organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2529-o2530

3,3′-Di­allyl-1,1′-[o-phenyl­enebis(methyl­ene)]diimidazol-3-ium bis­­(hexa­fluoro­phosphate)

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 22 August 2011; accepted 24 August 2011; online 31 August 2011)

In the cation of the title mol­ecular salt, C20H24N42+·2PF6, the central benzene ring makes dihedral angles of 84.19 (7) and 79.10 (7)° with the pendant imidazole rings. In one of the hexa­fluoro­phosphate anions, the six F atoms are disordered over two sets of sites, with an occupancy ratio of 0.842 (3):0.158 (3). In the crystal, the cations and anions are linked by numerous C—H⋯F hydrogen bonds, thereby forming a three-dimensional network.

Related literature

For applications and properties of N-heterocyclic carbenes, see: Bielawski & Grubbs (2000[Bielawski, C. W. & Grubbs, R. H. (2000). Angew. Chem. Int. Ed. 39, 2903-2906.]); Herrmann et al. (1998[Herrmann, W. A., Reisinger, C.-P. & Spiegler, M. (1998). J. Organomet. Chem. 557, 93-96.]); Yeung et al. (2011[Yeung, A. D., Ng, P. S. & Huynh, H. V. (2011). J. Organomet. Chem., 696, 112-117.]); Jokic et al. (2010[Jokic, N. B., Straubinger, C. S., Goh, S. L. M., Herdtweck, E., Herrmann, W. A. & Kuehn, F. E. (2010). Inorg. Chim. Acta, 363, 4181-4188.]); Yu et al. (2010[Yu, S. T., Na, S. J., Lim, T. S. & Lee, B. Y. (2010). Macromolecules, 43, 725-730.]); Esteruelas et al. (2003[Esteruelas, M. A., López, A. M., Méndez, L., Oliván, M. & Ońate, E. (2003). Organometallics, 22, 395-406.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H24N42+·2PF6

  • Mr = 610.37

  • Triclinic, [P \overline 1]

  • a = 7.3151 (3) Å

  • b = 12.4913 (4) Å

  • c = 13.8569 (5) Å

  • α = 101.810 (1)°

  • β = 94.603 (1)°

  • γ = 91.424 (1)°

  • V = 1234.27 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 100 K

  • 0.82 × 0.61 × 0.48 mm

Data collection
  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.801, Tmax = 0.874

  • 38348 measured reflections

  • 10789 independent reflections

  • 9422 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.142

  • S = 1.05

  • 10789 reflections

  • 368 parameters

  • 15 restraints

  • H-atom parameters constrained

  • Δρmax = 1.45 e Å−3

  • Δρmin = −0.91 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯F5i 0.93 2.44 3.2625 (17) 148
C9—H9A⋯F8Aii 0.93 2.38 3.303 (3) 171
C10—H10A⋯F2iii 0.93 2.47 3.2429 (18) 141
C14—H14A⋯F3 0.97 2.41 3.3065 (16) 154
C14—H14B⋯F9Aii 0.97 2.42 3.224 (2) 140
C15—H15A⋯F5 0.93 2.51 3.2100 (15) 132
C17—H17A⋯F12Aiv 0.93 2.42 3.279 (2) 154
C18—H18B⋯F1ii 0.97 2.55 3.349 (2) 140
C19—H19A⋯F12Av 0.93 2.50 3.364 (2) 155
C20—H20A⋯F8Avi 0.93 2.40 3.158 (3) 139
C20—H20B⋯F1vii 0.93 2.45 3.267 (2) 146
Symmetry codes: (i) -x+2, -y+1, -z; (ii) x+1, y, z; (iii) x, y-1, z; (iv) -x+2, -y+1, -z+1; (v) x+1, y+1, z; (vi) -x+1, -y+1, -z+1; (vii) -x+2, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

N-heterocyclic carbene (NHC) ligands have long been at the forefront of catalytic research and are studied extensively for the preparation of various transition metal catalysts (Bielawski & Grubbs, 2000; Herrmann et al., 1998). NHCs, on account of their strong chelation, stability towards air and moisture, modest cost and their availability in ionic form, makes them versatile precursors in catalysis ranging from C–C coupling to olefin polymerizations (Yeung et al., 2011; Jokic et al., 2010; Yu et al., 2010). The main point of focus in the reported compound is the presence of ally and methylene groups, which rotate the molecule when treated with metal ion to form a cage-like- structure suitable for the polymerization of ethylene and other higher olefins (Esteruelas et al., 2003). Fortified by the highly active and interesting characteristics obtained from complexes ligated by bis- carbene NHC backbone, the present ligand system is designed and synthesized in view of getting stable and active olefin polymerization catalyst.

The asymmetric unit of the title compound, (Fig. 1), consists of a 1,2-bis(allylimidazole-1-ylmethyl)benzene cation and two hexafluoro phosphate anions. In one of the PF6- octahedral anions, all F atoms are disordered over two sets of sites, with occupancy ratio of 0.842 (3): 0.158 (3). The central benzene (C1–C6) ring makes dihedral angles of 84.19 (7)° and 79.10 (7)° with the terminal imidazole (N1,N2/C8–C10)/ (N3,N4/C15–C17) rings, respectively. The distorted octahedral geometry of phosphate ions has typical P–F distances [1.480 (9)–1.615 (7) Å] and F—P—F angles [47.5 (4)–179.59 (7)°]. All bond lengths and bond angles in (I) are in the range of expected values.

In the crystal (Fig. 2), the cations and anions are linked together via intermolecular C—H···F (Table 1) hydrogen bonds forming a three-dimensional network.

Related literature top

For applications and properties of N-heterocyclic carbenes, see: Bielawski & Grubbs (2000); Herrmann et al. (1998); Yeung et al. (2011); Jokic et al. (2010); Yu et al. (2010); Esteruelas et al. (2003). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of imidazole (0.9 g, 13.0 mmol) and sodium hydroxide (0.5 g, 12 mmol) in DMSO (5 mL) was heated to 90°C for 2 h, and then was cooled to room temperature. A solution of 1,2-bis(bromomethyl)benzene (1.5 g, 5.7 mmol) in DMSO (10 mL) was added to the mixture and heated slowly to 40°C for 1 h with constant stirring. The solution obtained was poured into ice-cold water (40 mL). The precipitate was collected, washed with water, and recrystallized from methanol/water to give 1,2-bis(N-imidazole- 1-ylmethyl)benzene [1] as a white solid (0.95 g, 79 %). Furthernore, a mixture of [1] (0.5 g, 2.1 mmol) and allyl bromide (0.7 g, 6.1 mmol) in acetonitrile (20 mL) was refluxed for 24 h. The solvent was removed under reduced pressure to yield a pale-brown oil, which was converted directly to its corresponding hexafluorophosphate salt by metathesis reaction using KPF6 (0.76g, 4.0 mmol) in 20 ml of methanol. The precipitate formed was collected and washed with distilled water (2 × 5 ml), and recrystallized from acetonitrile to give colorless solid. (1.1 g, 80 %). Colourless blocks of (I) were obtained by slow evaporation of the salt solution in acetonitrile at room temperature.

Refinement top

All hydrogen atoms were positioned geometrically [C–H = 0.93–0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). A rotating group model was applied to the methyl groups. In one of the PF6- octahedra, all F atoms are disordered over two sets of sites, with occupancy ratio of 0.842 (3):0.158 (3).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the major component of the title compound, showing hydrogen-bonded (dashed lines) network.
3,3'-Diallyl-1,1'-[o-phenylenebis(methylene)]diimidazol-3-ium bis(hexafluorophosphate) top
Crystal data top
C20H24N42+·2PF6Z = 2
Mr = 610.37F(000) = 620
Triclinic, P1Dx = 1.642 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3151 (3) ÅCell parameters from 9808 reflections
b = 12.4913 (4) Åθ = 2.5–35.1°
c = 13.8569 (5) ŵ = 0.29 mm1
α = 101.810 (1)°T = 100 K
β = 94.603 (1)°Block, colourless
γ = 91.424 (1)°0.82 × 0.61 × 0.48 mm
V = 1234.27 (8) Å3
Data collection top
Bruker APEXII DUO CCD
diffractometer
10789 independent reflections
Radiation source: fine-focus sealed tube9422 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 35.1°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1110
Tmin = 0.801, Tmax = 0.874k = 2020
38348 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0703P)2 + 0.8687P]
where P = (Fo2 + 2Fc2)/3
10789 reflections(Δ/σ)max = 0.001
368 parametersΔρmax = 1.45 e Å3
15 restraintsΔρmin = 0.91 e Å3
Crystal data top
C20H24N42+·2PF6γ = 91.424 (1)°
Mr = 610.37V = 1234.27 (8) Å3
Triclinic, P1Z = 2
a = 7.3151 (3) ÅMo Kα radiation
b = 12.4913 (4) ŵ = 0.29 mm1
c = 13.8569 (5) ÅT = 100 K
α = 101.810 (1)°0.82 × 0.61 × 0.48 mm
β = 94.603 (1)°
Data collection top
Bruker APEXII DUO CCD
diffractometer
10789 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
9422 reflections with I > 2σ(I)
Tmin = 0.801, Tmax = 0.874Rint = 0.016
38348 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04915 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.05Δρmax = 1.45 e Å3
10789 reflectionsΔρmin = 0.91 e Å3
368 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.54544 (4)0.74563 (2)0.15374 (2)0.01863 (7)
F10.5790 (2)0.83688 (11)0.25409 (9)0.0502 (3)
F20.5502 (2)0.84110 (9)0.09108 (10)0.0468 (3)
F30.53920 (14)0.65162 (9)0.21542 (9)0.0359 (2)
F40.51464 (15)0.65782 (8)0.05282 (7)0.0340 (2)
F50.76397 (14)0.73551 (11)0.15226 (8)0.0413 (3)
F60.32943 (13)0.75680 (9)0.15780 (9)0.0344 (2)
P20.22213 (5)0.30131 (3)0.40480 (2)0.01929 (7)
F7A0.3956 (4)0.3793 (2)0.4200 (2)0.0999 (10)0.842 (3)
F8A0.0484 (3)0.2183 (2)0.3855 (2)0.0850 (9)0.842 (3)
F9A0.0911 (3)0.39801 (16)0.43888 (12)0.0695 (8)0.842 (3)
F10A0.3494 (3)0.20165 (14)0.36918 (11)0.0528 (5)0.842 (3)
F11A0.2050 (4)0.3261 (3)0.29691 (16)0.0730 (9)0.842 (3)
F12A0.2420 (3)0.27306 (15)0.51330 (10)0.0334 (3)0.842 (3)
F7B0.4422 (10)0.3158 (7)0.4133 (5)0.0361 (16)*0.158 (3)
F8B0.0083 (12)0.3055 (8)0.4068 (7)0.052 (2)*0.158 (3)
F9B0.2255 (12)0.4261 (6)0.4665 (6)0.0400 (17)*0.158 (3)
F10B0.2296 (15)0.1851 (7)0.3547 (7)0.052 (2)*0.158 (3)
F11B0.1483 (12)0.3031 (7)0.2934 (7)0.0314 (17)*0.158 (3)
F12B0.2737 (12)0.3018 (7)0.5120 (6)0.0256 (17)*0.158 (3)
N10.59431 (14)0.27887 (8)0.20617 (8)0.01726 (16)
N20.42044 (15)0.13849 (9)0.13427 (8)0.02092 (19)
N31.06450 (14)0.66033 (8)0.35317 (7)0.01654 (16)
N41.20454 (14)0.81979 (8)0.38440 (8)0.01757 (17)
C10.95950 (15)0.49943 (8)0.22093 (8)0.01440 (16)
C21.10935 (16)0.51829 (9)0.16968 (9)0.01721 (18)
H2A1.19000.57790.19530.021*
C31.13981 (17)0.44894 (10)0.08057 (9)0.01942 (19)
H3A1.24030.46220.04700.023*
C41.01961 (18)0.35991 (10)0.04209 (9)0.0199 (2)
H4A1.03960.31320.01730.024*
C50.86910 (17)0.34065 (10)0.09256 (9)0.01891 (19)
H5A0.78860.28110.06650.023*
C60.83773 (15)0.40962 (9)0.18177 (8)0.01586 (17)
C70.67134 (19)0.39112 (10)0.23602 (11)0.0239 (2)
H7A0.70620.40700.30670.029*
H7B0.57800.44140.22290.029*
C80.44306 (16)0.24647 (11)0.14644 (9)0.0204 (2)
H8A0.36600.29170.11790.024*
C90.67130 (17)0.18858 (10)0.23291 (10)0.0215 (2)
H9A0.77850.18800.27370.026*
C100.56075 (19)0.10063 (10)0.18845 (11)0.0238 (2)
H10A0.57690.02840.19370.029*
C110.2661 (2)0.07107 (15)0.07509 (11)0.0331 (3)
H11A0.31000.00050.04490.040*
H11B0.22060.10650.02240.040*
C120.11325 (18)0.05405 (12)0.13527 (10)0.0243 (2)
H12A0.06340.11560.17180.029*
C130.0442 (2)0.04225 (15)0.14014 (14)0.0371 (4)
H13A0.09120.10530.10440.044*
H13B0.05180.04750.17930.044*
C140.92288 (16)0.57296 (9)0.31803 (8)0.01732 (18)
H14A0.80510.60560.31000.021*
H14B0.91520.52890.36780.021*
C151.04896 (16)0.76409 (9)0.34527 (8)0.01693 (18)
H15A0.94680.79300.31720.020*
C161.23543 (18)0.64893 (10)0.39896 (10)0.0215 (2)
H16A1.28160.58490.41380.026*
C171.32333 (17)0.74889 (10)0.41826 (10)0.0219 (2)
H17A1.44140.76630.44860.026*
C181.24241 (19)0.93714 (10)0.39202 (10)0.0224 (2)
H18A1.14450.96580.35450.027*
H18B1.35580.94720.36250.027*
C191.25869 (19)1.00104 (10)0.49639 (10)0.0232 (2)
H19A1.29341.07490.50610.028*
C201.2287 (3)0.96299 (12)0.57563 (11)0.0311 (3)
H20A1.19380.88970.56960.037*
H20B1.24251.00940.63770.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01926 (14)0.01710 (13)0.01805 (13)0.00355 (10)0.00474 (10)0.00048 (10)
F10.0604 (8)0.0465 (6)0.0319 (5)0.0184 (6)0.0144 (5)0.0209 (5)
F20.0717 (9)0.0278 (5)0.0478 (6)0.0017 (5)0.0234 (6)0.0169 (4)
F30.0299 (5)0.0422 (5)0.0423 (5)0.0034 (4)0.0019 (4)0.0250 (5)
F40.0390 (5)0.0303 (4)0.0255 (4)0.0027 (4)0.0032 (4)0.0085 (3)
F50.0190 (4)0.0666 (8)0.0344 (5)0.0085 (4)0.0067 (3)0.0012 (5)
F60.0226 (4)0.0368 (5)0.0476 (6)0.0089 (3)0.0096 (4)0.0142 (4)
P20.01918 (14)0.02183 (14)0.01876 (13)0.00482 (10)0.00316 (10)0.00761 (10)
F7A0.0879 (18)0.0702 (16)0.138 (2)0.0555 (15)0.0115 (16)0.0189 (15)
F8A0.0454 (10)0.1067 (19)0.0978 (17)0.0443 (12)0.0295 (10)0.0286 (14)
F9A0.1145 (19)0.0675 (11)0.0424 (8)0.0716 (13)0.0364 (10)0.0293 (8)
F10A0.0746 (12)0.0617 (9)0.0329 (6)0.0502 (9)0.0262 (7)0.0210 (6)
F11A0.0772 (16)0.125 (2)0.0434 (9)0.0672 (16)0.0339 (10)0.0599 (12)
F12A0.0513 (9)0.0343 (8)0.0182 (5)0.0205 (7)0.0089 (5)0.0097 (5)
N10.0144 (4)0.0159 (4)0.0204 (4)0.0024 (3)0.0010 (3)0.0019 (3)
N20.0190 (4)0.0244 (5)0.0175 (4)0.0083 (3)0.0011 (3)0.0021 (3)
N30.0161 (4)0.0142 (4)0.0177 (4)0.0004 (3)0.0010 (3)0.0007 (3)
N40.0180 (4)0.0157 (4)0.0179 (4)0.0024 (3)0.0017 (3)0.0025 (3)
C10.0146 (4)0.0133 (4)0.0151 (4)0.0005 (3)0.0011 (3)0.0026 (3)
C20.0162 (4)0.0161 (4)0.0198 (4)0.0006 (3)0.0029 (3)0.0044 (3)
C30.0195 (5)0.0205 (5)0.0198 (5)0.0027 (4)0.0062 (4)0.0057 (4)
C40.0228 (5)0.0205 (5)0.0160 (4)0.0024 (4)0.0045 (4)0.0014 (4)
C50.0199 (5)0.0177 (4)0.0172 (4)0.0011 (4)0.0021 (4)0.0008 (3)
C60.0156 (4)0.0146 (4)0.0165 (4)0.0011 (3)0.0026 (3)0.0009 (3)
C70.0235 (5)0.0163 (4)0.0297 (6)0.0052 (4)0.0115 (5)0.0034 (4)
C80.0154 (4)0.0248 (5)0.0219 (5)0.0023 (4)0.0009 (4)0.0086 (4)
C90.0177 (5)0.0213 (5)0.0251 (5)0.0005 (4)0.0033 (4)0.0058 (4)
C100.0244 (6)0.0176 (5)0.0288 (6)0.0020 (4)0.0016 (4)0.0044 (4)
C110.0277 (7)0.0465 (8)0.0199 (5)0.0208 (6)0.0006 (5)0.0018 (5)
C120.0194 (5)0.0271 (6)0.0241 (5)0.0062 (4)0.0011 (4)0.0010 (4)
C130.0315 (7)0.0406 (8)0.0410 (8)0.0171 (6)0.0132 (6)0.0212 (7)
C140.0175 (4)0.0153 (4)0.0174 (4)0.0026 (3)0.0020 (3)0.0006 (3)
C150.0175 (4)0.0155 (4)0.0166 (4)0.0004 (3)0.0015 (3)0.0018 (3)
C160.0202 (5)0.0169 (4)0.0253 (5)0.0021 (4)0.0047 (4)0.0020 (4)
C170.0177 (5)0.0192 (5)0.0262 (5)0.0002 (4)0.0051 (4)0.0019 (4)
C180.0269 (6)0.0175 (5)0.0229 (5)0.0058 (4)0.0013 (4)0.0065 (4)
C190.0243 (5)0.0151 (4)0.0276 (6)0.0024 (4)0.0049 (4)0.0018 (4)
C200.0443 (8)0.0246 (6)0.0216 (5)0.0020 (5)0.0021 (5)0.0001 (4)
Geometric parameters (Å, º) top
P1—F41.5870 (9)C2—H2A0.9300
P1—F31.5893 (10)C3—C41.3884 (18)
P1—F61.5942 (10)C3—H3A0.9300
P1—F11.6049 (10)C4—C51.3923 (17)
P1—F51.6081 (11)C4—H4A0.9300
P1—F21.6137 (11)C5—C61.3937 (16)
P2—F10B1.480 (9)C5—H5A0.9300
P2—F12B1.502 (9)C6—C71.5179 (17)
P2—F7A1.5544 (19)C7—H7A0.9700
P2—F8B1.569 (9)C7—H7B0.9700
P2—F9A1.5803 (14)C8—H8A0.9300
P2—F11A1.5838 (16)C9—C101.3562 (18)
P2—F8A1.5897 (17)C9—H9A0.9300
P2—F10A1.5935 (13)C10—H10A0.9300
P2—F11B1.599 (10)C11—C121.484 (2)
P2—F7B1.607 (7)C11—H11A0.9700
P2—F12A1.6095 (13)C11—H11B0.9700
P2—F9B1.615 (7)C12—C131.310 (2)
N1—C81.3292 (15)C12—H12A0.9300
N1—C91.3769 (16)C13—H13A0.9300
N1—C71.4630 (15)C13—H13B0.9300
N2—C81.3290 (17)C14—H14A0.9700
N2—C101.3735 (18)C14—H14B0.9700
N2—C111.4758 (17)C15—H15A0.9300
N3—C151.3297 (14)C16—C171.3564 (17)
N3—C161.3802 (16)C16—H16A0.9300
N3—C141.4652 (15)C17—H17A0.9300
N4—C151.3343 (15)C18—C191.4960 (19)
N4—C171.3793 (16)C18—H18A0.9700
N4—C181.4657 (16)C18—H18B0.9700
C1—C21.3936 (16)C19—C201.314 (2)
C1—C61.4036 (15)C19—H19A0.9300
C1—C141.5132 (15)C20—H20A0.9300
C2—C31.3931 (17)C20—H20B0.9300
F4—P1—F390.88 (6)C10—N2—C11125.68 (13)
F4—P1—F690.95 (6)C15—N3—C16108.80 (10)
F3—P1—F689.82 (6)C15—N3—C14125.17 (10)
F4—P1—F1178.35 (7)C16—N3—C14126.03 (10)
F3—P1—F190.66 (7)C15—N4—C17108.63 (10)
F6—P1—F189.64 (7)C15—N4—C18125.89 (11)
F4—P1—F590.27 (6)C17—N4—C18125.46 (10)
F3—P1—F589.73 (6)C2—C1—C6119.38 (10)
F6—P1—F5178.71 (6)C2—C1—C14122.12 (10)
F1—P1—F589.15 (7)C6—C1—C14118.50 (10)
F4—P1—F289.10 (6)C3—C2—C1120.81 (11)
F3—P1—F2179.59 (7)C3—C2—H2A119.6
F6—P1—F289.77 (7)C1—C2—H2A119.6
F1—P1—F289.37 (7)C4—C3—C2119.76 (11)
F5—P1—F290.68 (7)C4—C3—H3A120.1
F10B—P2—F12B104.3 (5)C2—C3—H3A120.1
F10B—P2—F7A120.8 (4)C3—C4—C5119.85 (11)
F12B—P2—F7A81.8 (3)C3—C4—H4A120.1
F10B—P2—F8B97.6 (6)C5—C4—H4A120.1
F12B—P2—F8B99.3 (5)C4—C5—C6120.74 (11)
F7A—P2—F8B140.3 (4)C4—C5—H5A119.6
F10B—P2—F9A144.9 (4)C6—C5—H5A119.6
F12B—P2—F9A88.4 (4)C5—C6—C1119.47 (10)
F7A—P2—F9A93.11 (16)C5—C6—C7121.16 (10)
F8B—P2—F9A47.5 (4)C1—C6—C7119.35 (10)
F10B—P2—F11A85.7 (4)N1—C7—C6112.31 (10)
F12B—P2—F11A165.4 (3)N1—C7—H7A109.1
F7A—P2—F11A83.93 (18)C6—C7—H7A109.1
F8B—P2—F11A89.8 (4)N1—C7—H7B109.1
F9A—P2—F11A89.34 (9)C6—C7—H7B109.1
F10B—P2—F8A57.0 (4)H7A—C7—H7B107.9
F12B—P2—F8A99.6 (3)N2—C8—N1108.53 (11)
F7A—P2—F8A177.58 (17)N2—C8—H8A125.7
F9A—P2—F8A88.93 (15)N1—C8—H8A125.7
F11A—P2—F8A94.79 (16)C10—C9—N1106.84 (11)
F12B—P2—F10A92.3 (3)C10—C9—H9A126.6
F7A—P2—F10A88.43 (15)N1—C9—H9A126.6
F8B—P2—F10A130.9 (4)C9—C10—N2107.04 (11)
F9A—P2—F10A178.41 (13)C9—C10—H10A126.5
F11A—P2—F10A90.41 (9)N2—C10—H10A126.5
F8A—P2—F10A89.52 (14)N2—C11—C12112.51 (11)
F10B—P2—F11B77.5 (5)N2—C11—H11A109.1
F12B—P2—F11B174.7 (5)C12—C11—H11A109.1
F7A—P2—F11B101.7 (3)N2—C11—H11B109.1
F8B—P2—F11B75.5 (5)C12—C11—H11B109.1
F9A—P2—F11B87.4 (4)H11A—C11—H11B107.8
F8A—P2—F11B77.1 (3)C13—C12—C11124.08 (16)
F10A—P2—F11B91.9 (4)C13—C12—H12A118.0
F10B—P2—F7B91.2 (5)C11—C12—H12A118.0
F12B—P2—F7B77.3 (4)C12—C13—H13A120.0
F8B—P2—F7B171.1 (5)C12—C13—H13B120.0
F9A—P2—F7B123.7 (3)H13A—C13—H13B120.0
F11A—P2—F7B92.0 (3)N3—C14—C1113.10 (9)
F8A—P2—F7B146.7 (3)N3—C14—H14A109.0
F10A—P2—F7B57.8 (3)C1—C14—H14A109.0
F11B—P2—F7B107.7 (4)N3—C14—H14B109.0
F10B—P2—F12A92.9 (4)C1—C14—H14B109.0
F7A—P2—F12A96.31 (15)H14A—C14—H14B107.8
F8B—P2—F12A91.0 (4)N3—C15—N4108.57 (10)
F9A—P2—F12A92.16 (7)N3—C15—H15A125.7
F11A—P2—F12A178.46 (10)N4—C15—H15A125.7
F8A—P2—F12A84.92 (12)C17—C16—N3106.94 (11)
F10A—P2—F12A88.08 (7)C17—C16—H16A126.5
F11B—P2—F12A162.0 (3)N3—C16—H16A126.5
F7B—P2—F12A87.4 (3)C16—C17—N4107.06 (10)
F10B—P2—F9B175.4 (5)C16—C17—H17A126.5
F12B—P2—F9B71.5 (4)N4—C17—H17A126.5
F7A—P2—F9B57.3 (3)N4—C18—C19113.13 (10)
F8B—P2—F9B85.1 (5)N4—C18—H18A109.0
F11A—P2—F9B98.1 (3)C19—C18—H18A109.0
F8A—P2—F9B125.0 (3)N4—C18—H18B109.0
F10A—P2—F9B143.2 (3)C19—C18—H18B109.0
F11B—P2—F9B106.8 (4)H18A—C18—H18B107.8
F7B—P2—F9B86.0 (4)C20—C19—C18126.33 (12)
F12A—P2—F9B83.3 (3)C20—C19—H19A116.8
C8—N1—C9108.77 (10)C18—C19—H19A116.8
C8—N1—C7126.00 (11)C19—C20—H20A120.0
C9—N1—C7125.19 (11)C19—C20—H20B120.0
C8—N2—C10108.81 (10)H20A—C20—H20B120.0
C8—N2—C11125.47 (13)
C6—C1—C2—C30.28 (17)C8—N2—C10—C90.89 (16)
C14—C1—C2—C3179.80 (11)C11—N2—C10—C9178.88 (13)
C1—C2—C3—C40.05 (18)C8—N2—C11—C1292.85 (18)
C2—C3—C4—C50.21 (18)C10—N2—C11—C1284.81 (19)
C3—C4—C5—C60.24 (19)N2—C11—C12—C13125.16 (17)
C4—C5—C6—C10.01 (18)C15—N3—C14—C1101.58 (13)
C4—C5—C6—C7178.37 (12)C16—N3—C14—C177.92 (15)
C2—C1—C6—C50.25 (17)C2—C1—C14—N32.85 (15)
C14—C1—C6—C5179.82 (10)C6—C1—C14—N3177.22 (10)
C2—C1—C6—C7178.15 (11)C16—N3—C15—N40.08 (14)
C14—C1—C6—C71.78 (16)C14—N3—C15—N4179.49 (10)
C8—N1—C7—C6103.72 (15)C17—N4—C15—N30.09 (14)
C9—N1—C7—C673.79 (16)C18—N4—C15—N3178.87 (11)
C5—C6—C7—N120.64 (18)C15—N3—C16—C170.22 (15)
C1—C6—C7—N1161.00 (11)C14—N3—C16—C17179.35 (11)
C10—N2—C8—N10.45 (15)N3—C16—C17—N40.26 (15)
C11—N2—C8—N1178.44 (12)C15—N4—C17—C160.22 (15)
C9—N1—C8—N20.16 (15)C18—N4—C17—C16178.74 (12)
C7—N1—C8—N2178.01 (11)C15—N4—C18—C19112.08 (14)
C8—N1—C9—C100.71 (15)C17—N4—C18—C1966.71 (17)
C7—N1—C9—C10178.59 (12)N4—C18—C19—C205.5 (2)
N1—C9—C10—N20.96 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···F5i0.932.443.2625 (17)148
C9—H9A···F8Aii0.932.383.303 (3)171
C10—H10A···F2iii0.932.473.2429 (18)141
C14—H14A···F30.972.413.3065 (16)154
C14—H14B···F9Aii0.972.423.224 (2)140
C15—H15A···F50.932.513.2100 (15)132
C17—H17A···F12Aiv0.932.423.279 (2)154
C18—H18B···F1ii0.972.553.349 (2)140
C19—H19A···F12Av0.932.503.364 (2)155
C20—H20A···F8Avi0.932.403.158 (3)139
C20—H20B···F1vii0.932.453.267 (2)146
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y, z; (iii) x, y1, z; (iv) x+2, y+1, z+1; (v) x+1, y+1, z; (vi) x+1, y+1, z+1; (vii) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC20H24N42+·2PF6
Mr610.37
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.3151 (3), 12.4913 (4), 13.8569 (5)
α, β, γ (°)101.810 (1), 94.603 (1), 91.424 (1)
V3)1234.27 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.82 × 0.61 × 0.48
Data collection
DiffractometerBruker APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.801, 0.874
No. of measured, independent and
observed [I > 2σ(I)] reflections
38348, 10789, 9422
Rint0.016
(sin θ/λ)max1)0.808
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.142, 1.05
No. of reflections10789
No. of parameters368
No. of restraints15
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.45, 0.91

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···F5i0.932.443.2625 (17)148
C9—H9A···F8Aii0.932.383.303 (3)171
C10—H10A···F2iii0.932.473.2429 (18)141
C14—H14A···F30.972.413.3065 (16)154
C14—H14B···F9Aii0.972.423.224 (2)140
C15—H15A···F50.932.513.2100 (15)132
C17—H17A···F12Aiv0.932.423.279 (2)154
C18—H18B···F1ii0.972.553.349 (2)140
C19—H19A···F12Av0.932.503.364 (2)155
C20—H20A···F8Avi0.932.403.158 (3)139
C20—H20B···F1vii0.932.453.267 (2)146
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y, z; (iii) x, y1, z; (iv) x+2, y+1, z+1; (v) x+1, y+1, z; (vi) x+1, y+1, z+1; (vii) x+2, y+2, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

RAH thank Universiti Sains Malaysia for the FRGS fund (203/PKIMIA/671115), short term grant (304/PKIMIA/639001) and RU grants (1001/PKIMIA/813023 and 1001/PKIMIA/811157). HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBielawski, C. W. & Grubbs, R. H. (2000). Angew. Chem. Int. Ed. 39, 2903–2906.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEsteruelas, M. A., López, A. M., Méndez, L., Oliván, M. & Ońate, E. (2003). Organometallics, 22, 395–406.  Google Scholar
First citationHerrmann, W. A., Reisinger, C.-P. & Spiegler, M. (1998). J. Organomet. Chem. 557, 93–96.  CSD CrossRef CAS Google Scholar
First citationJokic, N. B., Straubinger, C. S., Goh, S. L. M., Herdtweck, E., Herrmann, W. A. & Kuehn, F. E. (2010). Inorg. Chim. Acta, 363, 4181–4188.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYeung, A. D., Ng, P. S. & Huynh, H. V. (2011). J. Organomet. Chem., 696, 112–117.  Google Scholar
First citationYu, S. T., Na, S. J., Lim, T. S. & Lee, B. Y. (2010). Macromolecules, 43, 725–730.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2529-o2530
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds