)C17B—C16B—H16C111.5
N2—C11—C12121.6 (2)N2—C16B—H16D111.5
C10—C11—C12116.4 (2)C17B—C16B—H16D111.5
C13—C12—C11121.8 (2)H16C—C16B—H16D109.3
C13—C12—H12A119.1C16B—C17B—H17D109.5
C11—C12—H12A119.1C16B—C17B—H17E109.5
C12—C13—C8121.6 (2)H17D—C17B—H17E109.5
C12—C13—H13A119.2C16B—C17B—H17F109.5
C8—C13—H13A119.2H17D—C17B—H17F109.5
N2—C14—C15113.7 (2)H17E—C17B—H17F109.5
C5—N1—C1—C20.5 (3)C11—C12—C13—C80.4 (3)
C18—N1—C1—C2179.5 (2)C9—C8—C13—C120.1 (3)
N1—C1—C2—C30.0 (3)C7—C8—C13—C12179.7 (2)
C1—C2—C3—C40.2 (4)C11—N2—C14—C1578.6 (3)
C2—C3—C4—C50.9 (3)C16B—N2—C14—C1570.2 (5)
C1—N1—C5—C41.1 (3)C16A—N2—C14—C15111.0 (4)
C18—N1—C5—C4178.96 (19)C24—C19—C20—C210.5 (4)
C1—N1—C5—C6178.28 (18)C19—C20—C21—C220.7 (4)
C18—N1—C5—C61.7 (3)C19—C20—C21—Cl1178.81 (18)
C3—C4—C5—N11.3 (3)C20—C21—C22—C230.1 (3)
C3—C4—C5—C6178.1 (2)Cl1—C21—C22—C23179.58 (17)
N1—C5—C6—C7174.3 (2)C21—C22—C23—C241.0 (3)
C4—C5—C6—C75.0 (3)C20—C19—C24—C230.4 (3)
C5—C6—C7—C8177.3 (2)C20—C19—C24—S1177.73 (18)
C6—C7—C8—C130.7 (4)C22—C23—C24—C191.2 (3)
C6—C7—C8—C9178.9 (2)C22—C23—C24—S1177.00 (15)
C13—C8—C9—C100.4 (3)O3—S1—C24—C199.9 (2)
C7—C8—C9—C10180.0 (2)O1—S1—C24—C19110.69 (19)
C8—C9—C10—C110.9 (4)O2—S1—C24—C19130.60 (19)
C14—N2—C11—C108.5 (4)O3—S1—C24—C23168.25 (16)
C16B—N2—C11—C10155.2 (4)O1—S1—C24—C2371.18 (18)
C16A—N2—C11—C10161.5 (3)O2—S1—C24—C2347.53 (19)
C14—N2—C11—C12173.5 (2)C11—N2—C16A—C17A95.0 (4)
C16B—N2—C11—C1226.7 (5)C14—N2—C16A—C17A94.5 (4)
C16A—N2—C11—C1216.5 (5)C16B—N2—C16A—C17A3.5 (5)
C9—C10—C11—N2177.1 (2)C11—N2—C16B—C17B107.1 (5)
C9—C10—C11—C121.1 (3)C14—N2—C16B—C17B103.1 (5)
N2—C11—C12—C13177.3 (2)C16A—N2—C16B—C17B3.4 (5)
C10—C11—C12—C130.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W1···O10.81 (3)1.98 (3)2.783 (3)174 (3)
O1W—H1W1···O2i0.87 (3)2.13 (4)2.977 (3)166 (3)
C2—H2A···O2ii0.932.523.374 (3)153
C4—H4A···O1Wiii0.932.433.316 (3)158
C13—H13A···O30.932.593.495 (3)164
C18—H18A···O2iv0.962.493.426 (3)166
C18—H18C···O30.962.573.202 (3)123
Symmetry codes: (i) x+1, y+2, z; (ii) x+2, y+1, z; (iii) x, y1, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC18H23N2+·C6H4ClO3S·H2O
Mr477.00
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.2511 (3), 10.2272 (4), 16.7169 (7)
α, β, γ (°)88.441 (3), 80.057 (2), 77.062 (2)
V3)1190.00 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.53 × 0.25 × 0.04
Data collection
DiffractometerBruker APEX Duo CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.866, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
15554, 4617, 3369
Rint0.031
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.118, 1.04
No. of reflections4617
No. of parameters320
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.32

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W1···O10.81 (3)1.98 (3)2.783 (3)174 (3)
O1W—H1W1···O2i0.87 (3)2.13 (4)2.977 (3)166 (3)
C2—H2A···O2ii0.932.523.374 (3)153
C4—H4A···O1Wiii0.932.433.316 (3)158
C13—H13A···O30.932.593.495 (3)164
C18—H18A···O2iv0.962.493.426 (3)166
C18—H18C···O30.962.573.202 (3)123
Symmetry codes: (i) x+1, y+2, z; (ii) x+2, y+1, z; (iii) x, y1, z; (iv) x+1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009

§Additional correspondence author, email: suchada.c@usm.my. Thomson Reuters ResearcherID: A-5085-2009

Acknowledgements

Financial support by Prince of Songkla University is gratefully acknowledged. KC thanks the Crystal Materials Research Unit (CMRU), Prince of Songkla University for the research assistance fellowship. The authors also thank Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBrown, M. H. & Skurray, R. A. (2001). J. Mol. Microbiol. Biotechnol. 3, 163–170.  CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChanawanno, K., Chantrapromma, S., Anantapong, T. & Kanjana-Opas, A. (2010). Lat. Am. J. Pharm. 29, 1166–1170.  CAS Google Scholar
First citationChanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199-4208.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDomagk, G. (1935). Dtsch Med. Wochenschr. 24, 829–832.  CrossRef Google Scholar
First citationEndo, Y., Tani, T. & Kodama, K. (1987). Appl. Environ. Microbiol. 53, 2050–2055.  CAS Google Scholar
First citationFun, H.-K., Kaewmanee, N., Chanawanno, K. & Chantrapromma, S. (2011). Acta Cryst. E67, o593–o594.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKaewmanee, N., Chanawanno, K., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o2639–o2640.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWainwright, M. & Kristiansen, J. E. (2003). Int. J. Antimicrob. Agents, 22, 479–486.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2488-o2489
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds