organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 5-((1E)-1-{(E)-2-[1-(4-eth­­oxy­carbonyl-3-methyl-1,2-oxazol-5-yl)ethyl­­idene]hydrazin-1-yl­­idene}eth­yl)-3-methyl-1,2-oxazole-4-carboxyl­ate

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, bThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 7 August 2011; accepted 8 August 2011; online 11 August 2011)

The complete mol­ecule of the title compound, C18H22N4O6, is generated by the application of a twofold axis of symmetry. Twists are evident in the mol­ecule, i.e. between each —C=N—N group and the adjacent oxazole ring [dihedral angle = 46.08 (12) °] and between the latter and attached ester group [excluding the terminal methyl group; dihedral angle = 24.4 (7) °]. In the crystal, C—H⋯O and ππ [3.5990 (11) Å] contacts connect mol­ecules into supra­molecular arrays in the ac plane. These stack along the b axis, being connected by weak ππ [3.3903 (11) Å] inter­actions.

Related literature

For background to the biological activity of hydrazone compounds, see: Faid-Allah et al. (2011[Faid-Allah, H. M., Khan, K. A. & Makki, M. S. I. (2011). J. Chin. Chem. Soc. 58, 191-198.]).

[Scheme 1]

Experimental

Crystal data
  • C18H22N4O6

  • Mr = 390.40

  • Monoclinic, P 2/n

  • a = 9.4509 (5) Å

  • b = 8.5456 (4) Å

  • c = 11.9859 (5) Å

  • β = 104.107 (5)°

  • V = 938.83 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.25 × 0.25 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.889, Tmax = 1.000

  • 4223 measured reflections

  • 2095 independent reflections

  • 1639 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.159

  • S = 0.87

  • 2095 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9c⋯O2i 0.98 2.46 3.356 (3) 152
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The study of the title compound (I) was motivated by the recent report of the significant anti-bacterial and anti-fungal activity exhibited hydrazone compounds (Faid-Allah et al., 2011).

The full molecule of (I) is generated by the application of a 2-fold axis of symmetry. The configuration about the imine bond [1.280 (3) Å] is E. There are significant twists throughout the molecule. Firstly, the oxazole ring [r.m.s. deviation = 0.007 Å] is twisted away from the plane of the central —CN—NC— group as seen in the value of the O1—C7—C8—N2 torsion angle of -43.3 (2)°. Further, the ester group lies out of the plane through the oxazole ring with the O2—C3—C6—C7 torsion angle being 160.5 (2) °. The oxazole-O atoms as well as the ester-ethyl groups are orientated towards the 2-fold axis while the carbonyl-O atoms are directed away from the axis. The terminal methyl group of the ester lies out of the plane of the remaining non-H atoms [the C3—O3—C2—C1 torsion angle = 159.33 (19) °].

Both C—H···O, Table 1, and π···π interactions feature in the crystal packing. The C—H···O and π···π contacts between oxazole rings [3.5990 (11) Å for symmetry operation 3/2 - x, y, 1.5 - z] combine to link molecules into supramolecular arrays in the ac plane, Fig. 2. These partially interdigitate with centrosymmetrically related layers along the b axis allowing for the formation of additional π···π interactions [3.3903 (11) Å for symmetry operation 1 - x, 1 - y, 1 - z], Fig. 3.

Related literature top

For background to the biological activity of hydrazone compounds, see: Faid-Allah et al. (2011).

Experimental top

Ethyl 5-acetyl-2-methylthiazole-4-carboxylate (10 mmol) in C2H5OH (25 ml) was refluxed with hydrazine hydrate (12 mmol) for 1 h. The hydrazone which separated after concentration of the reaction mixture was filtered off, washed with C2H5OH, and recrystallized from C2H5OH; M.pt. 448 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.98 to 0.99 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. The molecule has crystallographic 2-fold symmetry and unlabelled atoms are generated by the symmetry operation 0.5 - x, y, 1.5 - z.
[Figure 2] Fig. 2. Supramolecular array in the ac plane in (I) mediated by C—H···O and π···π interactions shown as orange and purple dashed lines, respectively.
[Figure 3] Fig. 3. A view in projection down the a axis of the unit-cell contents of (I). The C—H···O and π···π interactions are shown as orange and purple dashed lines, respectively.
Ethyl 5-((1E)-1-{(E)-2-[1-(4-ethoxycarbonyl-3-methyl-1,2- oxazol-5-yl)ethylidene]hydrazin-1-ylidene}ethyl)-3-methyl-1,2-oxazole- 4-carboxylate top
Crystal data top
C18H22N4O6F(000) = 412
Mr = 390.40Dx = 1.381 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yacCell parameters from 1742 reflections
a = 9.4509 (5) Åθ = 2.4–29.3°
b = 8.5456 (4) ŵ = 0.11 mm1
c = 11.9859 (5) ÅT = 100 K
β = 104.107 (5)°Plate, colourless
V = 938.83 (8) Å30.25 × 0.25 × 0.05 mm
Z = 2
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
2095 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1639 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.023
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.4°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1110
Tmin = 0.889, Tmax = 1.000l = 1415
4223 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 0.87 w = 1/[σ2(Fo2) + (0.0921P)2 + 1.4075P]
where P = (Fo2 + 2Fc2)/3
2095 reflections(Δ/σ)max < 0.001
129 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C18H22N4O6V = 938.83 (8) Å3
Mr = 390.40Z = 2
Monoclinic, P2/nMo Kα radiation
a = 9.4509 (5) ŵ = 0.11 mm1
b = 8.5456 (4) ÅT = 100 K
c = 11.9859 (5) Å0.25 × 0.25 × 0.05 mm
β = 104.107 (5)°
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
2095 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1639 reflections with I > 2σ(I)
Tmin = 0.889, Tmax = 1.000Rint = 0.023
4223 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 0.87Δρmax = 0.37 e Å3
2095 reflectionsΔρmin = 0.32 e Å3
129 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.54005 (15)0.52943 (17)0.63908 (12)0.0176 (3)
O20.67094 (17)0.02949 (18)0.57529 (14)0.0248 (4)
O30.51960 (17)0.05289 (17)0.69403 (12)0.0202 (4)
N10.67630 (19)0.5276 (2)0.60982 (14)0.0186 (4)
N20.32058 (18)0.45172 (19)0.74369 (14)0.0162 (4)
C10.4715 (3)0.1526 (3)0.8137 (2)0.0309 (6)
H1A0.46620.26620.82310.046*
H1B0.37560.10620.81010.046*
H1C0.54340.10850.87920.046*
C20.5158 (3)0.1174 (3)0.7054 (2)0.0271 (5)
H2A0.61330.16230.70860.033*
H2B0.44500.16320.63870.033*
C30.5997 (2)0.1086 (3)0.62488 (16)0.0172 (4)
C40.8420 (2)0.3360 (3)0.56290 (18)0.0226 (5)
H4A0.89560.43090.55260.034*
H4B0.81610.27770.49040.034*
H4C0.90330.27050.62270.034*
C50.7064 (2)0.3801 (2)0.59804 (16)0.0161 (4)
C60.5953 (2)0.2805 (2)0.62067 (15)0.0150 (4)
C70.4951 (2)0.3805 (2)0.64479 (16)0.0148 (4)
C80.3485 (2)0.3616 (2)0.66646 (16)0.0153 (4)
C90.2435 (2)0.2483 (3)0.59511 (18)0.0201 (5)
H9A0.15560.30420.55420.030*
H9B0.21700.16850.64510.030*
H9C0.28920.19800.53930.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0160 (7)0.0156 (8)0.0229 (7)0.0016 (5)0.0082 (6)0.0009 (6)
O20.0251 (9)0.0214 (8)0.0312 (8)0.0041 (6)0.0134 (7)0.0046 (6)
O30.0276 (8)0.0123 (7)0.0238 (8)0.0014 (6)0.0124 (6)0.0017 (6)
N10.0141 (8)0.0240 (10)0.0194 (8)0.0022 (7)0.0074 (7)0.0010 (7)
N20.0142 (9)0.0152 (9)0.0200 (8)0.0015 (6)0.0059 (7)0.0020 (7)
C10.0438 (15)0.0198 (12)0.0295 (12)0.0039 (10)0.0099 (11)0.0041 (9)
C20.0397 (14)0.0120 (11)0.0323 (12)0.0001 (9)0.0138 (10)0.0017 (9)
C30.0146 (10)0.0192 (11)0.0168 (9)0.0006 (8)0.0017 (8)0.0006 (8)
C40.0159 (10)0.0304 (12)0.0235 (10)0.0016 (9)0.0086 (8)0.0012 (9)
C50.0153 (9)0.0201 (10)0.0126 (9)0.0000 (8)0.0026 (7)0.0014 (7)
C60.0133 (9)0.0182 (10)0.0138 (9)0.0004 (7)0.0037 (7)0.0010 (7)
C70.0162 (10)0.0143 (10)0.0138 (9)0.0010 (8)0.0034 (7)0.0014 (7)
C80.0155 (10)0.0129 (9)0.0181 (9)0.0004 (7)0.0049 (7)0.0030 (7)
C90.0166 (10)0.0226 (11)0.0220 (10)0.0030 (8)0.0065 (8)0.0034 (8)
Geometric parameters (Å, º) top
O1—C71.349 (2)C2—H2B0.9900
O1—N11.415 (2)C3—C61.470 (3)
O2—C31.207 (2)C4—C51.492 (3)
O3—C31.339 (2)C4—H4A0.9800
O3—C21.462 (3)C4—H4B0.9800
N1—C51.307 (3)C4—H4C0.9800
N2—C81.280 (3)C5—C61.428 (3)
N2—N2i1.379 (3)C6—C71.358 (3)
C1—C21.489 (3)C7—C81.479 (3)
C1—H1A0.9800C8—C91.496 (3)
C1—H1B0.9800C9—H9A0.9800
C1—H1C0.9800C9—H9B0.9800
C2—H2A0.9900C9—H9C0.9800
C7—O1—N1108.63 (14)C5—C4—H4C109.5
C3—O3—C2116.20 (16)H4A—C4—H4C109.5
C5—N1—O1105.79 (16)H4B—C4—H4C109.5
C8—N2—N2i117.04 (17)N1—C5—C6111.43 (18)
C2—C1—H1A109.5N1—C5—C4119.89 (19)
C2—C1—H1B109.5C6—C5—C4128.67 (19)
H1A—C1—H1B109.5C7—C6—C5104.37 (18)
C2—C1—H1C109.5C7—C6—C3129.58 (18)
H1A—C1—H1C109.5C5—C6—C3125.88 (18)
H1B—C1—H1C109.5O1—C7—C6109.77 (17)
O3—C2—C1107.50 (18)O1—C7—C8115.58 (17)
O3—C2—H2A110.2C6—C7—C8134.47 (19)
C1—C2—H2A110.2N2—C8—C7115.36 (17)
O3—C2—H2B110.2N2—C8—C9125.31 (18)
C1—C2—H2B110.2C7—C8—C9119.26 (17)
H2A—C2—H2B108.5C8—C9—H9A109.5
O2—C3—O3125.0 (2)C8—C9—H9B109.5
O2—C3—C6123.86 (19)H9A—C9—H9B109.5
O3—C3—C6111.13 (17)C8—C9—H9C109.5
C5—C4—H4A109.5H9A—C9—H9C109.5
C5—C4—H4B109.5H9B—C9—H9C109.5
H4A—C4—H4B109.5
C7—O1—N1—C50.7 (2)O3—C3—C6—C5152.60 (18)
C3—O3—C2—C1159.33 (19)N1—O1—C7—C60.0 (2)
C2—O3—C3—O22.3 (3)N1—O1—C7—C8175.79 (15)
C2—O3—C3—C6179.88 (17)C5—C6—C7—O10.6 (2)
O1—N1—C5—C61.1 (2)C3—C6—C7—O1174.79 (18)
O1—N1—C5—C4177.90 (16)C5—C6—C7—C8174.0 (2)
N1—C5—C6—C71.1 (2)C3—C6—C7—C810.5 (4)
C4—C5—C6—C7177.79 (19)N2i—N2—C8—C7172.11 (15)
N1—C5—C6—C3174.53 (18)N2i—N2—C8—C94.7 (3)
C4—C5—C6—C36.6 (3)O1—C7—C8—N243.3 (2)
O2—C3—C6—C7160.5 (2)C6—C7—C8—N2142.2 (2)
O3—C3—C6—C721.9 (3)O1—C7—C8—C9133.71 (19)
O2—C3—C6—C525.0 (3)C6—C7—C8—C940.7 (3)
Symmetry code: (i) x+1/2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9c···O2ii0.982.463.356 (3)152
Symmetry code: (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC18H22N4O6
Mr390.40
Crystal system, space groupMonoclinic, P2/n
Temperature (K)100
a, b, c (Å)9.4509 (5), 8.5456 (4), 11.9859 (5)
β (°) 104.107 (5)
V3)938.83 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.25 × 0.25 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.889, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4223, 2095, 1639
Rint0.023
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.159, 0.87
No. of reflections2095
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.32

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9c···O2i0.982.463.356 (3)152
Symmetry code: (i) x+1, y, z+1.
 

Footnotes

Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Acknowledgements

The authors thank King Abdulaziz University and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFaid-Allah, H. M., Khan, K. A. & Makki, M. S. I. (2011). J. Chin. Chem. Soc. 58, 191–198.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds