metal-organic compounds
Bis(benzyltrimethylammonium) tetrabromidocuprate(II)
aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: jinlei8812@163.com
In the title molecular salt, (C10H16N)2[CuBr4], the CuII ion adopts a squashed tetrahedral geometry with Br—Cu—Br angles varying between 99.29 (3) and 132.53 (3)°. In the crystal, the components are linked by C—H⋯Br interactions, thereby generating a three-dimensional network.
Related literature
For background to molecular–ionic compounds, see: Coffey et al. (2000); Liu et al. (2001); Long et al. (1997); Luque et al. (1997); Woodward et al. (2001).
Experimental
Crystal data
|
|
Data collection: CrystalClear (Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811034830/hb6385sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811034830/hb6385Isup2.hkl
At room temperature, benzyltrimethylammoniumchlorine (5 mmol, 0.93 g) were dissolved in 30 ml ethanol, then CuCl2.H2O (5 mmol, 0.85 g) was added into the previous solution slowly with sirring. A great quantity of yellow microcrystasls were obtained by filtrating after 3 days in air. The crystal was further dissolved in ethanol with excessive HBr solution carefully added with stiring. A purple solid appeared after days in the air with yield about 65%. Block purple single crystals were obtained by the slow evaporation of the above solution after a week in air.
The ε = C/(T–T0)), suggesting that this compound is not ferroelectric or there may be no distinct occurring within the measured temperature range between 123 K and 400 K (below the compound melting point 420 K).
of the compound as a function of temperature indicates that the permittivity is basically temperature-independent (H atoms were placed in calculated positions(C—H = 0.93Å for Csp2 atoms and C—H = 0.96Å and 0.96Å for Csp3 atoms), assigned fixed Uiso values [Uiso = 1.2Ueq(Csp2/N) and 1.5Ueq(Csp3)] and allowed to ride.
Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids. |
(C10H16N)2[CuBr4] | F(000) = 1340 |
Mr = 683.66 | Dx = 1.760 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 20422 reflections |
a = 9.1908 (8) Å | θ = 3.1–27.8° |
b = 9.6697 (19) Å | µ = 7.05 mm−1 |
c = 29.0243 (8) Å | T = 291 K |
V = 2579.5 (6) Å3 | Block, purple |
Z = 4 | 0.28 × 0.26 × 0.24 mm |
Rigaku Mercury2 diffractometer | 5922 independent reflections |
Radiation source: fine-focus sealed tube | 3769 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.101 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 27.5°, θmin = 3.1° |
CCD_Profile_fitting scans | h = −11→11 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −12→12 |
Tmin = 0.161, Tmax = 0.183 | l = −37→37 |
25511 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.063 | H-atom parameters constrained |
wR(F2) = 0.172 | w = 1/[σ2(Fo2) + (0.0838P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
5922 reflections | Δρmax = 0.89 e Å−3 |
250 parameters | Δρmin = −1.33 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 2556 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.06 (2) |
(C10H16N)2[CuBr4] | V = 2579.5 (6) Å3 |
Mr = 683.66 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 9.1908 (8) Å | µ = 7.05 mm−1 |
b = 9.6697 (19) Å | T = 291 K |
c = 29.0243 (8) Å | 0.28 × 0.26 × 0.24 mm |
Rigaku Mercury2 diffractometer | 5922 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | 3769 reflections with I > 2σ(I) |
Tmin = 0.161, Tmax = 0.183 | Rint = 0.101 |
25511 measured reflections |
R[F2 > 2σ(F2)] = 0.063 | H-atom parameters constrained |
wR(F2) = 0.172 | Δρmax = 0.89 e Å−3 |
S = 1.02 | Δρmin = −1.33 e Å−3 |
5922 reflections | Absolute structure: Flack (1983), 2556 Friedel pairs |
250 parameters | Absolute structure parameter: 0.06 (2) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.16703 (6) | 0.33426 (5) | 0.800673 (18) | 0.06775 (16) | |
Br2 | 0.49529 (5) | 0.46102 (5) | 0.855426 (17) | 0.05492 (13) | |
Br3 | 0.48651 (5) | 0.08709 (5) | 0.870934 (18) | 0.05845 (14) | |
Br4 | 0.15255 (6) | 0.21832 (6) | 0.91811 (2) | 0.07334 (17) | |
C1 | 0.5435 (5) | 0.2722 (7) | 0.73255 (16) | 0.077 (2) | |
H1A | 0.4986 | 0.3359 | 0.7115 | 0.115* | |
H1B | 0.5080 | 0.2889 | 0.7631 | 0.115* | |
H1C | 0.5203 | 0.1792 | 0.7236 | 0.115* | |
C2 | 0.7333 (6) | 0.4347 (5) | 0.74409 (16) | 0.0749 (18) | |
H2A | 0.6761 | 0.4959 | 0.7254 | 0.112* | |
H2B | 0.8348 | 0.4530 | 0.7391 | 0.112* | |
H2C | 0.7100 | 0.4493 | 0.7760 | 0.112* | |
C3 | 0.7683 (5) | 0.1951 (6) | 0.76459 (15) | 0.0680 (17) | |
H3A | 0.7392 | 0.2194 | 0.7953 | 0.102* | |
H3B | 0.8723 | 0.2005 | 0.7621 | 0.102* | |
H3C | 0.7371 | 0.1025 | 0.7579 | 0.102* | |
C4 | 0.7539 (4) | 0.2631 (4) | 0.68414 (13) | 0.0441 (12) | |
H4A | 0.6950 | 0.3158 | 0.6627 | 0.053* | |
H4B | 0.7387 | 0.1659 | 0.6775 | 0.053* | |
C5 | 0.9108 (4) | 0.2968 (4) | 0.67551 (13) | 0.0351 (11) | |
C6 | 0.9473 (5) | 0.4283 (5) | 0.65858 (15) | 0.0537 (14) | |
H6 | 0.8759 | 0.4939 | 0.6524 | 0.064* | |
C7 | 1.0959 (6) | 0.4577 (5) | 0.65128 (17) | 0.0684 (17) | |
H7 | 1.1235 | 0.5444 | 0.6405 | 0.082* | |
C8 | 1.1977 (5) | 0.3617 (6) | 0.65970 (15) | 0.0683 (17) | |
H8 | 1.2945 | 0.3852 | 0.6547 | 0.082* | |
C9 | 1.1682 (5) | 0.2327 (5) | 0.67503 (15) | 0.0569 (14) | |
H9 | 1.2420 | 0.1687 | 0.6803 | 0.068* | |
C10 | 1.0156 (4) | 0.1981 (4) | 0.68298 (14) | 0.0474 (12) | |
H10 | 0.9897 | 0.1101 | 0.6930 | 0.057* | |
C11 | 0.8707 (5) | 0.5105 (5) | 0.91952 (14) | 0.0533 (14) | |
H11A | 0.9518 | 0.4566 | 0.9089 | 0.080* | |
H11B | 0.9034 | 0.6016 | 0.9276 | 0.080* | |
H11C | 0.7992 | 0.5168 | 0.8955 | 0.080* | |
C12 | 0.9205 (5) | 0.4376 (6) | 0.99779 (15) | 0.0609 (16) | |
H12A | 0.8770 | 0.4072 | 1.0261 | 0.091* | |
H12B | 0.9617 | 0.5279 | 1.0020 | 0.091* | |
H12C | 0.9956 | 0.3740 | 0.9889 | 0.091* | |
C13 | 0.7555 (5) | 0.3076 (5) | 0.95072 (16) | 0.0596 (16) | |
H13A | 0.6932 | 0.3096 | 0.9242 | 0.089* | |
H13B | 0.7022 | 0.2728 | 0.9767 | 0.089* | |
H13C | 0.8372 | 0.2485 | 0.9447 | 0.089* | |
C14 | 0.6765 (5) | 0.5276 (4) | 0.97618 (16) | 0.0482 (13) | |
H14A | 0.6285 | 0.4785 | 1.0010 | 0.058* | |
H14B | 0.6080 | 0.5347 | 0.9509 | 0.058* | |
C15 | 0.7132 (4) | 0.6732 (4) | 0.99279 (15) | 0.0426 (12) | |
C16 | 0.7364 (5) | 0.6983 (5) | 1.03985 (15) | 0.0567 (15) | |
H16 | 0.7287 | 0.6280 | 1.0616 | 0.068* | |
C17 | 0.7715 (6) | 0.8337 (6) | 1.05265 (17) | 0.0758 (18) | |
H17 | 0.7846 | 0.8544 | 1.0837 | 0.091* | |
C18 | 0.7868 (5) | 0.9352 (5) | 1.0209 (2) | 0.0659 (17) | |
H18 | 0.8184 | 1.0222 | 1.0302 | 0.079* | |
C19 | 0.7564 (5) | 0.9120 (6) | 0.9752 (2) | 0.0732 (18) | |
H19 | 0.7613 | 0.9844 | 0.9542 | 0.088* | |
C20 | 0.7181 (5) | 0.7791 (5) | 0.96046 (16) | 0.0584 (15) | |
H20 | 0.6963 | 0.7620 | 0.9297 | 0.070* | |
Cu1 | 0.32377 (5) | 0.27605 (5) | 0.861735 (16) | 0.03655 (13) | |
N1 | 0.7012 (3) | 0.2913 (3) | 0.73160 (12) | 0.0441 (10) | |
N2 | 0.8055 (3) | 0.4434 (3) | 0.96042 (12) | 0.0401 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0715 (3) | 0.0703 (3) | 0.0614 (3) | 0.0008 (3) | −0.0305 (3) | 0.0075 (3) |
Br2 | 0.0561 (2) | 0.0591 (3) | 0.0496 (3) | −0.0083 (2) | 0.0004 (2) | −0.0010 (2) |
Br3 | 0.0548 (2) | 0.0547 (2) | 0.0659 (3) | 0.0217 (2) | 0.0048 (2) | −0.0025 (2) |
Br4 | 0.0754 (3) | 0.0813 (3) | 0.0634 (3) | 0.0056 (3) | 0.0165 (3) | −0.0031 (3) |
C1 | 0.040 (2) | 0.150 (5) | 0.040 (3) | −0.008 (3) | 0.004 (2) | −0.014 (3) |
C2 | 0.108 (4) | 0.060 (3) | 0.057 (3) | −0.015 (3) | 0.033 (3) | −0.026 (2) |
C3 | 0.068 (3) | 0.096 (4) | 0.040 (3) | 0.007 (3) | 0.008 (3) | 0.006 (3) |
C4 | 0.0396 (19) | 0.054 (2) | 0.039 (2) | −0.002 (2) | 0.0012 (19) | −0.012 (2) |
C5 | 0.0446 (19) | 0.036 (2) | 0.025 (2) | −0.0101 (18) | 0.0075 (17) | −0.0088 (17) |
C6 | 0.069 (3) | 0.054 (3) | 0.038 (3) | −0.006 (2) | 0.015 (2) | 0.004 (2) |
C7 | 0.104 (4) | 0.052 (3) | 0.050 (3) | −0.021 (3) | 0.016 (3) | 0.004 (2) |
C8 | 0.056 (3) | 0.109 (4) | 0.040 (3) | −0.035 (3) | 0.010 (2) | −0.009 (3) |
C9 | 0.053 (2) | 0.082 (3) | 0.037 (3) | −0.007 (3) | −0.005 (2) | 0.000 (2) |
C10 | 0.043 (2) | 0.053 (2) | 0.047 (2) | −0.004 (2) | 0.019 (2) | −0.003 (2) |
C11 | 0.070 (3) | 0.056 (2) | 0.034 (2) | −0.005 (2) | 0.003 (2) | 0.012 (2) |
C12 | 0.059 (3) | 0.089 (3) | 0.035 (3) | 0.021 (3) | −0.017 (2) | −0.003 (3) |
C13 | 0.061 (3) | 0.053 (3) | 0.065 (3) | 0.001 (2) | 0.000 (3) | −0.002 (2) |
C14 | 0.041 (2) | 0.059 (3) | 0.045 (3) | −0.002 (2) | −0.002 (2) | −0.004 (2) |
C15 | 0.036 (2) | 0.043 (2) | 0.048 (3) | −0.0017 (19) | −0.0012 (19) | −0.005 (2) |
C16 | 0.070 (3) | 0.062 (3) | 0.038 (3) | 0.003 (3) | −0.002 (2) | −0.004 (2) |
C17 | 0.107 (4) | 0.074 (3) | 0.046 (3) | 0.024 (3) | −0.010 (3) | −0.021 (3) |
C18 | 0.056 (3) | 0.045 (3) | 0.096 (4) | 0.001 (2) | 0.006 (3) | −0.020 (3) |
C19 | 0.084 (3) | 0.061 (3) | 0.075 (4) | 0.005 (3) | 0.024 (3) | 0.017 (3) |
C20 | 0.078 (3) | 0.056 (3) | 0.041 (3) | 0.020 (3) | 0.003 (2) | 0.001 (2) |
Cu1 | 0.0384 (2) | 0.0409 (2) | 0.0304 (3) | 0.0049 (2) | −0.0006 (2) | −0.0023 (2) |
N1 | 0.0378 (17) | 0.0514 (19) | 0.043 (2) | −0.0065 (17) | 0.0017 (15) | −0.0093 (17) |
N2 | 0.0329 (16) | 0.0449 (19) | 0.042 (2) | −0.0031 (16) | −0.0029 (15) | −0.0020 (16) |
Cu1—Br1 | 2.3522 (7) | C9—H9 | 0.9300 |
Cu1—Br2 | 2.3912 (7) | C10—H10 | 0.9300 |
Cu1—Br3 | 2.3764 (7) | C11—N2 | 1.480 (5) |
Cu1—Br4 | 2.3378 (7) | C11—H11A | 0.9600 |
C1—N1 | 1.461 (5) | C11—H11B | 0.9600 |
C1—H1A | 0.9600 | C11—H11C | 0.9600 |
C1—H1B | 0.9600 | C12—N2 | 1.515 (5) |
C1—H1C | 0.9600 | C12—H12A | 0.9600 |
C2—N1 | 1.463 (6) | C12—H12B | 0.9600 |
C2—H2A | 0.9600 | C12—H12C | 0.9600 |
C2—H2B | 0.9600 | C13—N2 | 1.420 (6) |
C2—H2C | 0.9600 | C13—H13A | 0.9600 |
C3—N1 | 1.471 (6) | C13—H13B | 0.9600 |
C3—H3A | 0.9600 | C13—H13C | 0.9600 |
C3—H3B | 0.9600 | C14—N2 | 1.509 (5) |
C3—H3C | 0.9600 | C14—C15 | 1.525 (6) |
C4—N1 | 1.485 (5) | C14—H14A | 0.9700 |
C4—C5 | 1.499 (5) | C14—H14B | 0.9700 |
C4—H4A | 0.9700 | C15—C20 | 1.390 (6) |
C4—H4B | 0.9700 | C15—C16 | 1.403 (6) |
C5—C10 | 1.374 (5) | C16—C17 | 1.398 (7) |
C5—C6 | 1.404 (6) | C16—H16 | 0.9300 |
C6—C7 | 1.411 (7) | C17—C18 | 1.353 (7) |
C6—H6 | 0.9300 | C17—H17 | 0.9300 |
C7—C8 | 1.340 (7) | C18—C19 | 1.373 (8) |
C7—H7 | 0.9300 | C18—H18 | 0.9300 |
C8—C9 | 1.352 (7) | C19—C20 | 1.400 (7) |
C8—H8 | 0.9300 | C19—H19 | 0.9300 |
C9—C10 | 1.460 (6) | C20—H20 | 0.9300 |
Br4—Cu1—Br1 | 99.92 (3) | N2—C11—H11C | 109.5 |
Br4—Cu1—Br3 | 99.29 (3) | H11A—C11—H11C | 109.5 |
Br1—Cu1—Br3 | 130.85 (3) | H11B—C11—H11C | 109.5 |
Br4—Cu1—Br2 | 132.53 (3) | N2—C12—H12A | 109.5 |
Br1—Cu1—Br2 | 99.62 (3) | N2—C12—H12B | 109.5 |
Br3—Cu1—Br2 | 99.72 (3) | H12A—C12—H12B | 109.5 |
N1—C1—H1A | 109.5 | N2—C12—H12C | 109.5 |
N1—C1—H1B | 109.5 | H12A—C12—H12C | 109.5 |
H1A—C1—H1B | 109.5 | H12B—C12—H12C | 109.5 |
N1—C1—H1C | 109.5 | N2—C13—H13A | 109.5 |
H1A—C1—H1C | 109.5 | N2—C13—H13B | 109.5 |
H1B—C1—H1C | 109.5 | H13A—C13—H13B | 109.5 |
N1—C2—H2A | 109.5 | N2—C13—H13C | 109.5 |
N1—C2—H2B | 109.5 | H13A—C13—H13C | 109.5 |
H2A—C2—H2B | 109.5 | H13B—C13—H13C | 109.5 |
N1—C2—H2C | 109.5 | N2—C14—C15 | 114.8 (3) |
H2A—C2—H2C | 109.5 | N2—C14—H14A | 108.6 |
H2B—C2—H2C | 109.5 | C15—C14—H14A | 108.6 |
N1—C3—H3A | 109.5 | N2—C14—H14B | 108.6 |
N1—C3—H3B | 109.5 | C15—C14—H14B | 108.6 |
H3A—C3—H3B | 109.5 | H14A—C14—H14B | 107.5 |
N1—C3—H3C | 109.5 | C20—C15—C16 | 121.6 (4) |
H3A—C3—H3C | 109.5 | C20—C15—C14 | 118.3 (4) |
H3B—C3—H3C | 109.5 | C16—C15—C14 | 120.1 (4) |
N1—C4—C5 | 115.4 (3) | C17—C16—C15 | 117.1 (4) |
N1—C4—H4A | 108.4 | C17—C16—H16 | 121.4 |
C5—C4—H4A | 108.4 | C15—C16—H16 | 121.4 |
N1—C4—H4B | 108.4 | C18—C17—C16 | 121.5 (5) |
C5—C4—H4B | 108.4 | C18—C17—H17 | 119.3 |
H4A—C4—H4B | 107.5 | C16—C17—H17 | 119.3 |
C10—C5—C6 | 121.1 (4) | C17—C18—C19 | 121.2 (5) |
C10—C5—C4 | 119.8 (4) | C17—C18—H18 | 119.4 |
C6—C5—C4 | 119.0 (4) | C19—C18—H18 | 119.4 |
C5—C6—C7 | 117.8 (4) | C18—C19—C20 | 119.8 (5) |
C5—C6—H6 | 121.1 | C18—C19—H19 | 120.1 |
C7—C6—H6 | 121.1 | C20—C19—H19 | 120.1 |
C8—C7—C6 | 120.6 (5) | C15—C20—C19 | 118.5 (4) |
C8—C7—H7 | 119.7 | C15—C20—H20 | 120.7 |
C6—C7—H7 | 119.7 | C19—C20—H20 | 120.7 |
C7—C8—C9 | 124.1 (5) | C1—N1—C2 | 108.4 (4) |
C7—C8—H8 | 118.0 | C1—N1—C3 | 108.9 (4) |
C9—C8—H8 | 118.0 | C2—N1—C3 | 110.7 (4) |
C8—C9—C10 | 117.1 (4) | C1—N1—C4 | 108.6 (3) |
C8—C9—H9 | 121.4 | C2—N1—C4 | 109.7 (3) |
C10—C9—H9 | 121.4 | C3—N1—C4 | 110.5 (3) |
C5—C10—C9 | 119.3 (4) | C13—N2—C11 | 112.2 (3) |
C5—C10—H10 | 120.3 | C13—N2—C14 | 107.8 (3) |
C9—C10—H10 | 120.3 | C11—N2—C14 | 108.9 (3) |
N2—C11—H11A | 109.5 | C13—N2—C12 | 109.5 (3) |
N2—C11—H11B | 109.5 | C11—N2—C12 | 107.9 (3) |
H11A—C11—H11B | 109.5 | C14—N2—C12 | 110.5 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···Br3i | 0.93 | 2.90 | 3.737 (5) | 150 |
C12—H12A···Br4ii | 0.96 | 2.89 | 3.781 (5) | 155 |
C12—H12C···Br4iii | 0.96 | 2.93 | 3.794 (5) | 151 |
Symmetry codes: (i) −x+2, y+1/2, −z+3/2; (ii) x+1/2, −y+1/2, −z+2; (iii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | (C10H16N)2[CuBr4] |
Mr | 683.66 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 291 |
a, b, c (Å) | 9.1908 (8), 9.6697 (19), 29.0243 (8) |
V (Å3) | 2579.5 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 7.05 |
Crystal size (mm) | 0.28 × 0.26 × 0.24 |
Data collection | |
Diffractometer | Rigaku Mercury2 diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.161, 0.183 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 25511, 5922, 3769 |
Rint | 0.101 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.063, 0.172, 1.02 |
No. of reflections | 5922 |
No. of parameters | 250 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.89, −1.33 |
Absolute structure | Flack (1983), 2556 Friedel pairs |
Absolute structure parameter | 0.06 (2) |
Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···Br3i | 0.93 | 2.90 | 3.737 (5) | 150 |
C12—H12A···Br4ii | 0.96 | 2.89 | 3.781 (5) | 155 |
C12—H12C···Br4iii | 0.96 | 2.93 | 3.794 (5) | 151 |
Symmetry codes: (i) −x+2, y+1/2, −z+3/2; (ii) x+1/2, −y+1/2, −z+2; (iii) x+1, y, z. |
Acknowledgements
DHW thanks SEU research start-up capital for new teachers for support.
References
Coffey, T. J., Landee, C. P., Robinson, W. T., Turnbull, M. M., Winn, M. & Woodward, F. M. (2000). Inorg. Chim. Acta, 303, 54–60. Web of Science CSD CrossRef CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Liu, S.-H., Chen, J.-D., Liou, L.-S. & Wang, J.-C. (2001). Inorg. Chem. 40, 6499–6501. CSD CrossRef PubMed CAS Google Scholar
Long, G. S., Wei, M.-Y. & Willett, R. D. (1997). Inorg. Chem. 36, 3102–3107. Google Scholar
Luque, A., Sertucha, J., Lezama, L., Rojo, T. & Román, P. (1997). J. Chem. Soc. Dalton Trans. pp. 847–854. CSD CrossRef Web of Science Google Scholar
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Woodward, F. M., Landee, C. P., Giantsidis, J., Turnbull, M. M. & Richardson, C. (2001). Inorg. Chim. Acta, 324, 324–330. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently much attention has been devoted to simple molecular–ionic compounds containing organic cations and anions due to the tunability of their special structural features and their interesting physical properties (Coffey et al., 2000; Liu et al., 2001; Long et al., 1997; Luque et al., 1997; Woodward et al., 2001). In our laboratory, the title compound has been synthesized and its crystal structure is herein reported.
The molecule of the title compound, (C10H16N+)2.CuBr42-crystallizes in theorthorhombic P212121 space group, and an asymmetric unit consists of one bromocuprate anion unitand two benzyltrimethylammonium cations (Fig 1). In the structure, the Cu(II) ion adopts a distorted tetrahedron geometry by four Br- anions with the bond distances of Cd–Br being in the range of 2.3378 (7)–2.3912 (7) Å and the bond angles of Br–Cd–Br being in the range of 99.29 (3)–132.53 (3)°, thus largely deviating from ideal tetrahedral angles of 109.5°. There are no classic hydrogen bonds found except for nonclassic C(8)—H(8)···Br(3), C(12)—H(12 A)···Br(34), C(12)—H(12 C)···Br(4) hydrogen-bonded interactions (Table 1). The benzyltrimethylammonium cations interact with the tetrahedral CuBr42- anionthrough above nonclassic hydrogen-bonded interactionsand non-covalent interaction-static attracting forces (Coulomb and Van der Waals forces) to afford a three-dimensional network.