metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromido(2,3-di-2-pyridyl­pyrazine-κ2N1,N2)platinum(II)

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 1 August 2011; accepted 4 August 2011; online 11 August 2011)

The PtII ion in the title complex, [PtBr2(C14H10N4)], is four-coordinated in a distorted square-planar environment by two N atoms of a chelating 2,3-di-2-pyridyl­pyrazine ligand and two bromide anions. In the crystal, the pyridyl ring coordinated to the Pt atom is inclined slightly to its carrier pyrazine ring [dihedral angle = 14.7 (2)°], whereas the uncoordinated pyridyl ring is inclined considerably to the pyrazine ring [dihedral angle = 51.9 (3)°]. The dihedral angle between the two pyridyl rings is 57.7 (3)°. Two complex mol­ecules are assembled through inter­molecular C—H⋯N hydrogen bonds, forming a dimer-type species. Intra­molecular C—H⋯Br and C—H⋯N hydrogen bonds are also present.

Related literature

For the crystal structure of [PtCl4(dpp)] (dpp is 2,3-di-2-pyridyl­pyrazine), see: Delir Kheirollahi Nezhad et al. (2008[Delir Kheirollahi Nezhad, P., Azadbakht, F., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m575-m576.]).

[Scheme 1]

Experimental

Crystal data
  • [PtBr2(C14H10N4)]

  • Mr = 589.14

  • Monoclinic, P 21 /n

  • a = 8.9084 (11) Å

  • b = 9.9817 (12) Å

  • c = 16.727 (2) Å

  • β = 94.104 (3)°

  • V = 1483.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 14.84 mm−1

  • T = 200 K

  • 0.17 × 0.10 × 0.04 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.590, Tmax = 1.000

  • 10590 measured reflections

  • 3642 independent reflections

  • 2415 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.099

  • S = 1.01

  • 3642 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 3.12 e Å−3

  • Δρmin = −1.54 e Å−3

Table 1
Selected bond lengths (Å)

Pt1—N1 2.020 (6)
Pt1—N3 2.033 (8)
Pt1—Br1 2.4116 (11)
Pt1—Br2 2.4142 (10)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N2i 0.95 2.55 3.396 (11) 148
C4—H4⋯Br1 0.95 2.66 3.289 (9) 124
C6—H6⋯N4 0.95 2.59 3.051 (11) 110
C9—H9⋯Br2 0.95 2.71 3.340 (10) 124
Symmetry code: (i) -x, -y+1, -z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the title complex, [PtBr2(dpp)] (dpp is 2,3-di-2-pyridylpyrazine, C14H10N4), the PtII ion is four-coordinated in a distorted square-planar environment by two N atoms from the pyrazine ring and one pyridyl ring of the chelating dpp ligand and two bromide anions (Fig. 1). The coordination mode of the dpp ligand is similar to that of a mononuclear Pt(IV) complex [PtCl4(dpp)] (Delir Kheirollahi Nezhad et al., 2008).

The main contribution to the distortion of the square-plane is the tight N1—Pt1—N3 chelate angle of 80.4 (3)°, which results in slightly bent trans axes [Br1—Pt1—N3 = 175.09 (18) and Br2—Pt1—N1 = 176.6 (2)°]. The Pt—N and Pt—Br bond lengths are nearly equivalent, respectively (Table 1). In the crystal, the pyridyl ring coordinated to the Pt atom is located slightly inclined to its carrier pyrazine ring, making a dihedral angle of 14.7 (2)°. On the contrary, the uncoordinated pyridyl ring is considerably inclined to the pyrazine ring with a dihedral angle of 51.9 (3)°. The dihedral angle between the two pyridyl rings is 57.7 (3)°. Two complex molecules are assembled through intermolecular C—H···N hydrogen bonds, forming a dimer-type species (Fig. 2 and Table 2). There are also intramolecular C—H···N and C—H···Br hydrogen bonds (Table 2). The complexes stack in columns along the c axis.

Related literature top

For the crystal structure of [PtCl4(dpp)] (dpp is 2,3-di-2-pyridylpyrazine), see: Delir Kheirollahi Nezhad et al. (2008).

Experimental top

To a solution of K2PtBr4 (0.297 g, 0.500 mmol) in H2O (20 ml) was added 2,3-di-2-pyridylpyrazine (0.117 g, 0.501 mmol) and stirred for 3 h at room temperature. The formed precipitate was separated by filtration, washed with H2O and acetone and dried at 50 °C, to give a redbrown powder (0.133 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from an acetone solution.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. The highest peak (3.12 e Å-3) and the deepest hole (-1.54 e Å-3) in the difference Fourier map are located 0.97 Å and 0.94 Å from the atoms Br1 and Pt1, respectively.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. View of crystal packing of the title complex. Intermolecular hydrogen bonds are drawn as dashed lines.
Dibromido(2,3-di-2-pyridylpyrazine-κ2N1,N2)platinum(II) top
Crystal data top
[PtBr2(C14H10N4)]F(000) = 1080
Mr = 589.14Dx = 2.638 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3431 reflections
a = 8.9084 (11) Åθ = 2.4–27.9°
b = 9.9817 (12) ŵ = 14.84 mm1
c = 16.727 (2) ÅT = 200 K
β = 94.104 (3)°Needle, orange
V = 1483.6 (3) Å30.17 × 0.10 × 0.04 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
3642 independent reflections
Radiation source: fine-focus sealed tube2415 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ϕ and ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1111
Tmin = 0.590, Tmax = 1.000k = 813
10590 measured reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0359P)2]
where P = (Fo2 + 2Fc2)/3
3642 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 3.12 e Å3
0 restraintsΔρmin = 1.54 e Å3
Crystal data top
[PtBr2(C14H10N4)]V = 1483.6 (3) Å3
Mr = 589.14Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.9084 (11) ŵ = 14.84 mm1
b = 9.9817 (12) ÅT = 200 K
c = 16.727 (2) Å0.17 × 0.10 × 0.04 mm
β = 94.104 (3)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3642 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2415 reflections with I > 2σ(I)
Tmin = 0.590, Tmax = 1.000Rint = 0.060
10590 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.01Δρmax = 3.12 e Å3
3642 reflectionsΔρmin = 1.54 e Å3
190 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.63258 (4)0.64063 (4)0.11956 (2)0.02665 (12)
Br10.54983 (11)0.86499 (10)0.08593 (7)0.0451 (3)
Br20.88077 (10)0.72974 (11)0.15395 (6)0.0399 (3)
N10.4307 (7)0.5552 (7)0.0900 (4)0.0237 (16)
N20.1622 (8)0.4208 (8)0.0613 (4)0.0310 (18)
N30.6852 (7)0.4458 (7)0.1435 (4)0.0248 (16)
N40.2993 (8)0.1889 (8)0.1962 (4)0.0299 (17)
C10.4250 (9)0.4200 (9)0.1031 (4)0.0235 (19)
C20.2830 (9)0.3560 (9)0.0921 (5)0.0256 (19)
C30.1765 (9)0.5492 (10)0.0439 (5)0.031 (2)
H30.09340.59480.01760.038*
C40.3059 (9)0.6182 (10)0.0624 (5)0.032 (2)
H40.30730.71270.05550.038*
C50.5715 (10)0.3561 (9)0.1244 (5)0.028 (2)
C60.6014 (9)0.2217 (10)0.1232 (5)0.033 (2)
H60.52370.16000.10730.039*
C70.7453 (11)0.1756 (10)0.1454 (5)0.039 (2)
H70.76770.08270.14390.047*
C80.8532 (11)0.2654 (10)0.1693 (6)0.040 (2)
H80.95050.23520.18810.049*
C90.8223 (10)0.4001 (10)0.1664 (6)0.036 (2)
H90.90040.46220.18100.044*
C100.2543 (8)0.2169 (9)0.1196 (5)0.0259 (19)
C110.1743 (10)0.1274 (9)0.0696 (5)0.033 (2)
H110.14310.15090.01590.040*
C120.1409 (11)0.0019 (11)0.1004 (6)0.043 (3)
H120.08780.06310.06800.052*
C130.1867 (10)0.0253 (10)0.1786 (6)0.040 (2)
H130.16440.10940.20160.048*
C140.2650 (9)0.0699 (10)0.2235 (5)0.032 (2)
H140.29640.04870.27750.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02580 (19)0.0228 (2)0.03144 (19)0.00629 (16)0.00245 (13)0.00065 (17)
Br10.0445 (6)0.0213 (5)0.0690 (7)0.0049 (5)0.0003 (5)0.0012 (5)
Br20.0336 (5)0.0397 (6)0.0459 (5)0.0179 (5)0.0002 (4)0.0005 (5)
N10.024 (4)0.018 (4)0.029 (4)0.007 (3)0.004 (3)0.001 (3)
N20.024 (4)0.036 (5)0.034 (4)0.009 (4)0.005 (3)0.004 (4)
N30.019 (3)0.029 (4)0.026 (3)0.008 (3)0.003 (3)0.002 (3)
N40.027 (4)0.032 (5)0.032 (4)0.009 (3)0.003 (3)0.000 (4)
C10.029 (5)0.025 (5)0.017 (4)0.004 (4)0.005 (3)0.001 (4)
C20.016 (4)0.028 (5)0.033 (4)0.003 (4)0.001 (3)0.004 (4)
C30.022 (4)0.040 (6)0.033 (5)0.001 (4)0.005 (4)0.002 (5)
C40.030 (5)0.031 (6)0.034 (5)0.001 (4)0.001 (4)0.009 (4)
C50.031 (5)0.026 (5)0.026 (4)0.004 (4)0.001 (3)0.001 (4)
C60.023 (5)0.032 (6)0.043 (5)0.005 (4)0.000 (4)0.003 (5)
C70.045 (6)0.026 (6)0.047 (6)0.001 (5)0.011 (5)0.001 (5)
C80.038 (5)0.036 (6)0.047 (6)0.006 (5)0.001 (4)0.016 (5)
C90.026 (5)0.036 (6)0.047 (5)0.009 (4)0.001 (4)0.005 (5)
C100.014 (4)0.030 (5)0.034 (5)0.002 (4)0.002 (3)0.000 (4)
C110.039 (5)0.022 (5)0.038 (5)0.007 (4)0.005 (4)0.007 (5)
C120.044 (6)0.033 (6)0.050 (6)0.004 (5)0.008 (5)0.003 (5)
C130.033 (5)0.034 (6)0.054 (6)0.003 (5)0.004 (5)0.011 (5)
C140.024 (5)0.038 (6)0.033 (5)0.006 (4)0.003 (4)0.010 (5)
Geometric parameters (Å, º) top
Pt1—N12.020 (6)C4—H40.9500
Pt1—N32.033 (8)C5—C61.368 (12)
Pt1—Br12.4116 (11)C6—C71.387 (12)
Pt1—Br22.4142 (10)C6—H60.9500
N1—C41.330 (10)C7—C81.353 (13)
N1—C11.369 (11)C7—H70.9500
N2—C31.323 (11)C8—C91.373 (13)
N2—C21.327 (10)C8—H80.9500
N3—C91.334 (11)C9—H90.9500
N3—C51.372 (11)C10—C111.386 (12)
N4—C141.317 (11)C11—C121.396 (13)
N4—C101.344 (10)C11—H110.9500
C1—C21.417 (11)C12—C131.369 (13)
C1—C51.474 (12)C12—H120.9500
C2—C101.491 (12)C13—C141.370 (13)
C3—C41.360 (12)C13—H130.9500
C3—H30.9500C14—H140.9500
N1—Pt1—N380.4 (3)N3—C5—C1113.6 (8)
N1—Pt1—Br194.7 (2)C5—C6—C7119.9 (9)
N3—Pt1—Br1175.09 (18)C5—C6—H6120.1
N1—Pt1—Br2176.6 (2)C7—C6—H6120.1
N3—Pt1—Br296.39 (18)C8—C7—C6118.9 (9)
Br1—Pt1—Br288.44 (4)C8—C7—H7120.6
C4—N1—C1118.8 (7)C6—C7—H7120.6
C4—N1—Pt1126.3 (6)C7—C8—C9120.1 (9)
C1—N1—Pt1114.8 (5)C7—C8—H8119.9
C3—N2—C2118.0 (7)C9—C8—H8119.9
C9—N3—C5119.3 (8)N3—C9—C8121.5 (9)
C9—N3—Pt1125.2 (6)N3—C9—H9119.3
C5—N3—Pt1115.0 (6)C8—C9—H9119.3
C14—N4—C10117.2 (8)N4—C10—C11123.2 (8)
N1—C1—C2117.8 (8)N4—C10—C2116.2 (8)
N1—C1—C5115.0 (7)C11—C10—C2120.4 (8)
C2—C1—C5127.1 (8)C10—C11—C12118.0 (8)
N2—C2—C1121.5 (8)C10—C11—H11121.0
N2—C2—C10114.9 (7)C12—C11—H11121.0
C1—C2—C10123.4 (7)C13—C12—C11118.3 (9)
N2—C3—C4122.3 (8)C13—C12—H12120.8
N2—C3—H3118.9C11—C12—H12120.8
C4—C3—H3118.9C12—C13—C14119.4 (9)
N1—C4—C3120.9 (9)C12—C13—H13120.3
N1—C4—H4119.6C14—C13—H13120.3
C3—C4—H4119.6N4—C14—C13123.9 (8)
C6—C5—N3120.2 (8)N4—C14—H14118.1
C6—C5—C1126.2 (8)C13—C14—H14118.1
N3—Pt1—N1—C4179.5 (7)Pt1—N3—C5—C19.9 (9)
Br1—Pt1—N1—C40.3 (7)N1—C1—C5—C6164.7 (8)
N3—Pt1—N1—C12.9 (5)C2—C1—C5—C612.9 (14)
Br1—Pt1—N1—C1177.8 (5)N1—C1—C5—N312.5 (10)
N1—Pt1—N3—C9175.8 (7)C2—C1—C5—N3169.9 (7)
Br2—Pt1—N3—C93.0 (7)N3—C5—C6—C73.3 (13)
N1—Pt1—N3—C54.1 (6)C1—C5—C6—C7179.6 (8)
Br2—Pt1—N3—C5174.7 (5)C5—C6—C7—C81.2 (13)
C4—N1—C1—C24.7 (11)C6—C7—C8—C94.2 (14)
Pt1—N1—C1—C2173.1 (5)C5—N3—C9—C81.6 (13)
C4—N1—C1—C5173.1 (7)Pt1—N3—C9—C8169.7 (7)
Pt1—N1—C1—C59.1 (9)C7—C8—C9—N32.9 (14)
C3—N2—C2—C12.7 (12)C14—N4—C10—C110.3 (12)
C3—N2—C2—C10172.7 (7)C14—N4—C10—C2175.0 (7)
N1—C1—C2—N27.8 (12)N2—C2—C10—N4124.7 (8)
C5—C1—C2—N2169.7 (7)C1—C2—C10—N450.6 (11)
N1—C1—C2—C10167.3 (7)N2—C2—C10—C1150.1 (11)
C5—C1—C2—C1015.2 (13)C1—C2—C10—C11134.5 (9)
C2—N2—C3—C45.4 (13)N4—C10—C11—C120.8 (13)
C1—N1—C4—C33.0 (12)C2—C10—C11—C12175.3 (8)
Pt1—N1—C4—C3179.5 (6)C10—C11—C12—C131.1 (14)
N2—C3—C4—N18.5 (13)C11—C12—C13—C140.9 (14)
C9—N3—C5—C64.7 (12)C10—N4—C14—C130.2 (13)
Pt1—N3—C5—C6167.5 (6)C12—C13—C14—N40.5 (15)
C9—N3—C5—C1177.9 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N2i0.952.553.396 (11)148
C4—H4···Br10.952.663.289 (9)124
C6—H6···N40.952.593.051 (11)110
C9—H9···Br20.952.713.340 (10)124
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[PtBr2(C14H10N4)]
Mr589.14
Crystal system, space groupMonoclinic, P21/n
Temperature (K)200
a, b, c (Å)8.9084 (11), 9.9817 (12), 16.727 (2)
β (°) 94.104 (3)
V3)1483.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)14.84
Crystal size (mm)0.17 × 0.10 × 0.04
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.590, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10590, 3642, 2415
Rint0.060
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.099, 1.01
No. of reflections3642
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)3.12, 1.54

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Pt1—N12.020 (6)Pt1—Br12.4116 (11)
Pt1—N32.033 (8)Pt1—Br22.4142 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N2i0.952.553.396 (11)147.9
C4—H4···Br10.952.663.289 (9)124.1
C6—H6···N40.952.593.051 (11)110.0
C9—H9···Br20.952.713.340 (10)124.2
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010–0029626).

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationDelir Kheirollahi Nezhad, P., Azadbakht, F., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m575–m576.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds