metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(benzyl­tri­methyl­ammonium) tetra­bromidocuprate(II)

aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: jinlei8812@163.com

(Received 22 August 2011; accepted 25 August 2011; online 31 August 2011)

In the title mol­ecular salt, (C10H16N)2[CuBr4], the CuII ion adopts a squashed tetra­hedral geometry with Br—Cu—Br angles varying between 99.29 (3) and 132.53 (3)°. In the crystal, the components are linked by C—H⋯Br inter­actions, thereby generating a three-dimensional network.

Related literature

For background to mol­ecular–ionic compounds, see: Coffey et al. (2000[Coffey, T. J., Landee, C. P., Robinson, W. T., Turnbull, M. M., Winn, M. & Woodward, F. M. (2000). Inorg. Chim. Acta, 303, 54-60.]); Liu et al. (2001[Liu, S.-H., Chen, J.-D., Liou, L.-S. & Wang, J.-C. (2001). Inorg. Chem. 40, 6499-6501.]); Long et al. (1997[Long, G. S., Wei, M.-Y. & Willett, R. D. (1997). Inorg. Chem. 36, 3102-3107.]); Luque et al. (1997[Luque, A., Sertucha, J., Lezama, L., Rojo, T. & Román, P. (1997). J. Chem. Soc. Dalton Trans. pp. 847-854.]); Woodward et al. (2001[Woodward, F. M., Landee, C. P., Giantsidis, J., Turnbull, M. M. & Richardson, C. (2001). Inorg. Chim. Acta, 324, 324-330.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H16N)2[CuBr4]

  • Mr = 683.66

  • Orthorhombic, P 21 21 21

  • a = 9.1908 (8) Å

  • b = 9.6697 (19) Å

  • c = 29.0243 (8) Å

  • V = 2579.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.05 mm−1

  • T = 291 K

  • 0.28 × 0.26 × 0.24 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.161, Tmax = 0.183

  • 25511 measured reflections

  • 5922 independent reflections

  • 3769 reflections with I > 2σ(I)

  • Rint = 0.101

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.172

  • S = 1.02

  • 5922 reflections

  • 250 parameters

  • H-atom parameters constrained

  • Δρmax = 0.89 e Å−3

  • Δρmin = −1.33 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2556 Friedel pairs

  • Flack parameter: 0.06 (2)

Table 1
Selected bond lengths (Å)

Cu1—Br1 2.3522 (7)
Cu1—Br2 2.3912 (7)
Cu1—Br3 2.3764 (7)
Cu1—Br4 2.3378 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯Br3i 0.93 2.90 3.737 (5) 150
C12—H12A⋯Br4ii 0.96 2.89 3.781 (5) 155
C12—H12C⋯Br4iii 0.96 2.93 3.794 (5) 151
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (iii) x+1, y, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently much attention has been devoted to simple molecular–ionic compounds containing organic cations and anions due to the tunability of their special structural features and their interesting physical properties (Coffey et al., 2000; Liu et al., 2001; Long et al., 1997; Luque et al., 1997; Woodward et al., 2001). In our laboratory, the title compound has been synthesized and its crystal structure is herein reported.

The molecule of the title compound, (C10H16N+)2.CuBr42-crystallizes in theorthorhombic P212121 space group, and an asymmetric unit consists of one bromocuprate anion unitand two benzyltrimethylammonium cations (Fig 1). In the structure, the Cu(II) ion adopts a distorted tetrahedron geometry by four Br- anions with the bond distances of Cd–Br being in the range of 2.3378 (7)–2.3912 (7) Å and the bond angles of Br–Cd–Br being in the range of 99.29 (3)–132.53 (3)°, thus largely deviating from ideal tetrahedral angles of 109.5°. There are no classic hydrogen bonds found except for nonclassic C(8)—H(8)···Br(3), C(12)—H(12 A)···Br(34), C(12)—H(12 C)···Br(4) hydrogen-bonded interactions (Table 1). The benzyltrimethylammonium cations interact with the tetrahedral CuBr42- anionthrough above nonclassic hydrogen-bonded interactionsand non-covalent interaction-static attracting forces (Coulomb and Van der Waals forces) to afford a three-dimensional network.

Related literature top

For background to molecular–ionic compounds, see: Coffey et al. (2000); Liu et al. (2001); Long et al. (1997); Luque et al. (1997); Woodward et al. (2001).

Experimental top

At room temperature, benzyltrimethylammoniumchlorine (5 mmol, 0.93 g) were dissolved in 30 ml ethanol, then CuCl2.H2O (5 mmol, 0.85 g) was added into the previous solution slowly with sirring. A great quantity of yellow microcrystasls were obtained by filtrating after 3 days in air. The crystal was further dissolved in ethanol with excessive HBr solution carefully added with stiring. A purple solid appeared after days in the air with yield about 65%. Block purple single crystals were obtained by the slow evaporation of the above solution after a week in air.

The dielectric constant of the compound as a function of temperature indicates that the permittivity is basically temperature-independent (ε = C/(T–T0)), suggesting that this compound is not ferroelectric or there may be no distinct phase transition occurring within the measured temperature range between 123 K and 400 K (below the compound melting point 420 K).

Refinement top

H atoms were placed in calculated positions(C—H = 0.93Å for Csp2 atoms and C—H = 0.96Å and 0.96Å for Csp3 atoms), assigned fixed Uiso values [Uiso = 1.2Ueq(Csp2/N) and 1.5Ueq(Csp3)] and allowed to ride.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids.
Bis(benzyltrimethylammonium) tetrabromidocuprate(II) top
Crystal data top
(C10H16N)2[CuBr4]F(000) = 1340
Mr = 683.66Dx = 1.760 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 20422 reflections
a = 9.1908 (8) Åθ = 3.1–27.8°
b = 9.6697 (19) ŵ = 7.05 mm1
c = 29.0243 (8) ÅT = 291 K
V = 2579.5 (6) Å3Block, purple
Z = 40.28 × 0.26 × 0.24 mm
Data collection top
Rigaku Mercury2
diffractometer
5922 independent reflections
Radiation source: fine-focus sealed tube3769 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.101
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
CCD_Profile_fitting scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1212
Tmin = 0.161, Tmax = 0.183l = 3737
25511 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.172 w = 1/[σ2(Fo2) + (0.0838P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
5922 reflectionsΔρmax = 0.89 e Å3
250 parametersΔρmin = 1.33 e Å3
0 restraintsAbsolute structure: Flack (1983), 2556 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (2)
Crystal data top
(C10H16N)2[CuBr4]V = 2579.5 (6) Å3
Mr = 683.66Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.1908 (8) ŵ = 7.05 mm1
b = 9.6697 (19) ÅT = 291 K
c = 29.0243 (8) Å0.28 × 0.26 × 0.24 mm
Data collection top
Rigaku Mercury2
diffractometer
5922 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3769 reflections with I > 2σ(I)
Tmin = 0.161, Tmax = 0.183Rint = 0.101
25511 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.172Δρmax = 0.89 e Å3
S = 1.02Δρmin = 1.33 e Å3
5922 reflectionsAbsolute structure: Flack (1983), 2556 Friedel pairs
250 parametersAbsolute structure parameter: 0.06 (2)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.16703 (6)0.33426 (5)0.800673 (18)0.06775 (16)
Br20.49529 (5)0.46102 (5)0.855426 (17)0.05492 (13)
Br30.48651 (5)0.08709 (5)0.870934 (18)0.05845 (14)
Br40.15255 (6)0.21832 (6)0.91811 (2)0.07334 (17)
C10.5435 (5)0.2722 (7)0.73255 (16)0.077 (2)
H1A0.49860.33590.71150.115*
H1B0.50800.28890.76310.115*
H1C0.52030.17920.72360.115*
C20.7333 (6)0.4347 (5)0.74409 (16)0.0749 (18)
H2A0.67610.49590.72540.112*
H2B0.83480.45300.73910.112*
H2C0.71000.44930.77600.112*
C30.7683 (5)0.1951 (6)0.76459 (15)0.0680 (17)
H3A0.73920.21940.79530.102*
H3B0.87230.20050.76210.102*
H3C0.73710.10250.75790.102*
C40.7539 (4)0.2631 (4)0.68414 (13)0.0441 (12)
H4A0.69500.31580.66270.053*
H4B0.73870.16590.67750.053*
C50.9108 (4)0.2968 (4)0.67551 (13)0.0351 (11)
C60.9473 (5)0.4283 (5)0.65858 (15)0.0537 (14)
H60.87590.49390.65240.064*
C71.0959 (6)0.4577 (5)0.65128 (17)0.0684 (17)
H71.12350.54440.64050.082*
C81.1977 (5)0.3617 (6)0.65970 (15)0.0683 (17)
H81.29450.38520.65470.082*
C91.1682 (5)0.2327 (5)0.67503 (15)0.0569 (14)
H91.24200.16870.68030.068*
C101.0156 (4)0.1981 (4)0.68298 (14)0.0474 (12)
H100.98970.11010.69300.057*
C110.8707 (5)0.5105 (5)0.91952 (14)0.0533 (14)
H11A0.95180.45660.90890.080*
H11B0.90340.60160.92760.080*
H11C0.79920.51680.89550.080*
C120.9205 (5)0.4376 (6)0.99779 (15)0.0609 (16)
H12A0.87700.40721.02610.091*
H12B0.96170.52791.00200.091*
H12C0.99560.37400.98890.091*
C130.7555 (5)0.3076 (5)0.95072 (16)0.0596 (16)
H13A0.69320.30960.92420.089*
H13B0.70220.27280.97670.089*
H13C0.83720.24850.94470.089*
C140.6765 (5)0.5276 (4)0.97618 (16)0.0482 (13)
H14A0.62850.47851.00100.058*
H14B0.60800.53470.95090.058*
C150.7132 (4)0.6732 (4)0.99279 (15)0.0426 (12)
C160.7364 (5)0.6983 (5)1.03985 (15)0.0567 (15)
H160.72870.62801.06160.068*
C170.7715 (6)0.8337 (6)1.05265 (17)0.0758 (18)
H170.78460.85441.08370.091*
C180.7868 (5)0.9352 (5)1.0209 (2)0.0659 (17)
H180.81841.02221.03020.079*
C190.7564 (5)0.9120 (6)0.9752 (2)0.0732 (18)
H190.76130.98440.95420.088*
C200.7181 (5)0.7791 (5)0.96046 (16)0.0584 (15)
H200.69630.76200.92970.070*
Cu10.32377 (5)0.27605 (5)0.861735 (16)0.03655 (13)
N10.7012 (3)0.2913 (3)0.73160 (12)0.0441 (10)
N20.8055 (3)0.4434 (3)0.96042 (12)0.0401 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0715 (3)0.0703 (3)0.0614 (3)0.0008 (3)0.0305 (3)0.0075 (3)
Br20.0561 (2)0.0591 (3)0.0496 (3)0.0083 (2)0.0004 (2)0.0010 (2)
Br30.0548 (2)0.0547 (2)0.0659 (3)0.0217 (2)0.0048 (2)0.0025 (2)
Br40.0754 (3)0.0813 (3)0.0634 (3)0.0056 (3)0.0165 (3)0.0031 (3)
C10.040 (2)0.150 (5)0.040 (3)0.008 (3)0.004 (2)0.014 (3)
C20.108 (4)0.060 (3)0.057 (3)0.015 (3)0.033 (3)0.026 (2)
C30.068 (3)0.096 (4)0.040 (3)0.007 (3)0.008 (3)0.006 (3)
C40.0396 (19)0.054 (2)0.039 (2)0.002 (2)0.0012 (19)0.012 (2)
C50.0446 (19)0.036 (2)0.025 (2)0.0101 (18)0.0075 (17)0.0088 (17)
C60.069 (3)0.054 (3)0.038 (3)0.006 (2)0.015 (2)0.004 (2)
C70.104 (4)0.052 (3)0.050 (3)0.021 (3)0.016 (3)0.004 (2)
C80.056 (3)0.109 (4)0.040 (3)0.035 (3)0.010 (2)0.009 (3)
C90.053 (2)0.082 (3)0.037 (3)0.007 (3)0.005 (2)0.000 (2)
C100.043 (2)0.053 (2)0.047 (2)0.004 (2)0.019 (2)0.003 (2)
C110.070 (3)0.056 (2)0.034 (2)0.005 (2)0.003 (2)0.012 (2)
C120.059 (3)0.089 (3)0.035 (3)0.021 (3)0.017 (2)0.003 (3)
C130.061 (3)0.053 (3)0.065 (3)0.001 (2)0.000 (3)0.002 (2)
C140.041 (2)0.059 (3)0.045 (3)0.002 (2)0.002 (2)0.004 (2)
C150.036 (2)0.043 (2)0.048 (3)0.0017 (19)0.0012 (19)0.005 (2)
C160.070 (3)0.062 (3)0.038 (3)0.003 (3)0.002 (2)0.004 (2)
C170.107 (4)0.074 (3)0.046 (3)0.024 (3)0.010 (3)0.021 (3)
C180.056 (3)0.045 (3)0.096 (4)0.001 (2)0.006 (3)0.020 (3)
C190.084 (3)0.061 (3)0.075 (4)0.005 (3)0.024 (3)0.017 (3)
C200.078 (3)0.056 (3)0.041 (3)0.020 (3)0.003 (2)0.001 (2)
Cu10.0384 (2)0.0409 (2)0.0304 (3)0.0049 (2)0.0006 (2)0.0023 (2)
N10.0378 (17)0.0514 (19)0.043 (2)0.0065 (17)0.0017 (15)0.0093 (17)
N20.0329 (16)0.0449 (19)0.042 (2)0.0031 (16)0.0029 (15)0.0020 (16)
Geometric parameters (Å, º) top
Cu1—Br12.3522 (7)C9—H90.9300
Cu1—Br22.3912 (7)C10—H100.9300
Cu1—Br32.3764 (7)C11—N21.480 (5)
Cu1—Br42.3378 (7)C11—H11A0.9600
C1—N11.461 (5)C11—H11B0.9600
C1—H1A0.9600C11—H11C0.9600
C1—H1B0.9600C12—N21.515 (5)
C1—H1C0.9600C12—H12A0.9600
C2—N11.463 (6)C12—H12B0.9600
C2—H2A0.9600C12—H12C0.9600
C2—H2B0.9600C13—N21.420 (6)
C2—H2C0.9600C13—H13A0.9600
C3—N11.471 (6)C13—H13B0.9600
C3—H3A0.9600C13—H13C0.9600
C3—H3B0.9600C14—N21.509 (5)
C3—H3C0.9600C14—C151.525 (6)
C4—N11.485 (5)C14—H14A0.9700
C4—C51.499 (5)C14—H14B0.9700
C4—H4A0.9700C15—C201.390 (6)
C4—H4B0.9700C15—C161.403 (6)
C5—C101.374 (5)C16—C171.398 (7)
C5—C61.404 (6)C16—H160.9300
C6—C71.411 (7)C17—C181.353 (7)
C6—H60.9300C17—H170.9300
C7—C81.340 (7)C18—C191.373 (8)
C7—H70.9300C18—H180.9300
C8—C91.352 (7)C19—C201.400 (7)
C8—H80.9300C19—H190.9300
C9—C101.460 (6)C20—H200.9300
Br4—Cu1—Br199.92 (3)N2—C11—H11C109.5
Br4—Cu1—Br399.29 (3)H11A—C11—H11C109.5
Br1—Cu1—Br3130.85 (3)H11B—C11—H11C109.5
Br4—Cu1—Br2132.53 (3)N2—C12—H12A109.5
Br1—Cu1—Br299.62 (3)N2—C12—H12B109.5
Br3—Cu1—Br299.72 (3)H12A—C12—H12B109.5
N1—C1—H1A109.5N2—C12—H12C109.5
N1—C1—H1B109.5H12A—C12—H12C109.5
H1A—C1—H1B109.5H12B—C12—H12C109.5
N1—C1—H1C109.5N2—C13—H13A109.5
H1A—C1—H1C109.5N2—C13—H13B109.5
H1B—C1—H1C109.5H13A—C13—H13B109.5
N1—C2—H2A109.5N2—C13—H13C109.5
N1—C2—H2B109.5H13A—C13—H13C109.5
H2A—C2—H2B109.5H13B—C13—H13C109.5
N1—C2—H2C109.5N2—C14—C15114.8 (3)
H2A—C2—H2C109.5N2—C14—H14A108.6
H2B—C2—H2C109.5C15—C14—H14A108.6
N1—C3—H3A109.5N2—C14—H14B108.6
N1—C3—H3B109.5C15—C14—H14B108.6
H3A—C3—H3B109.5H14A—C14—H14B107.5
N1—C3—H3C109.5C20—C15—C16121.6 (4)
H3A—C3—H3C109.5C20—C15—C14118.3 (4)
H3B—C3—H3C109.5C16—C15—C14120.1 (4)
N1—C4—C5115.4 (3)C17—C16—C15117.1 (4)
N1—C4—H4A108.4C17—C16—H16121.4
C5—C4—H4A108.4C15—C16—H16121.4
N1—C4—H4B108.4C18—C17—C16121.5 (5)
C5—C4—H4B108.4C18—C17—H17119.3
H4A—C4—H4B107.5C16—C17—H17119.3
C10—C5—C6121.1 (4)C17—C18—C19121.2 (5)
C10—C5—C4119.8 (4)C17—C18—H18119.4
C6—C5—C4119.0 (4)C19—C18—H18119.4
C5—C6—C7117.8 (4)C18—C19—C20119.8 (5)
C5—C6—H6121.1C18—C19—H19120.1
C7—C6—H6121.1C20—C19—H19120.1
C8—C7—C6120.6 (5)C15—C20—C19118.5 (4)
C8—C7—H7119.7C15—C20—H20120.7
C6—C7—H7119.7C19—C20—H20120.7
C7—C8—C9124.1 (5)C1—N1—C2108.4 (4)
C7—C8—H8118.0C1—N1—C3108.9 (4)
C9—C8—H8118.0C2—N1—C3110.7 (4)
C8—C9—C10117.1 (4)C1—N1—C4108.6 (3)
C8—C9—H9121.4C2—N1—C4109.7 (3)
C10—C9—H9121.4C3—N1—C4110.5 (3)
C5—C10—C9119.3 (4)C13—N2—C11112.2 (3)
C5—C10—H10120.3C13—N2—C14107.8 (3)
C9—C10—H10120.3C11—N2—C14108.9 (3)
N2—C11—H11A109.5C13—N2—C12109.5 (3)
N2—C11—H11B109.5C11—N2—C12107.9 (3)
H11A—C11—H11B109.5C14—N2—C12110.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···Br3i0.932.903.737 (5)150
C12—H12A···Br4ii0.962.893.781 (5)155
C12—H12C···Br4iii0.962.933.794 (5)151
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z+2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula(C10H16N)2[CuBr4]
Mr683.66
Crystal system, space groupOrthorhombic, P212121
Temperature (K)291
a, b, c (Å)9.1908 (8), 9.6697 (19), 29.0243 (8)
V3)2579.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)7.05
Crystal size (mm)0.28 × 0.26 × 0.24
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.161, 0.183
No. of measured, independent and
observed [I > 2σ(I)] reflections
25511, 5922, 3769
Rint0.101
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.172, 1.02
No. of reflections5922
No. of parameters250
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 1.33
Absolute structureFlack (1983), 2556 Friedel pairs
Absolute structure parameter0.06 (2)

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—Br12.3522 (7)Cu1—Br32.3764 (7)
Cu1—Br22.3912 (7)Cu1—Br42.3378 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···Br3i0.932.903.737 (5)150
C12—H12A···Br4ii0.962.893.781 (5)155
C12—H12C···Br4iii0.962.933.794 (5)151
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z+2; (iii) x+1, y, z.
 

Acknowledgements

DHW thanks SEU research start-up capital for new teachers for support.

References

First citationCoffey, T. J., Landee, C. P., Robinson, W. T., Turnbull, M. M., Winn, M. & Woodward, F. M. (2000). Inorg. Chim. Acta, 303, 54–60.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLiu, S.-H., Chen, J.-D., Liou, L.-S. & Wang, J.-C. (2001). Inorg. Chem. 40, 6499–6501.  CSD CrossRef PubMed CAS Google Scholar
First citationLong, G. S., Wei, M.-Y. & Willett, R. D. (1997). Inorg. Chem. 36, 3102–3107.  Google Scholar
First citationLuque, A., Sertucha, J., Lezama, L., Rojo, T. & Román, P. (1997). J. Chem. Soc. Dalton Trans. pp. 847–854.  CSD CrossRef Web of Science Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWoodward, F. M., Landee, C. P., Giantsidis, J., Turnbull, M. M. & Richardson, C. (2001). Inorg. Chim. Acta, 324, 324–330.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds