organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Phenyl-5-{[2-(tri­methyl­sil­yl)eth­yl]sulfon­yl}-1H-tetra­zole

aFakultät Chemie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
*Correspondence e-mail: hans.preut@tu-dortmund.de

(Received 19 July 2011; accepted 28 July 2011; online 17 August 2011)

The title compound, C12H18N4O2SSi, was synthesized to be employed in a Julia–Kocieński olefination. In the mol­ecule, the dihedral angle between the phenyl ring and the tetra­zole ring is 41.50 (5)°. The significantly longer Si—C(methyl­ene) bond [1.8786 (13) Å] and the shortened adjacent C—C bond [1.5172 (18) Å], as well as the significant deviation of the corresponding Si—C—C angle [114.16 (9)°] from the ideal tetra­hedral angle, can be attributed to the β-effect of silicon. In the crystal, mol­ecules are held together by van der Waals inter­actions.

Related literature

For Julia–Kocieński olefination, see: Blakemore et al. (1998[Blakemore, P. R., Cole, W. J., Morley, A. & Kocieński, P. J. (1998). Synlett, pp. 26-28.]). For the use of unsaturated α-keto esters in intra­molecular carbonyl-ene reactions in natural product synthesis, see: Helmboldt & Hiersemann (2009[Helmboldt, H. & Hiersemann, M. (2009). J. Org. Chem. 74, 1698-1708.]); Helmboldt et al. (2006[Helmboldt, H., Köhler, D. & Hiersemann, M. (2006). Org. Lett. 8, 1573-1576.]); Schnabel & Hiersemann (2009[Schnabel, C. & Hiersemann, M. (2009). Org. Lett. 11, 2555-2558.]); Schnabel et al. (2011[Schnabel, C., Sterz, K., Müller, H., Rehbein, J., Wiese, M. & Hiersemann, M. (2011). J. Org. Chem. 76, 512-522.]) The title compound was synthesized using a reduction of ethyl 2-(trimethyl­sil­yl)acetate (Gerlach, 1977[Gerlach, H. (1977). Helv. Chim. Acta, 60, 3039-3044.]) followed by a Mitsunobu reaction (Mitsunobu & Yamada, 1967[Mitsunobu, O. & Yamada, M. (1967). Bull. Chem. Soc. Jpn, 40, 2380-2382.]; Mitsunobu et al., 1967[Mitsunobu, O., Yamada, M. & Mukaiyama, T. (1967). Bull. Chem. Soc. Jpn, 40, 935-939.]) and a subsequent Mo-(VI)-catalyzed oxidation of the thio­ether (Schultz et al., 1963[Schultz, H. S., Freyermuth, H. B. & Buc, S. R. (1963). J. Org. Chem. 28, 1140-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C12H18N4O2SSi

  • Mr = 310.45

  • Monoclinic, P 21 /c

  • a = 11.3126 (4) Å

  • b = 13.2707 (4) Å

  • c = 10.8277 (4) Å

  • β = 106.902 (4)°

  • V = 1555.31 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 173 K

  • 0.50 × 0.50 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur S CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.868, Tmax = 0.944

  • 22841 measured reflections

  • 3384 independent reflections

  • 2961 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.079

  • S = 1.10

  • 3384 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis CCD; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

On the search for an alternative synthetic route for the preparation of unsaturated α-keto esters we envisioned the Julia–Kocieński olefination (Blakemore et al., 1998) as a key connecting step for the construction of the C=C-double bond. Unsaturated α-keto esters have been successfully employed in intramolecular carbonyl-ene reactions in natural product synthesis (Helmboldt et al., 2006; Helmboldt & Hiersemann, 2009; Schnabel & Hiersemann, 2009; Schnabel et al., 2011). For the preparation of the title compound I, 1-phenyl-5-((2-(trimethylsilyl)ethyl)thio)-1H-tetrazole was synthesized using a reduction of ethyl 2-(trimethylsilyl)acetate (Gerlach, 1977) followed by a Mitsunobu reaction (Mitsunobu & Yamada, 1967; Mitsunobu et al., 1967). A subsequent Mo-(VI)-catalyzed oxidation of the thioether II (Schultz et al., 1963) gave the title compound (I).

Related literature top

For Julia–Kocieński olefination, see: Blakemore et al. (1998). For the use of unsaturated α-keto esters in intramolecular carbonyl-ene reactions in natural product synthesis, see: Helmboldt & Hiersemann (2009); Helmboldt et al. (2006); Schnabel & Hiersemann (2009); Schnabel et al. (2011) The title compound was synthesized using a reduction of ethyl 2-(trimethylsilyl)acetate (Gerlach, 1977) followed by a Mitsunobu reaction (Mitsunobu & Yamada, 1967; Mitsunobu et al., 1967) and a subsequent Mo-(VI)-catalyzed oxidation of the thioether (Schultz et al., 1963)

Experimental top

To a solution of II (6.07 g, 21.8 mmol, 1.0 eq) in ethanol (220 ml, 10 ml/mmol II) was added a solution of (NH4)Mo7O24.2H2O (2.70 g, 0.22 mmol, 0.1 eq) in 35% aqueous H2O2 (18.75 ml, 0.22 mol, 10.0 eq). After stirring at room temperature for 22 h the reaction mixture was diluted with aqueous NH4Cl solution and methylene chloride. The layers were separated and the aqueous phase was extracted with methylene chloride (3x). The combined organic phases were washed with water (3x), dried over anhydrous MgSO4, filtered, and concentrated under reduced pressure (323 K, 0.05 mbar) to afford I (6.72 g, 21.7 mmol, 99%) as crystals. Single crystals of I were obtained by recrystallization from n-pentane to give colorless cuboids: Rf 0.63 (cyclohexane/ethyl acetate 5/1); 1H NMR (CDCl3, 400 MHz, δ): 0.11 (s, 9H), 1.10–1.16 (m, 2H), 3.64–3.70 (m, 2H), 7.61–7.70 (m, 5H); 13C NMR (CDCl3, 101 MHz, δ): -1.8 (3xCH3), 8.4 (CH2), 53.3 (CH2), 125.3 (2xCH), 129.9 (2xCH), 131.7 (CH), 133.3 (C), 153.5 (C); IR (cm-1): 2955 (w) (νas,s C—H, CH3, CH2), 1496 (m) (ν C=C, Ar), 1426 (w), 1347 (s) (ν R2SO2), 1251 (m), 1172 (m), 1152 (s), 1111 (w), 1014 (w), 834 (m); Anal. Calcd. for C12H18N4O2SSi: C, 46.4; H, 5.8; N, 18.1; Found: C, 46.4; H, 5.8; N, 17.9; M = 310.45 g/mol.

Refinement top

All H atoms were placed at idealised positions and refined as riding [C-H = 0.95 Å (aromatic C), 0.99 Å (CH2 and 0.98 Å (CH3), Uiso(H) = 1.2 Ueq(C) (aromatic and CH2) and 1.5 Ueq(C) (CH3)].

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis CCD (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. : The molecular structure of the title compound, showing the labelling of all non-H atoms. Displacement ellipsoids are shown at the 30% probability level.
1-Phenyl-5-{[2-(trimethylsilyl)ethyl]sulfonyl}-1H-tetrazole top
Crystal data top
C12H18N4O2SSiF(000) = 656
Mr = 310.45Dx = 1.326 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 16653 reflections
a = 11.3126 (4) Åθ = 2.4–29.2°
b = 13.2707 (4) ŵ = 0.29 mm1
c = 10.8277 (4) ÅT = 173 K
β = 106.902 (4)°Block, colourless
V = 1555.31 (9) Å30.50 × 0.50 × 0.20 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur S CCD
diffractometer
3384 independent reflections
Radiation source: Enhance (Mo) X-ray Source2961 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 16.0560 pixels mm-1θmax = 27.0°, θmin = 2.4°
ω scansh = 1414
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1616
Tmin = 0.868, Tmax = 0.944l = 1313
22841 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0465P)2 + 0.3668P]
where P = (Fo2 + 2Fc2)/3
3384 reflections(Δ/σ)max = 0.001
184 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C12H18N4O2SSiV = 1555.31 (9) Å3
Mr = 310.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.3126 (4) ŵ = 0.29 mm1
b = 13.2707 (4) ÅT = 173 K
c = 10.8277 (4) Å0.50 × 0.50 × 0.20 mm
β = 106.902 (4)°
Data collection top
Oxford Diffraction Xcalibur S CCD
diffractometer
3384 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
2961 reflections with I > 2σ(I)
Tmin = 0.868, Tmax = 0.944Rint = 0.024
22841 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.10Δρmax = 0.37 e Å3
3384 reflectionsΔρmin = 0.37 e Å3
184 parameters
Special details top

Experimental. CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.37 (release 24-10-2008) Empirical absorption correction using sperical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si0.47993 (3)0.79710 (3)1.25192 (3)0.01949 (10)
C10.47042 (15)0.87175 (12)1.39384 (14)0.0341 (3)
H1A0.39330.85571.41350.051*
H1B0.47220.94381.37440.051*
H1C0.54080.85521.46840.051*
C20.61720 (14)0.83876 (13)1.20403 (15)0.0346 (3)
H2A0.69230.82471.27430.052*
H2B0.61140.91131.18620.052*
H2C0.62030.80221.12630.052*
C30.48654 (13)0.66005 (11)1.28620 (15)0.0310 (3)
H3A0.48950.62281.20900.046*
H3B0.41300.63991.31050.046*
H3C0.56070.64501.35730.046*
C40.33521 (12)0.81809 (10)1.11572 (13)0.0255 (3)
H4A0.34180.78021.03930.031*
H4B0.26430.79031.14070.031*
C50.30914 (11)0.92782 (10)1.07831 (12)0.0206 (3)
H5A0.37970.95731.05410.025*
H5B0.29770.96641.15230.025*
S0.17351 (3)0.93484 (2)0.94605 (3)0.01563 (9)
O10.19901 (9)0.90232 (7)0.83074 (9)0.0253 (2)
O20.07296 (8)0.89053 (7)0.98167 (9)0.0222 (2)
C60.14770 (11)1.06672 (9)0.93227 (12)0.0162 (2)
N10.20780 (10)1.12950 (8)1.02188 (10)0.0209 (2)
N20.16789 (11)1.22251 (8)0.97617 (11)0.0253 (3)
N30.08670 (11)1.21661 (8)0.86430 (11)0.0233 (2)
N40.07262 (9)1.11767 (8)0.83393 (10)0.0172 (2)
C100.01458 (11)1.08607 (10)0.71540 (12)0.0187 (3)
C110.02014 (13)1.14131 (11)0.60586 (13)0.0254 (3)
H110.03181.19820.60960.030*
C120.10312 (14)1.11189 (12)0.49061 (13)0.0320 (3)
H120.10851.14850.41380.038*
C130.17799 (14)1.02960 (12)0.48703 (14)0.0331 (3)
H130.23491.00980.40750.040*
C140.17131 (13)0.97537 (11)0.59818 (14)0.0295 (3)
H140.22350.91870.59450.035*
C150.08875 (12)1.00359 (10)0.71465 (13)0.0223 (3)
H150.08340.96720.79160.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si0.01680 (18)0.01994 (18)0.02019 (18)0.00148 (13)0.00294 (13)0.00318 (13)
C10.0433 (9)0.0335 (8)0.0261 (7)0.0030 (7)0.0110 (6)0.0011 (6)
C20.0267 (7)0.0423 (9)0.0372 (8)0.0053 (7)0.0130 (6)0.0001 (7)
C30.0248 (7)0.0253 (7)0.0384 (8)0.0043 (6)0.0022 (6)0.0080 (6)
C40.0224 (6)0.0195 (6)0.0288 (7)0.0011 (5)0.0019 (5)0.0030 (5)
C50.0172 (6)0.0206 (6)0.0198 (6)0.0009 (5)0.0012 (5)0.0015 (5)
S0.01427 (15)0.01592 (15)0.01611 (15)0.00142 (11)0.00350 (11)0.00039 (10)
O10.0287 (5)0.0278 (5)0.0199 (5)0.0066 (4)0.0081 (4)0.0022 (4)
O20.0181 (4)0.0204 (5)0.0283 (5)0.0012 (4)0.0069 (4)0.0039 (4)
C60.0142 (5)0.0170 (6)0.0184 (6)0.0009 (4)0.0064 (4)0.0012 (4)
N10.0185 (5)0.0195 (5)0.0242 (5)0.0010 (4)0.0055 (4)0.0021 (4)
N20.0255 (6)0.0192 (6)0.0300 (6)0.0004 (4)0.0064 (5)0.0022 (5)
N30.0266 (6)0.0157 (5)0.0278 (6)0.0007 (4)0.0081 (5)0.0010 (4)
N40.0188 (5)0.0152 (5)0.0182 (5)0.0011 (4)0.0064 (4)0.0017 (4)
C100.0176 (6)0.0202 (6)0.0174 (6)0.0052 (5)0.0039 (5)0.0006 (5)
C110.0289 (7)0.0250 (7)0.0233 (6)0.0073 (6)0.0092 (5)0.0056 (5)
C120.0391 (8)0.0355 (8)0.0196 (7)0.0160 (7)0.0058 (6)0.0050 (6)
C130.0326 (8)0.0369 (8)0.0223 (7)0.0143 (7)0.0040 (6)0.0076 (6)
C140.0250 (7)0.0250 (7)0.0331 (8)0.0032 (6)0.0004 (6)0.0061 (6)
C150.0218 (6)0.0212 (6)0.0224 (6)0.0034 (5)0.0039 (5)0.0008 (5)
Geometric parameters (Å, º) top
Si—C31.8534 (15)S—O21.4295 (9)
Si—C11.8575 (15)S—C61.7734 (13)
Si—C21.8586 (15)C6—N11.3093 (16)
Si—C41.8786 (13)C6—N41.3366 (15)
C1—H1A0.9800N1—N21.3573 (16)
C1—H1B0.9800N2—N31.2924 (16)
C1—H1C0.9800N3—N41.3517 (15)
C2—H2A0.9800N4—C101.4353 (15)
C2—H2B0.9800C10—C151.3778 (19)
C2—H2C0.9800C10—C111.3802 (18)
C3—H3A0.9800C11—C121.382 (2)
C3—H3B0.9800C11—H110.9500
C3—H3C0.9800C12—C131.376 (2)
C4—C51.5172 (18)C12—H120.9500
C4—H4A0.9900C13—C141.385 (2)
C4—H4B0.9900C13—H130.9500
C5—S1.7710 (12)C14—C151.3850 (18)
C5—H5A0.9900C14—H140.9500
C5—H5B0.9900C15—H150.9500
S—O11.4275 (9)
C3—Si—C1111.49 (7)H5A—C5—H5B108.3
C3—Si—C2111.06 (7)O1—S—O2119.38 (6)
C1—Si—C2109.04 (8)O1—S—C5110.09 (6)
C3—Si—C4106.14 (6)O2—S—C5109.30 (6)
C1—Si—C4108.88 (7)O1—S—C6107.15 (6)
C2—Si—C4110.18 (7)O2—S—C6107.71 (6)
Si—C1—H1A109.5C5—S—C6101.69 (6)
Si—C1—H1B109.5N1—C6—N4109.95 (11)
H1A—C1—H1B109.5N1—C6—S121.89 (9)
Si—C1—H1C109.5N4—C6—S128.11 (9)
H1A—C1—H1C109.5C6—N1—N2105.22 (10)
H1B—C1—H1C109.5N3—N2—N1110.92 (10)
Si—C2—H2A109.5N2—N3—N4106.75 (10)
Si—C2—H2B109.5C6—N4—N3107.16 (10)
H2A—C2—H2B109.5C6—N4—C10132.60 (11)
Si—C2—H2C109.5N3—N4—C10120.20 (10)
H2A—C2—H2C109.5C15—C10—C11122.78 (12)
H2B—C2—H2C109.5C15—C10—N4119.77 (11)
Si—C3—H3A109.5C11—C10—N4117.45 (12)
Si—C3—H3B109.5C10—C11—C12118.37 (14)
H3A—C3—H3B109.5C10—C11—H11120.8
Si—C3—H3C109.5C12—C11—H11120.8
H3A—C3—H3C109.5C13—C12—C11120.05 (13)
H3B—C3—H3C109.5C13—C12—H12120.0
C5—C4—Si114.16 (9)C11—C12—H12120.0
C5—C4—H4A108.7C12—C13—C14120.69 (13)
Si—C4—H4A108.7C12—C13—H13119.7
C5—C4—H4B108.7C14—C13—H13119.7
Si—C4—H4B108.7C15—C14—C13120.17 (14)
H4A—C4—H4B107.6C15—C14—H14119.9
C4—C5—S108.77 (9)C13—C14—H14119.9
C4—C5—H5A109.9C10—C15—C14117.94 (13)
S—C5—H5A109.9C10—C15—H15121.0
C4—C5—H5B109.9C14—C15—H15121.0
S—C5—H5B109.9
C3—Si—C4—C5176.60 (11)S—C6—N4—N3177.75 (9)
C1—Si—C4—C556.46 (12)N1—C6—N4—C10177.91 (11)
C2—Si—C4—C563.07 (13)S—C6—N4—C104.50 (19)
Si—C4—C5—S178.07 (7)N2—N3—N4—C60.40 (14)
C4—C5—S—O174.32 (11)N2—N3—N4—C10178.48 (10)
C4—C5—S—O258.65 (11)C6—N4—C10—C1540.14 (19)
C4—C5—S—C6172.32 (9)N3—N4—C10—C15137.36 (12)
O1—S—C6—N1127.27 (10)C6—N4—C10—C11140.07 (13)
O2—S—C6—N1103.12 (11)N3—N4—C10—C1142.42 (16)
C5—S—C6—N111.74 (12)C15—C10—C11—C120.5 (2)
O1—S—C6—N450.06 (12)N4—C10—C11—C12179.73 (12)
O2—S—C6—N479.55 (12)C10—C11—C12—C130.3 (2)
C5—S—C6—N4165.59 (11)C11—C12—C13—C140.0 (2)
N4—C6—N1—N20.12 (13)C12—C13—C14—C150.0 (2)
S—C6—N1—N2177.64 (9)C11—C10—C15—C140.5 (2)
C6—N1—N2—N30.38 (14)N4—C10—C15—C14179.75 (11)
N1—N2—N3—N40.49 (14)C13—C14—C15—C100.2 (2)
N1—C6—N4—N30.17 (14)

Experimental details

Crystal data
Chemical formulaC12H18N4O2SSi
Mr310.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)11.3126 (4), 13.2707 (4), 10.8277 (4)
β (°) 106.902 (4)
V3)1555.31 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.50 × 0.50 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur S CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.868, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
22841, 3384, 2961
Rint0.024
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.079, 1.10
No. of reflections3384
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.37

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

References

First citationBlakemore, P. R., Cole, W. J., Morley, A. & Kocieński, P. J. (1998). Synlett, pp. 26–28.  Google Scholar
First citationGerlach, H. (1977). Helv. Chim. Acta, 60, 3039–3044.  Google Scholar
First citationHelmboldt, H. & Hiersemann, M. (2009). J. Org. Chem. 74, 1698–1708.  Google Scholar
First citationHelmboldt, H., Köhler, D. & Hiersemann, M. (2006). Org. Lett. 8, 1573–1576.  Google Scholar
First citationMitsunobu, O. & Yamada, M. (1967). Bull. Chem. Soc. Jpn, 40, 2380–2382.  CrossRef CAS Web of Science Google Scholar
First citationMitsunobu, O., Yamada, M. & Mukaiyama, T. (1967). Bull. Chem. Soc. Jpn, 40, 935–939.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSchnabel, C. & Hiersemann, M. (2009). Org. Lett. 11, 2555–2558.  Google Scholar
First citationSchnabel, C., Sterz, K., Müller, H., Rehbein, J., Wiese, M. & Hiersemann, M. (2011). J. Org. Chem. 76, 512–522.  Google Scholar
First citationSchultz, H. S., Freyermuth, H. B. & Buc, S. R. (1963). J. Org. Chem. 28, 1140–1142.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds