metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-μ-acetato-κ8O:O′-bis­­[(3,5-di­methyl-1H-pyrazole-κN2)­copper(II)]

aDepartment of Chemistry, University of Johannesburg, PO Box 524 Auckland Park, Johannesburg, 2006, South Africa, and bSchool of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
*Correspondence e-mail: owaga@ukzn.ac.za

(Received 5 August 2011; accepted 11 August 2011; online 27 August 2011)

The dinuclear centrosymmetric title compound, [Cu2(CH3CO2)4(C5H8N2)2], has a distorted square-pyramidal coordination geometry around each CuII atom in which four O atoms from the bridging acetate ligands form the basal plane while two N atoms from the pyrazole ligands occupy the apical positions. The crystal has two half mol­ecules in the asymmetric unit with a Cu⋯Cu distance of 2.6762 (4) Å. Disorder was found for two O atoms and two C atoms of one acetate ligand and refined with occupancies of 0.265 (7) and 0.735 (7). The crystal also features mol­ecules linked through two N—H⋯O hydrogen bonds resulting in one-dimensional chains extending along the crystallographic b axis.

Related literature

For the properties and applications of 1H-pyrazolyl-3,5-substituted ligands, see: Deka et al. (2006[Deka, K., Laskar, M. & Baruah, J. B. (2006). Polyhedron, 25, 2525-2529.]); Guzei et al. (2003[Guzei, I. A., Li, K., Bikhazanova, G. A., Darkwa, J. & Mapolie, S. F. (2003). Dalton Trans. pp. 715-722.]); Mohlala et al. (2005[Mohlala, M. S., Guzei, I. A., Darkwa, J. & Mapolie, S. F. (2005). J. Mol. Catal. A Chem. 241, 93-100.]); Nelana et al. (2008[Nelana, S. M., Kruger, G. J. & Darkwa, J. (2008). Acta Cryst. E64, m206-m207.]); Ojwach et al. (2005[Ojwach, S. O., Tshivhase, M. G., Guzei, I. A., Darkwa, J. & Mapolie, S. F. (2005). Can. J. Chem. 83, 843-853.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C2H3O2)4(C5H8N2)2]

  • Mr = 555.52

  • Triclinic, [P \overline 1]

  • a = 8.1125 (4) Å

  • b = 13.6429 (7) Å

  • c = 13.7755 (7) Å

  • α = 61.571 (1)°

  • β = 87.449 (1)°

  • γ = 82.354 (1)°

  • V = 1328.55 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.64 mm−1

  • T = 100 K

  • 0.39 × 0.16 × 0.10 mm

Data collection
  • Bruker X8 APEXII 4K Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.566, Tmax = 0.853

  • 17190 measured reflections

  • 6578 independent reflections

  • 5934 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.089

  • S = 1.06

  • 6578 reflections

  • 310 parameters

  • 17 restraints

  • H-atom parameters constrained

  • Δρmax = 1.28 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O5 0.88 1.93 2.785 (2) 163
N3—H3⋯O3 0.88 2 2.847 (2) 163

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2007[Bruker (2007). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Pyrazolyl ligands containing a carbonyl linker has been utilized to prepare a number of coordination compounds with palladium salts (Guzei et al., 2003; Mohlala et al., 2005, Ojwach et al., 2005). In these compounds the pyrazolyl carbonyl moiety appear to be robust enough to avoid hydrolysis. However in a few instances the presence of metal ions like Cu(II) (Deka et al., 2006) and Pd(II) (Nelana et al., 2008) appear to catalyze the hydrolysis of the benzoyl fragments. We have observed similar hydrolysis when reacting copper(II) acetate with (3,5-dimethyl-pyrazol-1-yl)-o-benzoyl-methane. The title compound formed from this reaction is the subject of this report. The half "solvent" molecule excluded from the structure had a total number of 30.7 electrons which is approximately half the total number of electrons that acetophenone has.

Compound (I) crystallizes with two half molecules in the assymetric unit. The compound is dinuclear with each of the Cu atoms coordinated to four O atoms and a N atom from the pyrazole ligand. The O atoms are from acetate ions, all in the equatorial positions of a slightly distorted octahedral geometry around the Cu atoms. The N atom is bound trans to the Cu—Cu vector completing a the distorted octahedral geometry as axial ligands.

The crystal structure of (I) is composed of two N—H···O hydrogen bonded chains (Table 1) that extend in the crystallographic b axis (Fig. 2).

Related literature top

For related literature [on what subject?], see: Deka et al. (2006); Guzei et al. (2003); Mohlala et al. (2005); Nelana et al. (2008); Ojwach et al. (2005).

Experimental top

A mixture of copper(II) acetate monohydrate (0.20 g, 1 mmol) and (3,5-dimethy-pyrazol-1-yl)-o-benzyl-methane (0.20 g, 1 mmol) was refluxed in methanol (20 ml) for 4 h. The bluish-green mixture turned deep green during the course of the reaction and upon removal of the solvent a green solid residue was obtained. Recrystallization from a methanol:ethylacetate (1:2) mixture produced X-ray quality crystals after several days. Yield = 0.36 g, 59%

Refinement top

The methyl, methine and aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic, C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C) for CH3 and N—H = 0.88 Å and Uiso(H) = 1.2Ueq(C) for NH. Half a molecule of acetophenone that resided on an inversion center was grossly disordered and was was excluded using the SQUEEZE subroutine in PLATON (Spek (2009).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus and XPREP (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009); molecular graphics: DIAMOND (Brandenburg & Putz, 2005), ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids) with H atoms presented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. N—H···O hydrogen bond interactions in the crystal structure of (I). [Symmetry operators: (i) = 1 - x, 1 - y, 1 - z and (ii) = 1 - x, -y, 1 - z]
Tetra-µ-acetato-κ8O:O'-bis[(3,5- dimethyl-1H-pyrazole-κN2)copper(II) top
Crystal data top
[Cu2(C2H3O2)4(C5H8N2)2]Z = 2
Mr = 555.52F(000) = 572
Triclinic, P1Dx = 1.389 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1125 (4) ÅCell parameters from 17682 reflections
b = 13.6429 (7) Åθ = 2.5–28.4°
c = 13.7755 (7) ŵ = 1.64 mm1
α = 61.571 (1)°T = 100 K
β = 87.449 (1)°Block, green
γ = 82.354 (1)°0.39 × 0.16 × 0.1 mm
V = 1328.55 (12) Å3
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
5934 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 28.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1010
Tmin = 0.566, Tmax = 0.853k = 1817
17190 measured reflectionsl = 1818
6578 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0503P)2 + 0.7634P]
where P = (Fo2 + 2Fc2)/3
6578 reflections(Δ/σ)max = 0.012
310 parametersΔρmax = 1.28 e Å3
17 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Cu2(C2H3O2)4(C5H8N2)2]γ = 82.354 (1)°
Mr = 555.52V = 1328.55 (12) Å3
Triclinic, P1Z = 2
a = 8.1125 (4) ÅMo Kα radiation
b = 13.6429 (7) ŵ = 1.64 mm1
c = 13.7755 (7) ÅT = 100 K
α = 61.571 (1)°0.39 × 0.16 × 0.1 mm
β = 87.449 (1)°
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
6578 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
5934 reflections with I > 2σ(I)
Tmin = 0.566, Tmax = 0.853Rint = 0.022
17190 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03117 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.06Δρmax = 1.28 e Å3
6578 reflectionsΔρmin = 0.59 e Å3
310 parameters
Special details top

Experimental. Diorder: Disorder was found for two O atoms and two C atoms of one acetate ligand in which is not an uncommon situation. The disorder was modelled for two O–, two C– and H-atoms using distance restraints and PART instructions and the total occupancy at each atom site was kept as 1 during the refinement. DELU and SIMU constraints and restraints were used on the disordered atoms. All carbon atoms involved in disorder were modelled with anisotropic thermal parameters and refined with occupancies of 0.265 (7) and 0.735 (7). The "solvent" molecule resided in a special position and looked disordered as well. Modelling the disorder only distabillized the refinement. As a result, the moleculed was removed using the SQUEEZE subroutine in PLATON giving an R factor of 3.0%. H-atom Placement: All H-atoms were placed in idealized locations and refined as riding with appropriate thermal displacement coefficients Uiso(H) = 1.2 or 1.5 times Ueq(bearing atom).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density ···. 2.18

The solvent molecule was excluded. The remaining electron density peaks are very close to other atoms and make no chemical sense. PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ···.. 3 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 33 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 39 PLAT913_ALERT_3_C Missing # of Very Strong Reflections in FCF ···. 1 PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 10 PLAT003_ALERT_2_G Number of Uiso or Uij Restrained Atom Sites ···. 4 PLAT154_ALERT_1_G The su's on the Cell Angles are Equal ·········. 0.00100 Deg.

These are noted PLAT301_ALERT_3_G Note: Main Residue Disorder ··················. 13 Perc.

See disorder explanation above. PLAT380_ALERT_4_G Check Incorrectly? Oriented X(sp2)-Methyl Moiety C18 PLAT605_ALERT_4_G Structure Contains Solvent Accessible VOIDS of. 199 A**3 PLAT869_ALERT_4_G ALERTS Related to the use of SQUEEZE Suppressed ! Solvent molecule was excluded as it was grossly disordered. PLAT764_ALERT_4_G Overcomplete CIF Bond List Detected (Rep/Expd). 1.17 Ratio PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ······. 17 PLAT961_ALERT_5_G Dataset Contains no Negative Intensities ······. ! Noted.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.53478 (2)0.494657 (16)0.406632 (17)0.01851 (7)
O10.40264 (18)0.64415 (11)0.33807 (11)0.0291 (3)
O20.34793 (16)0.65464 (11)0.49368 (11)0.0270 (3)
C10.3431 (2)0.69462 (15)0.39072 (16)0.0237 (3)
C20.2597 (3)0.81398 (16)0.32348 (18)0.0329 (4)
H2A0.14260.81860.34370.049*
H2B0.26660.83580.24470.049*
H2C0.31590.86480.33850.049*
O30.32633 (15)0.42403 (12)0.43652 (12)0.0264 (3)
O40.26852 (16)0.43494 (12)0.59184 (11)0.0272 (3)
N10.59519 (19)0.48564 (13)0.25736 (13)0.0227 (3)
N20.61058 (18)0.38656 (13)0.25468 (13)0.0225 (3)
H20.6020.32130.31310.027*
C30.2366 (2)0.40998 (14)0.51864 (16)0.0226 (3)
C40.0775 (2)0.35986 (17)0.52824 (19)0.0308 (4)
H4A0.02220.34940.59660.046*
H4B0.10340.28710.52940.046*
H4C0.00360.41060.46490.046*
C50.6131 (3)0.68424 (17)0.12252 (19)0.0398 (5)
H5A0.50110.71360.1340.06*
H5B0.64150.72670.04470.06*
H5C0.69350.6920.16870.06*
C60.6178 (2)0.56309 (16)0.15334 (16)0.0269 (4)
C70.6457 (3)0.51248 (17)0.08502 (16)0.0303 (4)
H70.66440.54880.00790.036*
C80.6403 (2)0.39916 (17)0.15302 (16)0.0272 (4)
C90.6625 (3)0.30197 (19)0.12979 (19)0.0363 (5)
H9A0.76770.25490.16340.055*
H9B0.66440.32980.04980.055*
H9C0.57010.25740.16090.055*
Cu20.40853 (2)0.091442 (18)0.42346 (2)0.02307 (7)
O7A0.338 (2)0.1009 (10)0.5625 (7)0.0308 (6)0.265 (7)
O8A0.500 (3)0.0504 (12)0.6844 (12)0.0307 (7)0.265 (7)
C12A0.390 (2)0.0326 (10)0.6618 (7)0.0265 (7)0.265 (7)
C13A0.3283 (13)0.0421 (10)0.7642 (8)0.0357 (8)0.265 (7)
H13A0.41280.07050.78940.054*0.265 (7)
H13B0.3080.03210.82310.054*0.265 (7)
H13C0.22470.0940.74570.054*0.265 (7)
O70.3327 (7)0.1281 (3)0.5399 (3)0.0308 (6)0.735 (7)
O80.4827 (8)0.0262 (4)0.6696 (4)0.0307 (7)0.735 (7)
C120.3826 (6)0.0633 (3)0.6357 (3)0.0265 (7)0.735 (7)
C130.3140 (4)0.0927 (3)0.7245 (3)0.0357 (8)0.735 (7)
H13D0.34790.16460.71030.054*0.735 (7)
H13E0.35760.03380.7970.054*0.735 (7)
H13F0.19230.09880.72340.054*0.735 (7)
O50.61101 (16)0.16201 (11)0.41197 (12)0.0290 (3)
O60.76410 (15)0.00869 (11)0.53847 (12)0.0264 (3)
N30.23162 (18)0.33734 (13)0.29863 (14)0.0241 (3)
H30.27430.35050.34830.029*
N40.26197 (18)0.23761 (13)0.29750 (14)0.0248 (3)
C100.7459 (2)0.10916 (14)0.46471 (16)0.0217 (3)
C110.8953 (2)0.17237 (16)0.43519 (18)0.0283 (4)
H11A0.92930.18930.36020.042*
H11B0.98710.12620.48740.042*
H11C0.86650.24270.43870.042*
C140.0769 (3)0.52926 (18)0.2005 (2)0.0438 (5)
H14A0.01940.52830.24640.066*
H14B0.04690.58060.12280.066*
H14C0.16880.55480.22260.066*
C150.1293 (2)0.41377 (17)0.21551 (17)0.0295 (4)
C160.0898 (3)0.36072 (18)0.15710 (17)0.0325 (4)
H160.01910.39190.09350.039*
C170.1746 (2)0.25240 (17)0.21025 (17)0.0291 (4)
C180.1723 (3)0.1581 (2)0.1831 (2)0.0442 (5)
H18A0.24490.09190.23560.066*
H18B0.21210.18130.1080.066*
H18C0.05850.13970.18810.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01382 (10)0.01959 (11)0.02424 (11)0.00497 (7)0.00013 (7)0.01135 (9)
O10.0309 (7)0.0250 (6)0.0293 (7)0.0015 (5)0.0050 (5)0.0119 (6)
O20.0234 (6)0.0237 (6)0.0323 (7)0.0002 (5)0.0000 (5)0.0127 (5)
C10.0167 (7)0.0199 (8)0.0342 (9)0.0051 (6)0.0024 (7)0.0115 (7)
C20.0340 (10)0.0204 (8)0.0389 (11)0.0002 (7)0.0056 (8)0.0102 (8)
O30.0175 (6)0.0336 (7)0.0382 (7)0.0098 (5)0.0029 (5)0.0238 (6)
O40.0212 (6)0.0345 (7)0.0314 (7)0.0143 (5)0.0032 (5)0.0176 (6)
N10.0203 (7)0.0227 (7)0.0261 (7)0.0055 (5)0.0016 (5)0.0118 (6)
N20.0194 (7)0.0231 (7)0.0270 (7)0.0055 (5)0.0019 (6)0.0129 (6)
C30.0142 (7)0.0206 (8)0.0342 (9)0.0043 (6)0.0016 (6)0.0132 (7)
C40.0189 (8)0.0351 (10)0.0491 (12)0.0132 (7)0.0053 (8)0.0267 (9)
C50.0529 (13)0.0254 (10)0.0361 (11)0.0120 (9)0.0088 (10)0.0095 (8)
C60.0270 (9)0.0265 (9)0.0261 (9)0.0064 (7)0.0011 (7)0.0108 (7)
C70.0313 (10)0.0348 (10)0.0241 (9)0.0050 (8)0.0017 (7)0.0133 (8)
C80.0221 (8)0.0339 (10)0.0296 (9)0.0051 (7)0.0004 (7)0.0178 (8)
C90.0376 (11)0.0404 (11)0.0410 (11)0.0042 (9)0.0013 (9)0.0276 (10)
Cu20.01346 (11)0.02278 (12)0.03971 (14)0.00579 (8)0.00376 (9)0.01966 (10)
O7A0.0260 (8)0.0252 (19)0.0478 (14)0.0024 (16)0.0025 (14)0.0243 (13)
O8A0.0267 (17)0.029 (2)0.0418 (16)0.0021 (15)0.0072 (12)0.0219 (16)
C12A0.0203 (10)0.028 (2)0.0427 (16)0.0108 (16)0.0121 (15)0.0251 (15)
C13A0.0362 (13)0.040 (2)0.0327 (19)0.0104 (15)0.0002 (13)0.0219 (17)
O70.0260 (8)0.0252 (19)0.0478 (14)0.0024 (16)0.0025 (14)0.0243 (13)
O80.0267 (17)0.029 (2)0.0418 (16)0.0021 (15)0.0072 (12)0.0219 (16)
C120.0203 (10)0.028 (2)0.0427 (16)0.0108 (16)0.0121 (15)0.0251 (15)
C130.0362 (13)0.040 (2)0.0327 (19)0.0104 (15)0.0002 (13)0.0219 (17)
O50.0178 (6)0.0226 (6)0.0441 (8)0.0066 (5)0.0034 (5)0.0127 (6)
O60.0147 (5)0.0223 (6)0.0437 (8)0.0053 (5)0.0016 (5)0.0162 (6)
N30.0181 (7)0.0247 (7)0.0330 (8)0.0053 (5)0.0005 (6)0.0157 (6)
N40.0186 (7)0.0278 (8)0.0349 (8)0.0079 (6)0.0034 (6)0.0194 (7)
C100.0153 (7)0.0212 (8)0.0353 (9)0.0058 (6)0.0042 (6)0.0183 (7)
C110.0166 (8)0.0245 (8)0.0461 (11)0.0078 (6)0.0045 (7)0.0175 (8)
C140.0451 (13)0.0270 (10)0.0538 (14)0.0009 (9)0.0147 (11)0.0148 (10)
C150.0233 (9)0.0293 (9)0.0334 (10)0.0073 (7)0.0005 (7)0.0120 (8)
C160.0305 (10)0.0382 (11)0.0282 (9)0.0103 (8)0.0002 (8)0.0138 (8)
C170.0258 (9)0.0365 (10)0.0313 (9)0.0118 (7)0.0051 (7)0.0197 (8)
C180.0488 (13)0.0505 (14)0.0502 (13)0.0092 (11)0.0038 (11)0.0363 (12)
Geometric parameters (Å, º) top
Cu1—O2i1.9691 (13)Cu2—O7A2.032 (9)
Cu1—O11.9685 (13)Cu2—N42.1585 (17)
Cu1—O4i1.9747 (12)Cu2—Cu2ii2.6755 (5)
Cu1—O31.9879 (12)O7A—C12A1.283 (8)
Cu1—N12.1492 (16)O8A—C12A1.265 (9)
Cu1—Cu1i2.6763 (4)O8A—Cu2ii1.912 (15)
O1—C11.261 (2)C12A—C13A1.534 (9)
O2—C11.254 (2)C13A—H13A0.98
O2—Cu1i1.9691 (13)C13A—H13B0.98
C1—C21.515 (2)C13A—H13C0.98
C2—H2A0.98O7—C121.236 (4)
C2—H2B0.98O8—C121.263 (4)
C2—H2C0.98O8—Cu2ii1.997 (5)
O3—C31.266 (2)C12—C131.522 (4)
O4—C31.254 (2)C13—H13D0.98
O4—Cu1i1.9747 (12)C13—H13E0.98
N1—C61.338 (2)C13—H13F0.98
N1—N21.359 (2)O5—C101.268 (2)
N2—C81.342 (2)O6—C101.252 (2)
N2—H20.88O6—Cu2ii1.9657 (12)
C3—C41.512 (2)N3—C151.344 (2)
C4—H4A0.98N3—N41.357 (2)
C4—H4B0.98N3—H30.88
C4—H4C0.98N4—C171.340 (3)
C5—C61.493 (3)C10—C111.509 (2)
C5—H5A0.98C11—H11A0.98
C5—H5B0.98C11—H11B0.98
C5—H5C0.98C11—H11C0.98
C6—C71.404 (3)C14—C151.492 (3)
C7—C81.380 (3)C14—H14A0.98
C7—H70.95C14—H14B0.98
C8—C91.493 (3)C14—H14C0.98
C9—H9A0.98C15—C161.383 (3)
C9—H9B0.98C16—C171.392 (3)
C9—H9C0.98C16—H160.95
Cu2—O8Aii1.912 (15)C17—C181.503 (3)
Cu2—O71.949 (3)C18—H18A0.98
Cu2—O6ii1.9657 (12)C18—H18B0.98
Cu2—O51.9756 (13)C18—H18C0.98
Cu2—O8ii1.997 (5)
O2i—Cu1—O1167.13 (6)O5—Cu2—O8ii88.6 (2)
O2i—Cu1—O4i90.21 (6)O8Aii—Cu2—O7A167.1 (4)
O1—Cu1—O4i89.34 (6)O7—Cu2—O7A9.9 (3)
O2i—Cu1—O387.95 (6)O6ii—Cu2—O7A84.8 (5)
O1—Cu1—O389.68 (6)O5—Cu2—O7A92.1 (5)
O4i—Cu1—O3167.33 (6)O8ii—Cu2—O7A158.3 (3)
O2i—Cu1—N195.41 (6)O8Aii—Cu2—N490.8 (3)
O1—Cu1—N197.43 (6)O7—Cu2—N493.06 (12)
O4i—Cu1—N195.81 (6)O6ii—Cu2—N495.65 (6)
O3—Cu1—N196.84 (6)O5—Cu2—N497.26 (6)
O2i—Cu1—Cu1i84.06 (4)O8ii—Cu2—N499.45 (13)
O1—Cu1—Cu1i83.11 (4)O7A—Cu2—N4101.9 (3)
O4i—Cu1—Cu1i83.34 (4)O8Aii—Cu2—Cu2ii88.0 (3)
O3—Cu1—Cu1i83.99 (4)O7—Cu2—Cu2ii88.14 (11)
N1—Cu1—Cu1i179.00 (4)O6ii—Cu2—Cu2ii84.11 (4)
C1—O1—Cu1124.01 (12)O5—Cu2—Cu2ii82.99 (4)
C1—O2—Cu1i123.04 (12)O8ii—Cu2—Cu2ii79.36 (12)
O2—C1—O1125.59 (17)O7A—Cu2—Cu2ii79.3 (3)
O2—C1—C2117.43 (17)N4—Cu2—Cu2ii178.78 (5)
O1—C1—C2116.98 (17)C12A—O7A—Cu2127.1 (9)
C1—C2—H2A109.5C12A—O8A—Cu2ii123.2 (10)
C1—C2—H2B109.5O8A—C12A—O7A122.3 (10)
H2A—C2—H2B109.5O8A—C12A—C13A112.9 (9)
C1—C2—H2C109.5O7A—C12A—C13A124.8 (10)
H2A—C2—H2C109.5C12A—C13A—H13A109.5
H2B—C2—H2C109.5C12A—C13A—H13B109.5
C3—O3—Cu1122.78 (11)H13A—C13A—H13B109.5
C3—O4—Cu1i124.51 (12)C12A—C13A—H13C109.5
C6—N1—N2105.07 (15)H13A—C13A—H13C109.5
C6—N1—Cu1133.35 (13)H13B—C13A—H13C109.5
N2—N1—Cu1121.51 (11)C12—O7—Cu2118.6 (3)
C8—N2—N1112.54 (15)C12—O8—Cu2ii126.0 (3)
C8—N2—H2123.7O7—C12—O8127.8 (4)
N1—N2—H2123.7O7—C12—C13116.7 (3)
O4—C3—O3125.35 (16)O8—C12—C13115.5 (4)
O4—C3—C4117.62 (17)C10—O5—Cu2124.10 (12)
O3—C3—C4117.03 (16)C10—O6—Cu2ii123.70 (11)
C3—C4—H4A109.5C15—N3—N4112.53 (16)
C3—C4—H4B109.5C15—N3—H3123.7
H4A—C4—H4B109.5N4—N3—H3123.7
C3—C4—H4C109.5C17—N4—N3104.94 (16)
H4A—C4—H4C109.5C17—N4—Cu2131.64 (13)
H4B—C4—H4C109.5N3—N4—Cu2123.27 (12)
C6—C5—H5A109.5O6—C10—O5124.78 (16)
C6—C5—H5B109.5O6—C10—C11117.99 (15)
H5A—C5—H5B109.5O5—C10—C11117.23 (16)
C6—C5—H5C109.5C10—C11—H11A109.5
H5A—C5—H5C109.5C10—C11—H11B109.5
H5B—C5—H5C109.5H11A—C11—H11B109.5
N1—C6—C7110.27 (17)C10—C11—H11C109.5
N1—C6—C5121.39 (18)H11A—C11—H11C109.5
C7—C6—C5128.34 (18)H11B—C11—H11C109.5
C8—C7—C6105.85 (17)C15—C14—H14A109.5
C8—C7—H7127.1C15—C14—H14B109.5
C6—C7—H7127.1H14A—C14—H14B109.5
N2—C8—C7106.27 (17)C15—C14—H14C109.5
N2—C8—C9122.23 (18)H14A—C14—H14C109.5
C7—C8—C9131.49 (19)H14B—C14—H14C109.5
C8—C9—H9A109.5N3—C15—C16105.90 (18)
C8—C9—H9B109.5N3—C15—C14122.15 (19)
H9A—C9—H9B109.5C16—C15—C14131.9 (2)
C8—C9—H9C109.5C15—C16—C17106.16 (18)
H9A—C9—H9C109.5C15—C16—H16126.9
H9B—C9—H9C109.5C17—C16—H16126.9
O8Aii—Cu2—O7175.4 (6)N4—C17—C16110.47 (18)
O8Aii—Cu2—O6ii92.2 (7)N4—C17—C18120.98 (19)
O7—Cu2—O6ii89.93 (17)C16—C17—C18128.53 (19)
O8Aii—Cu2—O588.0 (7)C17—C18—H18A109.5
O7—Cu2—O589.00 (18)C17—C18—H18B109.5
O6ii—Cu2—O5167.08 (6)H18A—C18—H18B109.5
O8Aii—Cu2—O8ii8.8 (4)C17—C18—H18C109.5
O7—Cu2—O8ii167.47 (13)H18A—C18—H18C109.5
O6ii—Cu2—O8ii89.6 (2)H18B—C18—H18C109.5
O2i—Cu1—O1—C18.2 (3)Cu2—O7A—C12A—O8A3 (3)
O4i—Cu1—O1—C179.85 (15)Cu2—O7A—C12A—C13A178.1 (12)
O3—Cu1—O1—C187.51 (15)O6ii—Cu2—O7—C1282.6 (4)
N1—Cu1—O1—C1175.63 (14)O5—Cu2—O7—C1284.5 (4)
Cu1i—Cu1—O1—C13.53 (14)O8ii—Cu2—O7—C125.3 (15)
Cu1i—O2—C1—O14.2 (3)O7A—Cu2—O7—C1224 (4)
Cu1i—O2—C1—C2175.42 (12)N4—Cu2—O7—C12178.3 (4)
Cu1—O1—C1—O25.7 (3)Cu2ii—Cu2—O7—C121.5 (4)
Cu1—O1—C1—C2173.89 (12)Cu2—O7—C12—O81.6 (9)
O2i—Cu1—O3—C385.70 (14)Cu2—O7—C12—C13177.4 (3)
O1—Cu1—O3—C381.65 (14)Cu2ii—O8—C12—O70.5 (10)
O4i—Cu1—O3—C33.9 (3)Cu2ii—O8—C12—C13178.5 (4)
N1—Cu1—O3—C3179.09 (14)O8Aii—Cu2—O5—C1084.2 (4)
Cu1i—Cu1—O3—C31.46 (13)O7—Cu2—O5—C1092.26 (18)
O2i—Cu1—N1—C6150.52 (17)O6ii—Cu2—O5—C107.0 (4)
O1—Cu1—N1—C630.33 (18)O8ii—Cu2—O5—C1075.43 (19)
O4i—Cu1—N1—C659.76 (18)O7A—Cu2—O5—C1082.9 (4)
O3—Cu1—N1—C6120.91 (17)N4—Cu2—O5—C10174.79 (15)
O2i—Cu1—N1—N232.91 (13)Cu2ii—Cu2—O5—C104.01 (15)
O1—Cu1—N1—N2146.24 (12)C15—N3—N4—C170.2 (2)
O4i—Cu1—N1—N2123.67 (13)C15—N3—N4—Cu2176.20 (12)
O3—Cu1—N1—N255.66 (13)O8Aii—Cu2—N4—C1741.6 (7)
C6—N1—N2—C80.6 (2)O7—Cu2—N4—C17140.9 (2)
Cu1—N1—N2—C8176.81 (12)O6ii—Cu2—N4—C1750.68 (17)
Cu1i—O4—C3—O31.4 (3)O5—Cu2—N4—C17129.72 (17)
Cu1i—O4—C3—C4178.07 (13)O8ii—Cu2—N4—C1739.9 (3)
Cu1—O3—C3—O42.1 (3)O7A—Cu2—N4—C17136.6 (6)
Cu1—O3—C3—C4177.33 (12)O8Aii—Cu2—N4—N3143.5 (7)
N2—N1—C6—C70.6 (2)O7—Cu2—N4—N334.0 (2)
Cu1—N1—C6—C7176.34 (13)O6ii—Cu2—N4—N3124.19 (13)
N2—N1—C6—C5178.95 (18)O5—Cu2—N4—N355.42 (14)
Cu1—N1—C6—C54.1 (3)O8ii—Cu2—N4—N3145.3 (3)
N1—C6—C7—C80.5 (2)O7A—Cu2—N4—N338.3 (6)
C5—C6—C7—C8179.1 (2)Cu2ii—O6—C10—O56.4 (3)
N1—N2—C8—C70.3 (2)Cu2ii—O6—C10—C11173.03 (13)
N1—N2—C8—C9179.72 (17)Cu2—O5—C10—O67.4 (3)
C6—C7—C8—N20.1 (2)Cu2—O5—C10—C11172.06 (13)
C6—C7—C8—C9179.2 (2)N4—N3—C15—C160.3 (2)
O8Aii—Cu2—O7A—C12A8 (5)N4—N3—C15—C14179.44 (19)
O7—Cu2—O7A—C12A154 (6)N3—C15—C16—C170.3 (2)
O6ii—Cu2—O7A—C12A85.3 (17)C14—C15—C16—C17179.3 (2)
O5—Cu2—O7A—C12A82.2 (17)N3—N4—C17—C160.1 (2)
O8ii—Cu2—O7A—C12A10 (3)Cu2—N4—C17—C16175.49 (13)
N4—Cu2—O7A—C12A180.0 (17)N3—N4—C17—C18178.19 (18)
Cu2ii—Cu2—O7A—C12A0.3 (17)Cu2—N4—C17—C182.6 (3)
Cu2ii—O8A—C12A—O7A5 (3)C15—C16—C17—N40.3 (2)
Cu2ii—O8A—C12A—C13A175.6 (13)C15—C16—C17—C18178.2 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O50.881.932.785 (2)163
N3—H3···O30.8822.847 (2)163

Experimental details

Crystal data
Chemical formula[Cu2(C2H3O2)4(C5H8N2)2]
Mr555.52
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.1125 (4), 13.6429 (7), 13.7755 (7)
α, β, γ (°)61.571 (1), 87.449 (1), 82.354 (1)
V3)1328.55 (12)
Z2
Radiation typeMo Kα
µ (mm1)1.64
Crystal size (mm)0.39 × 0.16 × 0.1
Data collection
DiffractometerBruker X8 APEXII 4K Kappa CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.566, 0.853
No. of measured, independent and
observed [I > 2σ(I)] reflections
17190, 6578, 5934
Rint0.022
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.089, 1.06
No. of reflections6578
No. of parameters310
No. of restraints17
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.28, 0.59

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SAINT-Plus and XPREP (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009), DIAMOND (Brandenburg & Putz, 2005), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O50.881.932.785 (2)162.9
N3—H3···O30.8822.847 (2)162.6
 

Acknowledgements

The authors gratefully acknowledge the University of Johannesburg for funding and Dr Ilia Guzei for help with the refinement of the structure.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeka, K., Laskar, M. & Baruah, J. B. (2006). Polyhedron, 25, 2525–2529.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGuzei, I. A., Li, K., Bikhazanova, G. A., Darkwa, J. & Mapolie, S. F. (2003). Dalton Trans. pp. 715–722.  Web of Science CSD CrossRef Google Scholar
First citationMohlala, M. S., Guzei, I. A., Darkwa, J. & Mapolie, S. F. (2005). J. Mol. Catal. A Chem. 241, 93–100.  CrossRef CAS Google Scholar
First citationNelana, S. M., Kruger, G. J. & Darkwa, J. (2008). Acta Cryst. E64, m206–m207.  Google Scholar
First citationOjwach, S. O., Tshivhase, M. G., Guzei, I. A., Darkwa, J. & Mapolie, S. F. (2005). Can. J. Chem. 83, 843–853.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds