metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1244-m1245

Di­aqua­(5-carb­­oxy­benzene-1,3-di­carboxyl­ato-κ2O1,O1′)(6,6′-di­methyl-2,2′-bi­pyridine-κ2N,N′)nickel(II) hepta­hydrate

aNorth China University of Water Conservancy and Electric Power, Zhengzhou 450011, People's Republic of China
*Correspondence e-mail: hbsysww@163.com

(Received 31 July 2011; accepted 8 August 2011; online 17 August 2011)

In the title compound, [Ni(C9H4O6)(C12H12N2)(H2O)2]·7H2O, the NiII atom is six-coordinated by two O atoms from a chelating carboxyl­ate group of a 5-carb­oxy­benzene-1,3-dicarboxyl­ate ligand, two O atoms of two water mol­ecules and two N atoms from a 6,6′-dimethyl-2,2′-bipyridine ligand in a distorted octa­hedral geometry. The compound exhibits a three-dimensional supra­molecular structure composed of the complex mol­ecules and lattice water mol­ecules, which are linked together by inter­molecular O—H⋯O hydrogen bonds and partly overlapping ππ inter­actions between the pyridine and benzene rings [centroid–centroid distances = 3.922 (2) and 3.921 (2) Å]. One of the lattice water mol­ecules is disordered over two positions in an occupancy ratio of 0.521 (6):0.479 (6).

Related literature

For background to network topologies and applications of coordination polymers, see: Maspoch et al. (2007[Maspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev. 36, 770-818.]); Ockwig et al. (2005[Ockwig, N. W., Delgado-Friedrichs, O., O'Keefee, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176-182.]); Zang et al. (2006[Zang, S.-Q., Su, Y., Li, Y.-Z., Ni, Z.-P. & Meng, Q.-J. (2006). Inorg. Chem. 45, 174-180]). For O—H⋯O hydrogen bonds, see: Desiraju (2004[Desiraju, G. R. (2004). Hydrogen Bonding. Encyclopedia of Supramolecular Chemistry, edited by J. L. Atwood & J. W. Steed, pp. 658-665. New York: Marcel Dekker Inc.]). For ππ inter­actions, see: Zang et al. (2010[Zang, S.-Q., Liang, R., Fan, Y.-J., Hou, H.-W. & Mak, T. C. W. (2010). Dalton Trans. 39, 8022-8032.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C9H4O6)(C12H12N2)(H2O)2]·7H2O

  • Mr = 613.21

  • Monoclinic, P 21 /c

  • a = 7.4358 (5) Å

  • b = 19.9044 (7) Å

  • c = 18.7547 (12) Å

  • β = 100.748 (6)°

  • V = 2727.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 296 K

  • 0.21 × 0.20 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.852, Tmax = 0.865

  • 10544 measured reflections

  • 4792 independent reflections

  • 3924 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.112

  • S = 1.07

  • 4792 reflections

  • 359 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O6i 0.82 1.74 2.542 (3) 167
O1W—H1WA⋯O4ii 0.85 1.93 2.720 (3) 154
O1W—H1WB⋯O6Wiii 0.85 1.91 2.705 (4) 156
O2W—H2WA⋯O5iv 0.85 2.00 2.681 (3) 136
O2W—H2WC⋯O7Wv 0.85 2.02 2.729 (4) 141
O3W—H3WA⋯O5iv 0.85 1.99 2.827 (4) 169
O3W—H3WB⋯O9Wv 0.85 2.17 2.935 (5) 150
O4W—H4WA⋯O6iv 1.02 1.82 2.830 (7) 170
O4W—H4WB⋯O4vi 0.85 2.36 3.215 (8) 179
O4W′—H4WD⋯O6iv 0.80 2.16 2.964 (7) 180
O4W′—H4WF⋯O6Wvii 0.89 2.27 2.736 (7) 113
O5W—H5WA⋯O7W 0.90 2.14 2.974 (8) 155
O5W—H5WC⋯O2iv 0.85 2.05 2.860 (4) 159
O6W—H6WC⋯O4Wviii 0.85 1.78 2.597 (8) 162
O6W—H6WA⋯O5W 0.75 1.94 2.687 (5) 178
O7W—H7WB⋯O8W 0.80 1.89 2.681 (6) 170
O7W—H7WC⋯O1Wii 0.85 2.19 2.990 (5) 158
O8W—H8WB⋯O9W 0.90 2.03 2.905 (6) 164
O8W—H8WC⋯O3Wix 0.85 2.31 2.916 (6) 129
O9W—H9WB⋯O1iv 0.85 2.14 2.968 (4) 166
O9W—H9WC⋯O3Wx 0.85 2.03 2.845 (5) 162
Symmetry codes: (i) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) -x+1, -y, -z; (vii) -x+1, -y+1, -z; (viii) x+1, y, z; (ix) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (x) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Metallosupramolecular chemistry has received much attention due to their variety of architectures and the potential applications as functional materials (Maspoch et al., 2007; Ockwig et al., 2005). The choice of ligands and metal centers can affect the final structures. A great number of organic aromatic polycarboxylate and N-donor ligands have been successfully employed in the generation of many novel structures (Zang et al., 2006). To further explore the influence of multicarboxylate and N-donor ligands on the properties and construction of coordination compounds, we undertake synthetic and structural studies on the title compound, a Ni(II) complex based on 1,3,5-benzenetricarboxylic acid (H3btc) and 6,6'-dimethyl-2,2'-bipyridine (dmbpy).

As shown in Fig. 1, the asymmetric unit consists of one NiII atom, one Hbtc ligand, one dmbpy ligand, two coordinated and seven lattice water molecules. The Hbtc ligand occurs in a form with an intact COOH group. The NiII atom is six-coordinated by two O atoms from one chelating carboxylate group of the Hbtc ligand, two O atoms of two water molecules and two N atoms from a dmbpy ligand, completing a distorted octahedral geometry. N1, N2, O1 and O2 comprise the equatorial plane, while O1W and O2W occupy the axial positions. As depicted in Fig. 2, each complex molecule is connected to four adjacent ones through hydrogen bonds (Table 1), resulting in a two-dimensional supramolecular structure in the ab plane, in which partly overlapping ππ stacking interactions involving the benzene and pyridine rings are detected [centroid–centroid distances = 3.922 (2) and 3.921 (2) Å]. Adjacent layers are associated together by hydrogen bonds with the hydroxyl groups of the intact COOH groups serving as donors and the uncoordinated carboxylate O atoms from different layers as accepters. The lattice water molecules are fixed in the three-dimensional supramolecular net through hydrogen bonds (Fig. 3).

Related literature top

For background to network topologies and applications of coordination polymers, see: Maspoch et al. (2007); Ockwig et al. (2005); Zang et al. (2006). For O—H···O hydrogen bonds, see: Desiraju (2004). For ππ interactions, see: Zang et al. (2010).

Experimental top

The title compound was synthesized hydrothermally in a Teflon-lined stainless steel container by heating a mixture of H3btc (0.011 g, 0.05 mmol), dmbpy (0.009 g, 0.05 mmol), Ni(NO3)2.6H2O (0.015 g, 0.05 mmol) and NaOH (0.004 g, 0.1 mmol) in 7 ml of distilled water at 120°C for 3 days, and then cooling it to room temperature. Green block crystals of the title compound were obtained in 75% yield based on nickel.

Refinement top

One of the lattice water molecules is disordered over two positions in a 0.521 (6):0.479 (6) ratio. H atoms of the organic ligands were positioned geometrically and refined using a riding model, with C—H = 0.93 (aromatic), 0.96 (methyl) and O—H = 0.82 Å and with Uiso(H) = 1.2(1.5 for methyl and hydroxyl)Ueq(C, O). H atoms of the water molecules were located from a difference Fourier map and refined as riding with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Irrespective H atoms and the disordered O4W' are omitted for clarity.
[Figure 2] Fig. 2. A view of the supramolecular layer in the title compound. Dotted lines represent hydrogen bonds and ππ interactions [centroid–centroid distances = 3.922 (2) and 3.921 (2) Å].
[Figure 3] Fig. 3. The three-dimensional supramolecular structure connected by interlayer hydrogen bonds (dotted lines).
Diaqua(5-carboxybenzene-1,3-dicarboxylato-κ2O1,O1')(6,6'- dimethyl-2,2'-bipyridine-κ2N,N')nickel(II) heptahydrate top
Crystal data top
[Ni(C9H4O6)(C12H12N2)(H2O)2]·7H2OF(000) = 1288
Mr = 613.21Dx = 1.494 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5756 reflections
a = 7.4358 (5) Åθ = 3.1–25.1°
b = 19.9044 (7) ŵ = 0.79 mm1
c = 18.7547 (12) ÅT = 296 K
β = 100.748 (6)°Block, green
V = 2727.1 (3) Å30.21 × 0.20 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4792 independent reflections
Radiation source: fine-focus sealed tube3924 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 87
Tmin = 0.852, Tmax = 0.865k = 2323
10544 measured reflectionsl = 2218
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0512P)2 + 1.4022P]
where P = (Fo2 + 2Fc2)/3
4792 reflections(Δ/σ)max < 0.001
359 parametersΔρmax = 0.52 e Å3
7 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Ni(C9H4O6)(C12H12N2)(H2O)2]·7H2OV = 2727.1 (3) Å3
Mr = 613.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4358 (5) ŵ = 0.79 mm1
b = 19.9044 (7) ÅT = 296 K
c = 18.7547 (12) Å0.21 × 0.20 × 0.19 mm
β = 100.748 (6)°
Data collection top
Bruker APEXII CCD
diffractometer
4792 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3924 reflections with I > 2σ(I)
Tmin = 0.852, Tmax = 0.865Rint = 0.024
10544 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0437 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.07Δρmax = 0.52 e Å3
4792 reflectionsΔρmin = 0.44 e Å3
359 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.70769 (6)0.080884 (19)0.25745 (2)0.03021 (16)
O10.7517 (4)0.01080 (10)0.20364 (13)0.0418 (6)
O20.6738 (3)0.01416 (10)0.30997 (12)0.0346 (5)
O30.7991 (4)0.21564 (10)0.07083 (12)0.0413 (6)
H30.79960.23770.03390.062*
O40.8529 (4)0.31588 (11)0.12401 (12)0.0407 (6)
O50.7135 (3)0.32604 (11)0.38608 (12)0.0403 (6)
O60.7669 (4)0.22980 (11)0.44653 (12)0.0414 (6)
O1W0.9818 (3)0.07458 (11)0.30571 (13)0.0402 (6)
H1WA1.02480.11390.31420.060*
H1WB0.99170.05300.34540.060*
O2W0.4405 (4)0.07809 (12)0.20585 (16)0.0592 (8)
H2WA0.40030.11800.19910.089*
H2WC0.37790.05690.23210.089*
O3W0.2685 (6)0.07326 (15)0.00654 (18)0.0889 (12)
H3WA0.27900.10690.03490.133*
H3WB0.29080.04020.03550.133*
O4W0.0439 (13)0.3920 (4)0.0141 (4)0.0793 (16)0.479 (6)
H4WA0.12060.34960.02430.119*0.479 (6)
H4WB0.07050.37180.02250.119*0.479 (6)
O4W'0.1795 (12)0.4147 (3)0.0175 (4)0.0793 (16)0.521 (6)
H4WD0.19380.37570.02730.119*0.521 (6)
H4WF0.08310.41810.01820.119*0.521 (6)
O5W0.6215 (7)0.43234 (17)0.1293 (4)0.175 (3)
H5WA0.68080.43370.17580.262*
H5WC0.52210.45020.13600.262*
O6W0.9119 (5)0.48672 (16)0.08448 (19)0.0840 (11)
H6WC0.97030.45420.07030.126*
H6WA0.83030.47230.09720.126*
O7W0.8074 (5)0.4822 (2)0.2739 (2)0.0973 (12)
H7WB0.84140.47180.31540.146*
H7WC0.89160.50560.26100.146*
O8W0.9166 (6)0.4315 (3)0.4073 (3)0.1361 (19)
H8WB0.80120.43050.41520.204*
H8WC0.98680.40480.43500.204*
O9W0.5399 (5)0.45536 (17)0.42213 (18)0.0861 (11)
H9WB0.47160.46630.38230.129*
H9WC0.44420.45300.44060.129*
N10.7626 (4)0.16095 (13)0.19407 (16)0.0380 (7)
N20.6634 (4)0.15982 (13)0.32397 (16)0.0371 (7)
C10.7209 (4)0.04411 (16)0.25714 (17)0.0301 (7)
C20.8196 (4)0.25571 (15)0.12681 (17)0.0296 (7)
C30.7403 (4)0.26418 (15)0.38882 (17)0.0287 (7)
C40.7420 (4)0.11928 (15)0.25751 (16)0.0270 (7)
C50.7759 (4)0.15158 (14)0.19578 (16)0.0274 (7)
H50.78710.12670.15490.033*
C60.7933 (4)0.22150 (14)0.19505 (16)0.0254 (7)
C70.7778 (4)0.25820 (15)0.25693 (16)0.0262 (7)
H70.78810.30480.25640.031*
C80.7472 (4)0.22603 (14)0.31937 (16)0.0251 (7)
C90.7290 (4)0.15617 (14)0.31904 (16)0.0281 (7)
H90.70790.13420.36050.034*
C100.8084 (5)0.15830 (19)0.1278 (2)0.0463 (9)
C110.8383 (8)0.0920 (2)0.0959 (2)0.0712 (14)
H11A0.91970.06570.13080.107*
H11B0.89120.09830.05350.107*
H11C0.72330.06900.08280.107*
C120.8301 (6)0.2173 (2)0.0901 (2)0.0556 (11)
H120.86430.21510.04490.067*
C130.8017 (6)0.2778 (2)0.1191 (3)0.0645 (13)
H130.81270.31710.09330.077*
C140.7566 (6)0.28089 (18)0.1865 (3)0.0577 (12)
H140.73750.32220.20710.069*
C150.7398 (5)0.22160 (16)0.2236 (2)0.0414 (9)
C160.6961 (5)0.22106 (16)0.2969 (2)0.0412 (9)
C170.6877 (6)0.27930 (19)0.3363 (3)0.0585 (12)
H170.71480.32070.31780.070*
C180.6393 (6)0.2752 (2)0.4028 (3)0.0659 (13)
H180.63160.31400.42970.079*
C190.6020 (6)0.2140 (2)0.4300 (2)0.0581 (12)
H190.56770.21120.47510.070*
C200.6156 (5)0.15593 (18)0.3898 (2)0.0455 (9)
C210.5736 (8)0.0888 (2)0.4174 (2)0.0686 (14)
H21A0.48090.06730.38240.103*
H21B0.53050.09410.46220.103*
H21C0.68240.06180.42540.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0398 (3)0.0199 (2)0.0289 (3)0.00149 (17)0.00125 (18)0.00021 (16)
O10.0762 (19)0.0220 (11)0.0287 (13)0.0036 (11)0.0135 (12)0.0041 (10)
O20.0500 (15)0.0223 (11)0.0325 (13)0.0009 (10)0.0104 (11)0.0024 (9)
O30.0785 (19)0.0281 (12)0.0199 (12)0.0030 (12)0.0156 (12)0.0016 (10)
O40.0666 (17)0.0266 (12)0.0291 (13)0.0142 (11)0.0092 (12)0.0010 (10)
O50.0648 (17)0.0262 (12)0.0289 (13)0.0097 (11)0.0058 (12)0.0044 (10)
O60.0755 (19)0.0306 (12)0.0196 (12)0.0032 (12)0.0123 (12)0.0001 (10)
O1W0.0412 (14)0.0314 (12)0.0441 (15)0.0031 (10)0.0022 (11)0.0000 (11)
O2W0.0478 (16)0.0412 (14)0.078 (2)0.0101 (12)0.0174 (14)0.0219 (14)
O3W0.151 (4)0.0525 (19)0.057 (2)0.020 (2)0.004 (2)0.0123 (16)
O4W0.105 (4)0.068 (3)0.065 (3)0.021 (3)0.013 (3)0.006 (2)
O4W'0.105 (4)0.068 (3)0.065 (3)0.021 (3)0.013 (3)0.006 (2)
O5W0.194 (5)0.052 (2)0.336 (8)0.018 (3)0.198 (6)0.017 (3)
O6W0.083 (3)0.073 (2)0.091 (3)0.0016 (18)0.004 (2)0.0246 (19)
O7W0.070 (2)0.130 (3)0.098 (3)0.026 (2)0.031 (2)0.006 (3)
O8W0.102 (3)0.180 (5)0.135 (4)0.023 (3)0.043 (3)0.070 (4)
O9W0.100 (3)0.092 (2)0.058 (2)0.017 (2)0.0040 (19)0.0068 (19)
N10.0387 (17)0.0293 (14)0.0420 (18)0.0055 (12)0.0027 (13)0.0060 (13)
N20.0342 (16)0.0318 (15)0.0420 (18)0.0030 (12)0.0010 (13)0.0071 (13)
C10.0387 (19)0.0241 (16)0.0255 (17)0.0023 (14)0.0006 (14)0.0025 (14)
C20.0364 (19)0.0286 (17)0.0243 (17)0.0008 (14)0.0067 (14)0.0007 (14)
C30.0370 (19)0.0264 (16)0.0226 (17)0.0004 (14)0.0054 (13)0.0024 (13)
C40.0346 (18)0.0211 (15)0.0245 (16)0.0032 (13)0.0035 (13)0.0002 (12)
C50.0392 (19)0.0250 (15)0.0178 (15)0.0002 (13)0.0046 (13)0.0037 (12)
C60.0320 (17)0.0233 (15)0.0201 (15)0.0005 (13)0.0029 (13)0.0012 (12)
C70.0337 (17)0.0207 (14)0.0228 (16)0.0002 (13)0.0017 (13)0.0010 (12)
C80.0320 (17)0.0236 (15)0.0194 (15)0.0022 (13)0.0037 (13)0.0015 (12)
C90.0389 (19)0.0253 (15)0.0208 (16)0.0011 (13)0.0072 (13)0.0023 (13)
C100.048 (2)0.047 (2)0.041 (2)0.0110 (18)0.0007 (18)0.0122 (18)
C110.117 (4)0.060 (3)0.042 (2)0.019 (3)0.029 (3)0.001 (2)
C120.050 (3)0.057 (3)0.056 (3)0.010 (2)0.001 (2)0.026 (2)
C130.054 (3)0.052 (3)0.083 (4)0.008 (2)0.001 (2)0.036 (2)
C140.050 (3)0.0293 (19)0.089 (4)0.0000 (17)0.002 (2)0.015 (2)
C150.0311 (19)0.0276 (18)0.061 (3)0.0013 (14)0.0029 (17)0.0042 (17)
C160.0294 (19)0.0255 (17)0.063 (3)0.0015 (14)0.0057 (17)0.0059 (16)
C170.055 (3)0.032 (2)0.081 (3)0.0043 (18)0.006 (2)0.013 (2)
C180.064 (3)0.045 (2)0.080 (4)0.008 (2)0.010 (3)0.030 (2)
C190.057 (3)0.061 (3)0.051 (3)0.010 (2)0.004 (2)0.027 (2)
C200.045 (2)0.045 (2)0.043 (2)0.0077 (17)0.0010 (17)0.0136 (18)
C210.104 (4)0.060 (3)0.047 (3)0.004 (3)0.029 (3)0.008 (2)
Geometric parameters (Å, º) top
Ni1—O2W2.042 (3)N2—C161.360 (4)
Ni1—N22.070 (3)C1—C41.504 (4)
Ni1—O1W2.074 (2)C2—C61.494 (4)
Ni1—N12.074 (3)C3—C81.517 (4)
Ni1—O12.140 (2)C4—C91.386 (4)
Ni1—O22.169 (2)C4—C51.388 (4)
O1—C11.259 (4)C5—C61.398 (4)
O2—C11.261 (4)C5—H50.9300
O3—C21.305 (4)C6—C71.394 (4)
O3—H30.8200C7—C81.390 (4)
O4—C21.226 (4)C7—H70.9300
O5—C31.247 (4)C8—C91.397 (4)
O6—C31.265 (4)C9—H90.9300
O1W—H1WA0.8500C10—C121.396 (5)
O1W—H1WB0.8499C10—C111.483 (6)
O2W—H2WA0.8502C11—H11A0.9600
O2W—H2WC0.8499C11—H11B0.9600
O3W—H3WA0.8500C11—H11C0.9600
O3W—H3WB0.8497C12—C131.354 (6)
O4W—H4WA1.0159C12—H120.9300
O4W—H4WB0.8499C13—C141.368 (7)
O4W'—H4WD0.8000C13—H130.9300
O4W'—H4WF0.8879C14—C151.388 (5)
O5W—H5WA0.9000C14—H140.9300
O5W—H5WC0.8500C15—C161.470 (6)
O6W—H6WC0.8499C16—C171.383 (5)
O6W—H6WA0.7500C17—C181.362 (7)
O7W—H7WC0.8500C17—H170.9300
O7W—H7WB0.8001C18—C191.368 (6)
O7W—H7WC0.8500C18—H180.9300
O8W—H8WB0.8978C19—C201.395 (5)
O8W—H8WC0.8500C19—H190.9300
O9W—H9WB0.8502C20—C211.486 (6)
O9W—H9WC0.8499C21—H21A0.9600
N1—C101.350 (5)C21—H21B0.9600
N1—C151.352 (4)C21—H21C0.9600
N2—C201.349 (5)
O2W—Ni1—N293.23 (11)C7—C6—C5119.4 (3)
O2W—Ni1—O1W174.46 (10)C7—C6—C2121.2 (3)
N2—Ni1—O1W92.10 (10)C5—C6—C2119.3 (3)
O2W—Ni1—N191.57 (11)C8—C7—C6120.8 (3)
N2—Ni1—N180.36 (12)C8—C7—H7119.6
O1W—Ni1—N190.82 (10)C6—C7—H7119.6
O2W—Ni1—O188.51 (11)C7—C8—C9119.1 (3)
N2—Ni1—O1170.69 (10)C7—C8—C3122.0 (3)
O1W—Ni1—O185.99 (10)C9—C8—C3118.9 (3)
N1—Ni1—O1108.75 (10)C4—C9—C8120.6 (3)
O2W—Ni1—O290.35 (9)C4—C9—H9119.7
N2—Ni1—O2110.07 (10)C8—C9—H9119.7
O1W—Ni1—O286.39 (9)N1—C10—C12120.4 (4)
N1—Ni1—O2169.27 (10)N1—C10—C11119.3 (3)
O1—Ni1—O260.74 (9)C12—C10—C11120.3 (4)
C1—O1—Ni190.39 (19)C10—C11—H11A109.5
C1—O2—Ni189.00 (18)C10—C11—H11B109.5
C2—O3—H3109.5H11A—C11—H11B109.5
Ni1—O1W—H1WA109.3C10—C11—H11C109.5
Ni1—O1W—H1WB109.3H11A—C11—H11C109.5
H1WA—O1W—H1WB109.5H11B—C11—H11C109.5
Ni1—O2W—H2WA109.2C13—C12—C10120.2 (4)
Ni1—O2W—H2WC109.2C13—C12—H12119.9
H2WA—O2W—H2WC109.5C10—C12—H12119.9
H3WA—O3W—H3WB103.1C12—C13—C14119.6 (4)
H4WA—O4W—H4WB63.5C12—C13—H13120.2
H4WB—O4W—H4WD71.2C14—C13—H13120.2
H4WD—O4W'—H4WF107.6C13—C14—C15119.1 (4)
H5WA—O5W—H5WC97.4C13—C14—H14120.5
H6WC—O6W—H6WA107.4C15—C14—H14120.5
H7WC—O7W—H7WB107.6N1—C15—C14121.6 (4)
H7WB—O7W—H7WC107.6N1—C15—C16116.3 (3)
H8WB—O8W—H8WC112.6C14—C15—C16122.1 (3)
H9WB—O9W—H9WC88.0N2—C16—C17121.5 (4)
C10—N1—C15119.0 (3)N2—C16—C15116.2 (3)
C10—N1—Ni1127.5 (2)C17—C16—C15122.3 (3)
C15—N1—Ni1113.4 (2)C18—C17—C16119.0 (4)
C20—N2—C16119.3 (3)C18—C17—H17120.5
C20—N2—Ni1127.3 (2)C16—C17—H17120.5
C16—N2—Ni1113.3 (2)C17—C18—C19120.1 (4)
O1—C1—O2119.7 (3)C17—C18—H18120.0
O1—C1—C4119.5 (3)C19—C18—H18120.0
O2—C1—C4120.7 (3)C18—C19—C20119.7 (4)
O4—C2—O3123.9 (3)C18—C19—H19120.1
O4—C2—C6122.8 (3)C20—C19—H19120.1
O3—C2—C6113.3 (3)N2—C20—C19120.4 (4)
O5—C3—O6124.6 (3)N2—C20—C21118.6 (3)
O5—C3—C8119.3 (3)C19—C20—C21121.0 (4)
O6—C3—C8116.1 (3)C20—C21—H21A109.5
C9—C4—C5120.1 (3)C20—C21—H21B109.5
C9—C4—C1120.5 (3)H21A—C21—H21B109.5
C5—C4—C1119.5 (3)C20—C21—H21C109.5
C4—C5—C6120.1 (3)H21A—C21—H21C109.5
C4—C5—H5120.0H21B—C21—H21C109.5
C6—C5—H5120.0
O2W—Ni1—O1—C193.3 (2)C2—C6—C7—C8177.8 (3)
O1W—Ni1—O1—C186.0 (2)C6—C7—C8—C91.1 (5)
N1—Ni1—O1—C1175.52 (19)C6—C7—C8—C3176.5 (3)
O2—Ni1—O1—C12.09 (18)O5—C3—C8—C719.0 (5)
O2W—Ni1—O2—C190.2 (2)O6—C3—C8—C7159.5 (3)
N2—Ni1—O2—C1176.26 (18)O5—C3—C8—C9163.4 (3)
O1W—Ni1—O2—C185.34 (19)O6—C3—C8—C918.1 (4)
N1—Ni1—O2—C110.2 (6)C5—C4—C9—C80.9 (5)
O1—Ni1—O2—C12.08 (18)C1—C4—C9—C8179.5 (3)
O2W—Ni1—N1—C1085.4 (3)C7—C8—C9—C40.3 (5)
N2—Ni1—N1—C10178.4 (3)C3—C8—C9—C4177.4 (3)
O1W—Ni1—N1—C1089.6 (3)C15—N1—C10—C120.6 (5)
O1—Ni1—N1—C103.6 (3)Ni1—N1—C10—C12176.0 (3)
O2—Ni1—N1—C1014.8 (7)C15—N1—C10—C11178.4 (4)
O2W—Ni1—N1—C1591.4 (2)Ni1—N1—C10—C115.0 (5)
N2—Ni1—N1—C151.6 (2)N1—C10—C12—C131.4 (6)
O1W—Ni1—N1—C1593.6 (2)C11—C10—C12—C13179.6 (4)
O1—Ni1—N1—C15179.6 (2)C10—C12—C13—C141.9 (6)
O2—Ni1—N1—C15168.3 (5)C12—C13—C14—C150.4 (6)
O2W—Ni1—N2—C2089.9 (3)C10—N1—C15—C142.1 (5)
O1W—Ni1—N2—C2088.6 (3)Ni1—N1—C15—C14175.0 (3)
N1—Ni1—N2—C20179.1 (3)C10—N1—C15—C16178.0 (3)
O2—Ni1—N2—C201.7 (3)Ni1—N1—C15—C164.9 (4)
O2W—Ni1—N2—C1693.2 (2)C13—C14—C15—N11.6 (6)
O1W—Ni1—N2—C1688.3 (2)C13—C14—C15—C16178.5 (4)
N1—Ni1—N2—C162.2 (2)C20—N2—C16—C172.3 (5)
O2—Ni1—N2—C16175.2 (2)Ni1—N2—C16—C17174.9 (3)
Ni1—O1—C1—O23.6 (3)C20—N2—C16—C15177.5 (3)
Ni1—O1—C1—C4176.0 (3)Ni1—N2—C16—C155.4 (4)
Ni1—O2—C1—O13.6 (3)N1—C15—C16—N27.0 (5)
Ni1—O2—C1—C4176.0 (3)C14—C15—C16—N2172.9 (3)
O1—C1—C4—C9172.7 (3)N1—C15—C16—C17173.3 (3)
O2—C1—C4—C96.9 (5)C14—C15—C16—C176.9 (6)
O1—C1—C4—C56.9 (5)N2—C16—C17—C182.3 (6)
O2—C1—C4—C5173.6 (3)C15—C16—C17—C18177.4 (4)
C9—C4—C5—C61.3 (5)C16—C17—C18—C190.8 (6)
C1—C4—C5—C6179.1 (3)C17—C18—C19—C200.6 (6)
C4—C5—C6—C70.5 (5)C16—N2—C20—C190.8 (5)
C4—C5—C6—C2176.7 (3)Ni1—N2—C20—C19176.0 (3)
O4—C2—C6—C79.8 (5)C16—N2—C20—C21177.8 (4)
O3—C2—C6—C7168.5 (3)Ni1—N2—C20—C215.5 (5)
O4—C2—C6—C5173.0 (3)C18—C19—C20—N20.7 (6)
O3—C2—C6—C58.7 (4)C18—C19—C20—C21179.2 (4)
C5—C6—C7—C80.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O6i0.821.742.542 (3)167
O1W—H1WA···O4ii0.851.932.720 (3)154
O1W—H1WB···O6Wiii0.851.912.705 (4)156
O2W—H2WA···O5iv0.852.002.681 (3)136
O2W—H2WC···O7Wv0.852.022.729 (4)141
O3W—H3WA···O5iv0.851.992.827 (4)169
O3W—H3WB···O9Wv0.852.172.935 (5)150
O4W—H4WA···O6iv1.021.822.830 (7)170
O4W—H4WB···O4vi0.852.363.215 (8)179
O4W—H4WD···O6iv0.802.162.964 (7)180
O4W—H4WF···O6Wvii0.892.272.736 (7)113
O5W—H5WA···O7W0.902.142.974 (8)155
O5W—H5WC···O2iv0.852.052.860 (4)159
O6W—H6WC···O4Wviii0.851.782.597 (8)162
O6W—H6WA···O5W0.751.942.687 (5)178
O7W—H7WB···O8W0.801.892.681 (6)170
O7W—H7WC···O1Wii0.852.192.990 (5)158
O8W—H8WB···O9W0.902.032.905 (6)164
O8W—H8WC···O3Wix0.852.312.916 (6)129
O9W—H9WB···O1iv0.852.142.968 (4)166
O9W—H9WC···O3Wx0.852.032.845 (5)162
Symmetry codes: (i) x, y1/2, z1/2; (ii) x+2, y+1/2, z+1/2; (iii) x+2, y1/2, z+1/2; (iv) x+1, y+1/2, z+1/2; (v) x+1, y1/2, z+1/2; (vi) x+1, y, z; (vii) x+1, y+1, z; (viii) x+1, y, z; (ix) x+1, y+1/2, z+1/2; (x) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C9H4O6)(C12H12N2)(H2O)2]·7H2O
Mr613.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.4358 (5), 19.9044 (7), 18.7547 (12)
β (°) 100.748 (6)
V3)2727.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.21 × 0.20 × 0.19
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.852, 0.865
No. of measured, independent and
observed [I > 2σ(I)] reflections
10544, 4792, 3924
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.112, 1.07
No. of reflections4792
No. of parameters359
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.44

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O6i0.821.742.542 (3)167
O1W—H1WA···O4ii0.851.932.720 (3)154
O1W—H1WB···O6Wiii0.851.912.705 (4)156
O2W—H2WA···O5iv0.852.002.681 (3)136
O2W—H2WC···O7Wv0.852.022.729 (4)141
O3W—H3WA···O5iv0.851.992.827 (4)169
O3W—H3WB···O9Wv0.852.172.935 (5)150
O4W—H4WA···O6iv1.021.822.830 (7)170
O4W—H4WB···O4vi0.852.363.215 (8)179
O4W'—H4WD···O6iv0.802.162.964 (7)180
O4W'—H4WF···O6Wvii0.892.272.736 (7)113
O5W—H5WA···O7W0.902.142.974 (8)155
O5W—H5WC···O2iv0.852.052.860 (4)159
O6W—H6WC···O4Wviii0.851.782.597 (8)162
O6W—H6WA···O5W0.751.942.687 (5)178
O7W—H7WB···O8W0.801.892.681 (6)170
O7W—H7WC···O1Wii0.852.192.990 (5)158
O8W—H8WB···O9W0.902.032.905 (6)164
O8W—H8WC···O3Wix0.852.312.916 (6)129
O9W—H9WB···O1iv0.852.142.968 (4)166
O9W—H9WC···O3Wx0.852.032.845 (5)162
Symmetry codes: (i) x, y1/2, z1/2; (ii) x+2, y+1/2, z+1/2; (iii) x+2, y1/2, z+1/2; (iv) x+1, y+1/2, z+1/2; (v) x+1, y1/2, z+1/2; (vi) x+1, y, z; (vii) x+1, y+1, z; (viii) x+1, y, z; (ix) x+1, y+1/2, z+1/2; (x) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported financially by the Natural Science Foundation of Henan Province (No. 2010 A140009) and the Inter­national Technology Cooperation Project of Science and Technology Department of Henan Province of China (No. 104300510044).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (2004). Hydrogen Bonding. Encyclopedia of Supramolecular Chemistry, edited by J. L. Atwood & J. W. Steed, pp. 658–665. New York: Marcel Dekker Inc.  Google Scholar
First citationMaspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev. 36, 770–818.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOckwig, N. W., Delgado-Friedrichs, O., O'Keefee, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176–182.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZang, S.-Q., Liang, R., Fan, Y.-J., Hou, H.-W. & Mak, T. C. W. (2010). Dalton Trans. 39, 8022–8032.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZang, S.-Q., Su, Y., Li, Y.-Z., Ni, Z.-P. & Meng, Q.-J. (2006). Inorg. Chem. 45, 174–180  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1244-m1245
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds