organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-bromo-5-methyl­phen­­oxy)methane

aDepartment of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China, and bPharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China
*Correspondence e-mail: maopingsong@zzu.edu.cn

(Received 20 August 2011; accepted 24 August 2011; online 31 August 2011)

The complete mol­ecule of the title compund, C15H14Br2O2, is generated by the application of crystallographic twofold symmetry, with the central C atom lying on the rotation axis. The dihedral angle between the benzene rings is 62.4 (3)°. In the crystal, short Br⋯Br contacts [3.4885 (16) Å] occur.

Related literature

For background to bromo­aromatic compounds, see: Butler & Walker (1993[Butler, A. & Walker, J.-V. (1993). Chem. Rev. 93, 1937-1944.]); Seevers & Counsell (1982[Seevers, R.-H. & Counsell, R.-E. (1982). Chem. Rev. 82, 575-590.]). For a related structure, see: Zheng et al. (2004[Zheng, S.-L., Yang, J.-H., Yu, X.-L., Chen, X.-M. & Wong, W.-T. (2004). Inorg. Chem. 43, 830-838.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14Br2O2

  • Mr = 386.08

  • Orthorhombic, P 21 21 2

  • a = 10.7752 (11) Å

  • b = 15.8690 (17) Å

  • c = 4.3272 (10) Å

  • V = 739.9 (2) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 6.91 mm−1

  • T = 291 K

  • 0.35 × 0.30 × 0.30 mm

Data collection
  • Agilent Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.196, Tmax = 0.231

  • 1505 measured reflections

  • 1022 independent reflections

  • 754 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.123

  • S = 1.02

  • 1022 reflections

  • 88 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.41 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 212 Friedel pairs

  • Flack parameter: −0.11 (9)

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Bromoaromatic compounds have proven to be an important class of molecules in synthetic organic chemistry. They have been used as key intermediates in the preparation of oganometallic reagents and play vital roles in transition metal mediated coupling reactions (Butler et al., 1993; Seevers et al., 1982). In this paper, we synthesized the title compound and reported its crystal structure here. The title compound was synthesized by the reaction of 2-bromo-4-methylphenol, dibromomethane with potassium carbonate. The C—C—C angles within the aromatic moiety cover a range 117.7 (8) - 122.5 (8) °, and the two benzene rings make a dihedral angle of 62.5° (Fig. 1). The O and Br atoms are essentially coplanar with the benzene ring to which they are attached, with the deviation of 0.0074 Å. In addition, the benzene rings between the adjacent molecules are stacked in a face-to-face orientation with the distance of 3.701 Å, a distance longer than the ππ stacking distances of 3.33 - 3.53 Å reported elsewhere (Zheng et al., 2004), indicating no ππ stacking is observed for this compound.

Related literature top

For background to bromoaromatic compounds, see: Butler & Walker (1993); Seevers & Counsell (1982). For a related structure, see: Zheng et al. (2004).

Experimental top

A mixture of 2-bromo-4-methylphenol (188 mg, 1 mmol), potassium carbonate (691 mg, 5 mmol) and dibromomethane (0.75 mmol) in acetone (5 ml) was heated to reflux for 12 h. The product was isolated and recrystallized from dicholomethane/hexane, colorless prisms of the title compound were obtained.

Refinement top

H atoms were generated geometrically and refined as riding atoms with C-H = 0.93Å and Uiso(H) = 1.2 times Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound, showing 30% probability ellipsolids. Atoms with suffix A are generated by (1–x, 2–y, z0.
[Figure 2] Fig. 2. A view of the crystal packing along the c axis, with short Br···Br contacts indicated by dashed lines.
Bis(2-bromo-5-methylphenoxy)methane top
Crystal data top
C15H14Br2O2Dx = 1.733 Mg m3
Mr = 386.08Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P21212Cell parameters from 443 reflections
a = 10.7752 (11) Åθ = 4.1–69.9°
b = 15.8690 (17) ŵ = 6.91 mm1
c = 4.3272 (10) ÅT = 291 K
V = 739.9 (2) Å3Prism, colorless
Z = 20.35 × 0.30 × 0.30 mm
F(000) = 380
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
1022 independent reflections
Radiation source: fine-focus sealed tube754 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 16.2312 pixels mm-1θmax = 66.9°, θmin = 5.0°
ω scansh = 129
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1814
Tmin = 0.196, Tmax = 0.231l = 34
1505 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.040P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
1022 reflectionsΔρmax = 0.36 e Å3
88 parametersΔρmin = 0.41 e Å3
0 restraintsAbsolute structure: Flack (1983), 212 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.11 (9)
Crystal data top
C15H14Br2O2V = 739.9 (2) Å3
Mr = 386.08Z = 2
Orthorhombic, P21212Cu Kα radiation
a = 10.7752 (11) ŵ = 6.91 mm1
b = 15.8690 (17) ÅT = 291 K
c = 4.3272 (10) Å0.35 × 0.30 × 0.30 mm
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
1022 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
754 reflections with I > 2σ(I)
Tmin = 0.196, Tmax = 0.231Rint = 0.044
1505 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.123Δρmax = 0.36 e Å3
S = 1.02Δρmin = 0.41 e Å3
1022 reflectionsAbsolute structure: Flack (1983), 212 Friedel pairs
88 parametersAbsolute structure parameter: 0.11 (9)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.85154 (9)0.95619 (6)0.6233 (4)0.0946 (6)
O10.6042 (5)0.9803 (3)0.3521 (17)0.0668 (18)
C10.7175 (7)0.8802 (4)0.624 (3)0.054 (2)
C20.6083 (7)0.9029 (5)0.489 (2)0.056 (3)
C30.5091 (8)0.8444 (5)0.500 (2)0.066 (3)
H30.43300.85730.40980.079*
C40.5267 (8)0.7679 (5)0.646 (3)0.070 (3)
H40.46170.72940.65010.084*
C50.6369 (8)0.7465 (4)0.787 (2)0.060 (3)
C60.7312 (8)0.8044 (5)0.779 (2)0.058 (3)
H60.80560.79250.87920.069*
C70.6509 (9)0.6621 (5)0.946 (2)0.090 (3)
H7A0.70230.66841.12610.135*
H7B0.68860.62260.80700.135*
H7C0.57060.64171.00720.135*
C80.50001.00000.168 (4)0.080 (5)
H8A0.48050.95240.03610.096*0.50
H8B0.51951.04760.03610.096*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0546 (6)0.0668 (6)0.1623 (14)0.0129 (5)0.0131 (8)0.0130 (8)
O10.049 (3)0.062 (3)0.089 (5)0.017 (3)0.004 (4)0.012 (4)
C10.052 (4)0.042 (4)0.066 (7)0.009 (3)0.001 (5)0.004 (5)
C20.048 (4)0.056 (5)0.062 (8)0.020 (4)0.010 (5)0.001 (5)
C30.043 (4)0.081 (6)0.074 (8)0.006 (5)0.009 (5)0.012 (6)
C40.058 (5)0.061 (5)0.090 (9)0.011 (4)0.009 (7)0.008 (7)
C50.064 (5)0.041 (4)0.074 (8)0.006 (4)0.020 (5)0.001 (5)
C60.058 (5)0.057 (5)0.058 (7)0.008 (4)0.007 (5)0.002 (5)
C70.110 (8)0.062 (5)0.098 (9)0.002 (6)0.019 (9)0.026 (6)
C80.082 (10)0.077 (9)0.081 (12)0.023 (8)0.0000.000
Geometric parameters (Å, º) top
Br1—C11.882 (7)C5—C61.370 (10)
O1—C21.364 (9)C5—C71.515 (10)
O1—C81.412 (10)C6—H60.9300
C1—C21.363 (11)C7—H7A0.9600
C1—C61.385 (10)C7—H7B0.9600
C2—C31.417 (11)C7—H7C0.9600
C3—C41.383 (11)C8—O1i1.412 (10)
C3—H30.9300C8—H8A0.9700
C4—C51.376 (12)C8—H8B0.9700
C4—H40.9300
C2—O1—C8118.0 (6)C5—C6—C1121.0 (8)
C2—C1—C6122.1 (7)C5—C6—H6119.5
C2—C1—Br1119.4 (6)C1—C6—H6119.5
C6—C1—Br1118.4 (6)C5—C7—H7A109.5
C1—C2—O1117.0 (7)C5—C7—H7B109.5
C1—C2—C3117.6 (8)H7A—C7—H7B109.5
O1—C2—C3125.5 (8)C5—C7—H7C109.5
C4—C3—C2119.2 (8)H7A—C7—H7C109.5
C4—C3—H3120.4H7B—C7—H7C109.5
C2—C3—H3120.4O1—C8—O1i111.2 (12)
C5—C4—C3122.5 (8)O1—C8—H8A109.4
C5—C4—H4118.7O1i—C8—H8A109.4
C3—C4—H4118.7O1—C8—H8B109.4
C6—C5—C4117.6 (8)O1i—C8—H8B109.4
C6—C5—C7122.0 (9)H8A—C8—H8B108.0
C4—C5—C7120.3 (8)
C6—C1—C2—O1177.7 (8)C2—C3—C4—C51.0 (16)
Br1—C1—C2—O11.3 (13)C3—C4—C5—C60.2 (16)
C6—C1—C2—C32.4 (15)C3—C4—C5—C7179.6 (9)
Br1—C1—C2—C3178.8 (7)C4—C5—C6—C12.5 (15)
C8—O1—C2—C1170.0 (9)C7—C5—C6—C1178.1 (8)
C8—O1—C2—C39.8 (14)C2—C1—C6—C53.7 (15)
C1—C2—C3—C40.1 (15)Br1—C1—C6—C5179.8 (7)
O1—C2—C3—C4179.9 (9)C2—O1—C8—O1i76.7 (6)
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC15H14Br2O2
Mr386.08
Crystal system, space groupOrthorhombic, P21212
Temperature (K)291
a, b, c (Å)10.7752 (11), 15.8690 (17), 4.3272 (10)
V3)739.9 (2)
Z2
Radiation typeCu Kα
µ (mm1)6.91
Crystal size (mm)0.35 × 0.30 × 0.30
Data collection
DiffractometerAgilent Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.196, 0.231
No. of measured, independent and
observed [I > 2σ(I)] reflections
1505, 1022, 754
Rint0.044
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.123, 1.02
No. of reflections1022
No. of parameters88
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.41
Absolute structureFlack (1983), 212 Friedel pairs
Absolute structure parameter0.11 (9)

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

The authors thank Professor Yu Zhu of Zhengzhou University for his help.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationButler, A. & Walker, J.-V. (1993). Chem. Rev. 93, 1937–1944.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSeevers, R.-H. & Counsell, R.-E. (1982). Chem. Rev. 82, 575–590.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, S.-L., Yang, J.-H., Yu, X.-L., Chen, X.-M. & Wong, W.-T. (2004). Inorg. Chem. 43, 830–838.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds