organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2458-o2459

N-Benzyl-5-(di­methyl­amino)­naphthalene-1-sulfonamide

aSchool of Chemistry, University of KwaZulu-Natal, Durban 4000, South Africa, and bSchool of Pharmacy and Pharmacology, University of KwaZulu-Natal, Durban 4000, South Africa
*Correspondence e-mail: maguireg@ukzn.ac.za

(Received 12 August 2011; accepted 15 August 2011; online 27 August 2011)

The structure of the title compound, C19H20N2O2S, displays inter­molecular N—H⋯O hydrogen bonding, which generates inversion dimers. There is no ππ stacking in the crystal structure. The dihedral angle between the phenyl ring and naphthalene ring system is 59.16 (11)°.

Related literature

For the use of dansyl fluorescent analogs as insecticides and synergists, see: Himel et al. (1971[Himel, C. M., Wissam, A. G. & Solang, U. K. (1971). J. Agric. Food Chem. 19, 1175-1180.]). Dansyl probes have also been covalently incorporated into a variety of polymeric networks, see: Shea et al. (1989[Shea, K. J., Stoddard, G. J. & Sasaki, D. Y. (1989). Macromolecules, 22, 4303-4308.]). Dansyl chromophoric compounds have been investigated for intra­molecular energy transfer in aromatic ring systems, see: Schael et al. (1998[Schael, F., Rubin, M. B. & Speiser, S. (1998). J. Photochem. Photobiol. A, 115, 99-108.]) and for host–guest inter­ations shown by fluoresence studies of dansyl-labelled calix[6]arene, see: Schonefeld et al. (2006[Schonefeld, K., Ludwig, R. & Feller, K. H. (2006). J. Fluoresc. 16, 449-454.]). For related structures, see: Illos et al. (2005[Illos, R. A., Ergaz, I. & Bittner, S. (2005). Z. Kristallogr. 220, 285-286.]); Hongmei et al. (2009[Hongmei, W., Peng, Z., Jian, W., Liang, Z. & Chunying, D. (2009). New J. Chem. 33, 653-658.]); Hong-Wei et al. (2009[Hong-Wei, L., Yue, L., Yong-Qiang, D., Li-Jun, M., Guangfeng, H. & Lixin, W. (2009). Chem. Commun. pp. 4453-4455.]); Chui et al. (2010[Chui, C. H., Wang, Q., Chow, W. C., Yuen, M. C. W., Wong, K. L., Kwok, W. M., Cheng, G. Y. M., Wong, R. S. M., Tong, S. W., Chan, K. W., Lau, F. Y., Lai, P. B. S., Lam, K. H., Fabbri, E., Tao, X. M., Gambari, R. & Wong, W. Y. (2010). Chem. Commun. 46, 3538-3540.]).

[Scheme 1]

Experimental

Crystal data
  • C19H20N2O2S

  • Mr = 340.43

  • Monoclinic, C 2/c

  • a = 16.6635 (5) Å

  • b = 9.5722 (2) Å

  • c = 22.8942 (7) Å

  • β = 108.779 (1)°

  • V = 3457.38 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 173 K

  • 0.30 × 0.24 × 0.22 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 4275 measured reflections

  • 4275 independent reflections

  • 3747 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.096

  • S = 1.03

  • 4275 reflections

  • 223 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 (2) 2.12 (2) 2.9351 (14) 158 (2)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Dansyl fluorescent analogs have been reported as insecticides and synergists (Himel et al.,1971). Dansyl probes have also been covalently incorporated into a variety of polymeric networks (Shea et al.,1989). Dansyl chromophoric compounds were investigated for intramolecular energy transfer in aromatic ring systems (Schael et al.,1998). Dansyl labelled calix[6]arene are reported to show host–guest interations using fluoresence studies (Schonefeld et al., 2006).

The title compound is a novel benzylated dansyl derivative (Fig. 1.).

There are a number of examples in literature where amino-sulfonamides dansyl structures have shown intermolecular hydrogen bonding. These arrangments can be described in two broad categories. First, where hydrogen bonds occur between the sulfonyl oxygen and the nitrogen of two adjacent molecules in a alternating chain arrangement (Hongmei et al., 2009, Chui et al.,2010). Second, where they interact with an adjacent molecule in a head to tail manner, (Illos et al., 2005, Hong-Wei et al., 2009). Our system falls into the latter category. Our structure thus displays N1—H1···O2, 2.9351 (14) Å intermolecular hydrogen bonding, generating inversion dimers (Fig. 2). There is no ππ stacking in the crystal.

Related literature top

For the use of dansyl fluorescent analogs as insecticides and synergists, see: Himel et al. (1971). Dansyl probes have also been covalently incorporated into a variety of polymeric networks, see: Shea et al. (1989). Dansyl chromophoric compounds have been investigated for intramolecular energy transfer in aromatic ring systems, see: Schael et al. (1998) and for host–guest interations shown by fluoresence studies of dansyl-labelled calix[6]arene, see: Schonefeld et al. (2006). For related structures, see: Illos et al. (2005); Hongmei et al. (2009); Hong-Wei et al. (2009); Chui et al. (2010).

Experimental top

To a dry THF 5 ml benzyl amine (107 mg, 1 mM) was added triethyl amine (303 mg, 3 mM). Dansyl chloride (269 mg, 1 mM) was then added and the resulting solution was stirred until the reaction was completed (TLC Rf = 0.27 in 60% ethyl acetate/hexane). The reaction contents were filtered. The filtrate was evaporated under reduced pressure yielding a yellow oil. To this residue was added 20 ml of dichloromethane and then the organic layer was washed with water and then separated. After drying over anhydrous magnesium sulfate the solvent was evaporated once again under reduced pressure to yield a yellow crystalline solid (240 mg, 71%). M.p. = 408 K.

Crystals suitable for X-ray analysis were grown in ethyl acetate/hexane at room temperature.

Refinement top

All non-hydrogen atoms were refined anisotropically. All hydrogen atoms, except H1 on N1, were placed in idealized positions in a riding model and refined with Uiso set at 1.2 or 1.5 times those of their parent atoms. The position of H1 was located in the difference electron density map and refined with bond length constraint d(N—H) = 0.88 (2) Å.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atomic numbering scheme. The H atoms have been omitted for clarity. Displacement elipsoids are drawn at 40% probability.
[Figure 2] Fig. 2. The hydrogen bonding interactions of the title compound along the [110] axis. All H atoms except those involved in hydrogen bonding interactions have been omitted for clarity.
N-Benzyl-5-(dimethylamino)naphthalene-1-sulfonamide top
Crystal data top
C19H20N2O2SF(000) = 1440
Mr = 340.43Dx = 1.308 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4275 reflections
a = 16.6635 (5) Åθ = 2.5–28.3°
b = 9.5722 (2) ŵ = 0.20 mm1
c = 22.8942 (7) ÅT = 173 K
β = 108.779 (1)°Block, colourless
V = 3457.38 (16) Å30.30 × 0.24 × 0.22 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
3747 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 28.3°, θmin = 2.5°
1.2° ϕ scans and ω scansh = 022
4275 measured reflectionsk = 012
4275 independent reflectionsl = 3028
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0451P)2 + 3.0274P]
where P = (Fo2 + 2Fc2)/3
4275 reflections(Δ/σ)max < 0.001
223 parametersΔρmax = 0.37 e Å3
1 restraintΔρmin = 0.40 e Å3
Crystal data top
C19H20N2O2SV = 3457.38 (16) Å3
Mr = 340.43Z = 8
Monoclinic, C2/cMo Kα radiation
a = 16.6635 (5) ŵ = 0.20 mm1
b = 9.5722 (2) ÅT = 173 K
c = 22.8942 (7) Å0.30 × 0.24 × 0.22 mm
β = 108.779 (1)°
Data collection top
Nonius KappaCCD
diffractometer
3747 reflections with I > 2σ(I)
4275 measured reflectionsRint = 0.000
4275 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.37 e Å3
4275 reflectionsΔρmin = 0.40 e Å3
223 parameters
Special details top

Experimental. Half sphere of data collected using COLLECT strategy (Nonius, 2000). Crystal to detector distance = 40 mm; combination of ϕ and ω scans of 1.0°, 60 s per °, 2 iterations.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.20046 (2)0.47743 (3)0.473136 (13)0.02444 (9)
O10.18380 (7)0.60223 (10)0.50185 (4)0.0342 (2)
O20.16204 (6)0.34869 (10)0.48342 (4)0.0307 (2)
N10.30155 (7)0.45093 (11)0.49739 (5)0.0276 (2)
H10.3140 (12)0.3655 (16)0.4932 (8)0.050 (5)*
N20.12696 (7)0.39094 (13)0.17747 (5)0.0300 (2)
C10.43601 (8)0.58023 (13)0.54635 (6)0.0268 (3)
C20.49467 (9)0.68229 (15)0.54407 (7)0.0348 (3)
H20.48550.73560.50750.042*
C30.56607 (9)0.70685 (17)0.59432 (8)0.0424 (4)
H30.60510.77750.59240.051*
C40.58056 (10)0.62813 (18)0.64761 (8)0.0435 (4)
H40.62990.64380.68200.052*
C50.52285 (10)0.52681 (18)0.65038 (7)0.0426 (4)
H50.53260.47300.68690.051*
C60.45021 (9)0.50297 (15)0.59985 (7)0.0348 (3)
H60.41060.43370.60220.042*
C70.35869 (8)0.56091 (13)0.49002 (6)0.0286 (3)
H7A0.32710.65020.48090.034*
H7B0.37740.53780.45430.034*
C80.16952 (7)0.51250 (12)0.39278 (5)0.0221 (2)
C90.14023 (8)0.64467 (13)0.37456 (6)0.0262 (2)
H90.13600.71100.40430.031*
C100.11642 (8)0.68209 (13)0.31179 (6)0.0286 (3)
H100.09630.77380.29930.034*
C110.12215 (8)0.58726 (13)0.26895 (6)0.0263 (3)
H110.10700.61460.22690.032*
C120.15032 (7)0.44820 (13)0.28577 (5)0.0226 (2)
C130.15527 (7)0.34835 (14)0.24015 (5)0.0250 (2)
C140.18974 (8)0.21871 (14)0.25901 (6)0.0295 (3)
H140.19610.15400.22930.035*
C150.21569 (8)0.18099 (14)0.32193 (6)0.0301 (3)
H150.23900.09080.33390.036*
C160.20798 (8)0.27152 (13)0.36610 (6)0.0261 (2)
H160.22390.24270.40800.031*
C170.17616 (7)0.40859 (12)0.34938 (5)0.0217 (2)
C180.03465 (9)0.40632 (18)0.15059 (7)0.0391 (3)
H18A0.00860.31390.14020.059*
H18B0.02140.46340.11320.059*
H18C0.01240.45190.18050.059*
C190.16041 (11)0.31121 (19)0.13632 (7)0.0440 (4)
H19A0.22220.30410.15430.066*
H19B0.14600.35850.09630.066*
H19C0.13560.21740.13060.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.03185 (16)0.02196 (15)0.01989 (15)0.00216 (11)0.00886 (11)0.00062 (10)
O10.0511 (6)0.0282 (5)0.0261 (5)0.0076 (4)0.0164 (4)0.0023 (4)
O20.0370 (5)0.0270 (5)0.0301 (5)0.0001 (4)0.0139 (4)0.0051 (4)
N10.0310 (5)0.0205 (5)0.0262 (5)0.0004 (4)0.0021 (4)0.0006 (4)
N20.0290 (5)0.0407 (6)0.0206 (5)0.0027 (5)0.0082 (4)0.0020 (4)
C10.0280 (6)0.0226 (6)0.0286 (6)0.0030 (5)0.0076 (5)0.0041 (5)
C20.0314 (7)0.0320 (7)0.0420 (8)0.0005 (5)0.0130 (6)0.0016 (6)
C30.0302 (7)0.0378 (8)0.0578 (10)0.0039 (6)0.0122 (7)0.0103 (7)
C40.0307 (7)0.0461 (9)0.0453 (9)0.0016 (6)0.0003 (6)0.0161 (7)
C50.0422 (8)0.0462 (9)0.0314 (7)0.0025 (7)0.0006 (6)0.0014 (6)
C60.0356 (7)0.0328 (7)0.0310 (7)0.0022 (6)0.0039 (6)0.0001 (5)
C70.0338 (6)0.0233 (6)0.0262 (6)0.0009 (5)0.0063 (5)0.0012 (5)
C80.0232 (5)0.0235 (6)0.0197 (5)0.0009 (4)0.0068 (4)0.0004 (4)
C90.0303 (6)0.0235 (6)0.0259 (6)0.0029 (5)0.0106 (5)0.0003 (5)
C100.0317 (6)0.0243 (6)0.0290 (6)0.0056 (5)0.0086 (5)0.0048 (5)
C110.0267 (6)0.0293 (6)0.0222 (5)0.0013 (5)0.0068 (5)0.0047 (5)
C120.0198 (5)0.0263 (6)0.0221 (5)0.0002 (4)0.0073 (4)0.0000 (4)
C130.0211 (5)0.0317 (6)0.0227 (5)0.0004 (5)0.0076 (4)0.0027 (5)
C140.0296 (6)0.0301 (7)0.0288 (6)0.0025 (5)0.0093 (5)0.0078 (5)
C150.0310 (6)0.0237 (6)0.0332 (7)0.0049 (5)0.0068 (5)0.0023 (5)
C160.0270 (6)0.0240 (6)0.0252 (6)0.0018 (5)0.0055 (5)0.0003 (5)
C170.0193 (5)0.0232 (6)0.0224 (5)0.0002 (4)0.0064 (4)0.0007 (4)
C180.0320 (7)0.0515 (9)0.0283 (7)0.0022 (6)0.0020 (5)0.0016 (6)
C190.0523 (9)0.0567 (10)0.0288 (7)0.0067 (8)0.0212 (7)0.0047 (7)
Geometric parameters (Å, º) top
S1—O11.4331 (9)C8—C91.3718 (17)
S1—O21.4425 (9)C8—C171.4351 (16)
S1—N11.6150 (11)C9—C101.4084 (17)
S1—C81.7754 (12)C9—H90.9500
N1—C71.4651 (17)C10—C111.3622 (18)
N1—H10.857 (14)C10—H100.9500
N2—C131.4184 (16)C11—C121.4227 (17)
N2—C191.4558 (17)C11—H110.9500
N2—C181.4687 (17)C12—C171.4306 (16)
C1—C61.3843 (19)C12—C131.4375 (16)
C1—C21.3948 (19)C13—C141.3771 (19)
C1—C71.5125 (17)C14—C151.4113 (18)
C2—C31.383 (2)C14—H140.9500
C2—H20.9500C15—C161.3687 (18)
C3—C41.387 (2)C15—H150.9500
C3—H30.9500C16—C171.4207 (17)
C4—C51.382 (2)C16—H160.9500
C4—H40.9500C18—H18A0.9800
C5—C61.398 (2)C18—H18B0.9800
C5—H50.9500C18—H18C0.9800
C6—H60.9500C19—H19A0.9800
C7—H7A0.9900C19—H19B0.9800
C7—H7B0.9900C19—H19C0.9800
O1—S1—O2118.40 (6)C8—C9—C10120.04 (11)
O1—S1—N1107.93 (6)C8—C9—H9120.0
O2—S1—N1106.16 (6)C10—C9—H9120.0
O1—S1—C8106.45 (6)C11—C10—C9120.21 (12)
O2—S1—C8109.54 (6)C11—C10—H10119.9
N1—S1—C8107.99 (6)C9—C10—H10119.9
C7—N1—S1119.48 (9)C10—C11—C12121.47 (11)
C7—N1—H1118.9 (13)C10—C11—H11119.3
S1—N1—H1112.0 (13)C12—C11—H11119.3
C13—N2—C19115.60 (11)C11—C12—C17119.24 (11)
C13—N2—C18114.53 (11)C11—C12—C13121.10 (11)
C19—N2—C18110.42 (11)C17—C12—C13119.64 (11)
C6—C1—C2119.02 (13)C14—C13—N2123.05 (11)
C6—C1—C7123.03 (12)C14—C13—C12119.15 (11)
C2—C1—C7117.94 (12)N2—C13—C12117.75 (11)
C3—C2—C1120.89 (14)C13—C14—C15120.69 (11)
C3—C2—H2119.6C13—C14—H14119.7
C1—C2—H2119.6C15—C14—H14119.7
C2—C3—C4119.91 (14)C16—C15—C14121.42 (12)
C2—C3—H3120.0C16—C15—H15119.3
C4—C3—H3120.0C14—C15—H15119.3
C5—C4—C3119.67 (14)C15—C16—C17120.09 (11)
C5—C4—H4120.2C15—C16—H16120.0
C3—C4—H4120.2C17—C16—H16120.0
C4—C5—C6120.44 (15)C16—C17—C12118.87 (11)
C4—C5—H5119.8C16—C17—C8123.98 (11)
C6—C5—H5119.8C12—C17—C8117.14 (11)
C1—C6—C5120.06 (14)N2—C18—H18A109.5
C1—C6—H6120.0N2—C18—H18B109.5
C5—C6—H6120.0H18A—C18—H18B109.5
N1—C7—C1113.36 (10)N2—C18—H18C109.5
N1—C7—H7A108.9H18A—C18—H18C109.5
C1—C7—H7A108.9H18B—C18—H18C109.5
N1—C7—H7B108.9N2—C19—H19A109.5
C1—C7—H7B108.9N2—C19—H19B109.5
H7A—C7—H7B107.7H19A—C19—H19B109.5
C9—C8—C17121.86 (11)N2—C19—H19C109.5
C9—C8—S1116.47 (9)H19A—C19—H19C109.5
C17—C8—S1121.66 (9)H19B—C19—H19C109.5
O1—S1—N1—C755.53 (11)C10—C11—C12—C172.33 (18)
O2—S1—N1—C7176.58 (9)C10—C11—C12—C13179.29 (11)
C8—S1—N1—C759.17 (11)C19—N2—C13—C1419.34 (19)
C6—C1—C2—C30.1 (2)C18—N2—C13—C14110.75 (14)
C7—C1—C2—C3178.98 (13)C19—N2—C13—C12158.21 (12)
C1—C2—C3—C40.8 (2)C18—N2—C13—C1271.70 (15)
C2—C3—C4—C50.9 (2)C11—C12—C13—C14174.43 (12)
C3—C4—C5—C60.2 (2)C17—C12—C13—C143.94 (17)
C2—C1—C6—C50.6 (2)C11—C12—C13—N23.22 (17)
C7—C1—C6—C5179.62 (13)C17—C12—C13—N2178.41 (10)
C4—C5—C6—C10.5 (2)N2—C13—C14—C15179.01 (12)
S1—N1—C7—C1137.24 (10)C12—C13—C14—C153.47 (19)
C6—C1—C7—N11.11 (18)C13—C14—C15—C160.4 (2)
C2—C1—C7—N1179.83 (11)C14—C15—C16—C172.3 (2)
O1—S1—C8—C92.04 (12)C15—C16—C17—C121.77 (18)
O2—S1—C8—C9131.16 (10)C15—C16—C17—C8177.02 (12)
N1—S1—C8—C9113.64 (10)C11—C12—C17—C16177.06 (11)
O1—S1—C8—C17178.94 (10)C13—C12—C17—C161.34 (16)
O2—S1—C8—C1749.82 (11)C11—C12—C17—C81.81 (16)
N1—S1—C8—C1765.38 (11)C13—C12—C17—C8179.79 (10)
C17—C8—C9—C100.62 (19)C9—C8—C17—C16178.42 (12)
S1—C8—C9—C10178.40 (10)S1—C8—C17—C160.55 (16)
C8—C9—C10—C110.16 (19)C9—C8—C17—C120.39 (17)
C9—C10—C11—C121.33 (19)S1—C8—C17—C12179.35 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.86 (2)2.12 (2)2.9351 (14)158 (2)
Symmetry code: (i) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC19H20N2O2S
Mr340.43
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)16.6635 (5), 9.5722 (2), 22.8942 (7)
β (°) 108.779 (1)
V3)3457.38 (16)
Z8
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.30 × 0.24 × 0.22
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4275, 4275, 3747
Rint0.000
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.096, 1.03
No. of reflections4275
No. of parameters223
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.40

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.857 (16)2.124 (16)2.9351 (14)157.8 (17)
Symmetry code: (i) x+1/2, y+1/2, z+1.
 

Acknowledgements

The authors wish to thank Dr Hong Su from the University of the Cape Town for her assistance with the data collection and refinement.

References

First citationChui, C. H., Wang, Q., Chow, W. C., Yuen, M. C. W., Wong, K. L., Kwok, W. M., Cheng, G. Y. M., Wong, R. S. M., Tong, S. W., Chan, K. W., Lau, F. Y., Lai, P. B. S., Lam, K. H., Fabbri, E., Tao, X. M., Gambari, R. & Wong, W. Y. (2010). Chem. Commun. 46, 3538–3540.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHimel, C. M., Wissam, A. G. & Solang, U. K. (1971). J. Agric. Food Chem. 19, 1175–1180.  CrossRef Google Scholar
First citationHongmei, W., Peng, Z., Jian, W., Liang, Z. & Chunying, D. (2009). New J. Chem. 33, 653–658.  Google Scholar
First citationHong-Wei, L., Yue, L., Yong-Qiang, D., Li-Jun, M., Guangfeng, H. & Lixin, W. (2009). Chem. Commun. pp. 4453–4455.  Google Scholar
First citationIllos, R. A., Ergaz, I. & Bittner, S. (2005). Z. Kristallogr. 220, 285–286.  CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSchael, F., Rubin, M. B. & Speiser, S. (1998). J. Photochem. Photobiol. A, 115, 99–108.  CAS Google Scholar
First citationSchonefeld, K., Ludwig, R. & Feller, K. H. (2006). J. Fluoresc. 16, 449–454.  CAS Google Scholar
First citationShea, K. J., Stoddard, G. J. & Sasaki, D. Y. (1989). Macromolecules, 22, 4303–4308.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2458-o2459
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds