metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1310-m1311

A one-dimensional tri­aqua­europium(III)–1H,3H-benzimidazol-3-ium-5,6-di­carboxyl­ate–sulfate polymeric structure

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China, and bKey Laboratory of Technology of Electrochemical Energy Storage and Power Generation in Guangdong Universities, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: zrh321@yahoo.com.cn

(Received 5 August 2011; accepted 21 August 2011; online 27 August 2011)

In the title coordination polymer, catena-poly[[[triaqua­europium(III)]-bis­(μ-1H,3H-benzimidazol-3-ium-5,6-dicarb­oxyl­ato-κ3O5,O5′:O6)-[triaqua­europium(III)]-di-μ-sulfato-κ3O:O,O′;κ3O,O′:O′] hexahydrate], [Eu2(C9H5N2O4)2(SO4)2(H2O)6]·6H2O}n, the 1H,3H-benzimidazol-3-ium-5,6-dicarb­oxy­l­ate ligand is protonated at the imidazole group (H2bdc). The EuIII ion is coordinated by nine O atoms from two H2bdc ligands, two sulfate anions and three water mol­ecules, displaying a bicapped trigonal prismatic geometry. The carboxyl­ate groups of the H2bdc ligands and the sulfate anions link the EuIII ions, forming a chain along [010]. These chains are further connected by N—H⋯O and O—H⋯O hydrogen bonds and ππ inter­actions between the imidazole and benzene rings [centroid–centroid distances = 3.997 (4), 3.829 (4) and 3.573 (4) Å] into a three-dimensional supra­molecular network.

Related literature

For background to 1H-benzimidazole-5,6-dicarboxyl­ate complexes, see: Wang et al. (2010[Wang, Z.-X., Wu, X.-F., Liu, H.-J., Shao, M., Xiao, H.-P. & Li, M.-X. (2010). CrystEngComm, 12, 1139-1146.]); Wei et al. (2008[Wei, Y.-Q., Yu, Y.-F. & Wu, K.-C. (2008). Cryst. Growth Des. 8, 2087-2089.]); Xie et al. (2010[Xie, Y., Xing, Y.-H., Wang, Z., Zhao, H.-Y., Zeng, X.-Q., Ge, M.-F. & Niu, S.-Y. (2010). Inorg. Chim. Acta, 363, 918-924.]); Yao et al. (2008[Yao, Y.-L., Che, Y.-X. & Zheng, J.-M. (2008). Cryst. Growth Des. 8, 2299-2306.]).

[Scheme 1]

Experimental

Crystal data
  • [Eu2(C9H5N2O4)2(SO4)2(H2O)6]·6H2O

  • Mr = 1122.58

  • Triclinic, [P \overline 1]

  • a = 7.1261 (16) Å

  • b = 9.581 (2) Å

  • c = 12.424 (3) Å

  • α = 100.496 (3)°

  • β = 98.060 (3)°

  • γ = 94.979 (3)°

  • V = 820.3 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 4.03 mm−1

  • T = 298 K

  • 0.30 × 0.26 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.310, Tmax = 0.446

  • 4076 measured reflections

  • 2841 independent reflections

  • 2669 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.097

  • S = 1.02

  • 2841 reflections

  • 248 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.82 e Å−3

  • Δρmin = −2.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O4i 0.84 1.90 2.717 (6) 165
O1W—H2W⋯O7ii 0.84 2.24 3.049 (6) 163
O2W—H3W⋯O5ii 0.84 1.96 2.775 (6) 162
O2W—H4W⋯O3iii 0.85 1.85 2.659 (6) 159
O3W—H5W⋯O4Wiii 0.84 2.07 2.810 (6) 146
O3W—H6W⋯O2iv 0.85 2.10 2.864 (6) 149
O4W—H7W⋯O5ii 0.86 2.34 3.045 (6) 139
O4W—H8W⋯O1 0.84 2.04 2.869 (6) 168
O5W—H9W⋯O6W 0.84 2.03 2.864 (8) 171
O5W—H10W⋯O6v 0.84 2.01 2.790 (7) 154
O6W—H11W⋯O6vi 0.84 2.37 3.165 (8) 158
O6W—H12W⋯O5ii 0.85 2.20 2.895 (7) 139
O6W—H12W⋯O1W 0.85 2.46 3.060 (7) 129
N1—H1A⋯O5Wvii 0.86 (8) 1.96 (8) 2.752 (8) 153 (7)
N1—H1A⋯O4Wvii 0.86 (8) 2.48 (8) 2.989 (7) 119 (6)
N2—H2⋯O6Wviii 0.86 1.91 2.734 (7) 161
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z; (iii) -x+1, -y, -z; (iv) -x+2, -y, -z; (v) x, y, z+1; (vi) -x+2, -y+1, -z; (vii) -x+2, -y, -z+1; (viii) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years, research on coordination polymers has made considerable progress in the fields of supramolecular chemistry and crystal engineering, because of their intriguing structural motifs and functional properties, such as molecular adsorption, magnetism and luminescence. Ligands play a key role in the construction of coordination polymers with fascinating topology, intriguing architectures and useful physical-chemical properties. Benzimidazole-5,6-dicarboxylic acid (H3bdc) is a potential bifunctional ligand with carboxylate and N-donor functional groups and has been used to prepare such metal-organic complexes in possession of multidimensional networks and interesting properties (Wang et al., 2010; Wei et al., 2008; Xie et al., 2010; Yao et al., 2008). Recently, we obtained the title coordination polymer, which was synthesized by the hydrothermal reaction of Eu2O3 with H3bdc in an aqueous solution.

The title compound has a polymeric chain architecture. As shown in Fig. 1, the EuIII ion is in a bicapped trigonal-prismatic geometry, defined by nine O atoms from two 1H,3H-benzimidazol-3-ium-5,6-dicarboxylate ligands (H2bdc), which are protonated at the imidazole groups, two sulfate anions and three water molecules. The H2bdc ligands and sulfate anions link the EuIII ions into a chain along [0 1 0] (Fig. 2). The adjacent Eu···Eu separations are 4.272 (4) and 6.663 (5) Å. The Eu—O bond lengths range from 2.376 (4) to 2.610 (4) Å and O—Eu—O bond angles vary from 52.01 (1) to 143.68 (1) °. The chains are further connected by N—H···O and O—H···O hydrogen bonds (Table 1) and ππ interactions between the imidazole and benzene rings [centroid–centroid distances = 3.997 (4), 3.829 (4) and 3.573 (4) Å] into a three-dimensional supramolecular network.

Related literature top

For background to 1H-benzimidazole-5,6-dicarboxylate complexes, see: Wang et al. (2010); Wei et al. (2008); Xie et al. (2010); Yao et al. (2008).

Experimental top

A mixture of Eu2O3 (0.352 g, 1 mmol), H3bdc (0.206 g, 1 mmol), water (10 ml) in the presence of H2SO4 (0.038 g, 0.385 mmol) was stirred vigorously for 30 min and then sealed in a 20 ml Teflon-lined stainless-steel autoclave. The autoclave was heated and maintained at 443 K for 3 days, and then cooled to room temperature at 5 K h-1. Colorless block crystals of the title compound were obtained.

Refinement top

Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O—H = 0.84 and H···H = 1.35 Å, and with Uiso(H) = 1.5Ueq(O). H atoms bound to C and N atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 and N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C, N). H1A atom attached to N1 was refined with Uiso(H) = 0.035 Å2. The highest residual electron density was found at 1.00 Å from Eu1 atom and the deepest hole at 0.97 Å from Eu1 atom.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) 2-x, -y, -z; (ii) 2-x, 1-y, -z.]
[Figure 2] Fig. 2. A view of the chain structure along [0 1 0].
catena-poly[[[triaquaeuropium(III)]-bis(µ-1H,3H-benzimidazol-3-ium-5,6-dicarboxylato-κ3O5,O5':O6)-[triaquaeuropium(III)]-di-µ-sulfato-κ3O:O,O';κ3O,O':O'] hexahydrate] top
Crystal data top
[Eu2(C9H5N2O4)2(SO4)2(H2O)6]·6H2OZ = 1
Mr = 1122.58F(000) = 552
Triclinic, P1Dx = 2.273 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1261 (16) ÅCell parameters from 3240 reflections
b = 9.581 (2) Åθ = 2.5–25.2°
c = 12.424 (3) ŵ = 4.03 mm1
α = 100.496 (3)°T = 298 K
β = 98.060 (3)°Block, colorless
γ = 94.979 (3)°0.30 × 0.26 × 0.20 mm
V = 820.3 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2841 independent reflections
Radiation source: fine-focus sealed tube2669 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 25.2°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 88
Tmin = 0.310, Tmax = 0.446k = 1011
4076 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0656P)2 + 2.2735P]
where P = (Fo2 + 2Fc2)/3
2841 reflections(Δ/σ)max < 0.001
248 parametersΔρmax = 1.82 e Å3
0 restraintsΔρmin = 2.51 e Å3
Crystal data top
[Eu2(C9H5N2O4)2(SO4)2(H2O)6]·6H2Oγ = 94.979 (3)°
Mr = 1122.58V = 820.3 (3) Å3
Triclinic, P1Z = 1
a = 7.1261 (16) ÅMo Kα radiation
b = 9.581 (2) ŵ = 4.03 mm1
c = 12.424 (3) ÅT = 298 K
α = 100.496 (3)°0.30 × 0.26 × 0.20 mm
β = 98.060 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2841 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2669 reflections with I > 2σ(I)
Tmin = 0.310, Tmax = 0.446Rint = 0.024
4076 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 1.82 e Å3
2841 reflectionsΔρmin = 2.51 e Å3
248 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu10.82011 (3)0.30949 (3)0.00038 (2)0.01547 (13)
S30.7557 (2)0.48078 (15)0.19659 (11)0.0178 (3)
O10.8381 (6)0.2686 (5)0.1916 (3)0.0245 (9)
O21.0266 (6)0.1509 (4)0.0920 (3)0.0235 (9)
O70.6411 (6)0.3533 (5)0.1756 (3)0.0255 (9)
O80.9029 (5)0.5245 (4)0.0939 (3)0.0197 (8)
O50.6331 (6)0.5948 (5)0.2072 (3)0.0274 (9)
O60.8483 (7)0.4467 (5)0.2935 (3)0.0286 (10)
N11.3014 (7)0.0260 (6)0.5455 (4)0.0249 (11)
N21.2981 (7)0.2039 (6)0.5675 (4)0.0251 (11)
H21.31740.29320.59790.030*
C10.9614 (8)0.1832 (6)0.1807 (5)0.0190 (12)
C21.0383 (8)0.1201 (6)0.2791 (5)0.0194 (12)
C31.0338 (8)0.0312 (6)0.2662 (4)0.0164 (11)
C51.1219 (8)0.0927 (6)0.3485 (5)0.0198 (12)
H51.12390.19110.33930.024*
C61.2079 (8)0.0005 (6)0.4462 (5)0.0218 (12)
C71.2050 (8)0.1468 (6)0.4603 (5)0.0213 (12)
C81.3518 (9)0.0977 (7)0.6146 (5)0.0274 (14)
H81.41620.10860.68660.033*
C91.1232 (8)0.2109 (6)0.3771 (4)0.0189 (11)
H91.12500.30950.38640.023*
O4W0.5121 (7)0.1310 (5)0.2584 (4)0.0352 (11)
H8W0.60080.16530.22940.053*
H7W0.44570.20090.27360.053*
O6W0.7298 (9)0.5166 (6)0.3452 (4)0.0439 (13)
H11W0.84420.50540.33950.066*
H12W0.66550.47790.28260.09 (4)*
O5W0.6913 (11)0.3173 (6)0.4890 (5)0.0644 (19)
H9W0.69340.38080.45060.097*
H10W0.77100.35590.54530.097*
O3W0.7114 (6)0.0596 (4)0.0781 (4)0.0283 (10)
H5W0.60970.01790.11800.042*
H6W0.77130.00840.06050.042*
O1W0.7080 (6)0.5224 (4)0.0984 (4)0.0266 (9)
H2W0.60110.55040.10510.040*
H1W0.78040.59960.11810.040*
O2W0.4946 (6)0.2615 (5)0.0214 (4)0.0308 (10)
H4W0.41100.19520.01610.046*
H3W0.43460.30630.06780.046*
C40.9079 (8)0.1258 (6)0.1673 (4)0.0179 (11)
O40.9655 (6)0.2426 (4)0.1255 (3)0.0226 (9)
O30.7505 (6)0.0878 (5)0.1382 (4)0.0290 (10)
H1A1.323 (11)0.109 (9)0.557 (6)0.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.01833 (18)0.01343 (19)0.01383 (18)0.00052 (11)0.00124 (11)0.00220 (12)
S30.0222 (7)0.0163 (7)0.0138 (6)0.0006 (5)0.0006 (5)0.0030 (5)
O10.031 (2)0.026 (2)0.018 (2)0.0101 (18)0.0039 (17)0.0053 (17)
O20.032 (2)0.022 (2)0.018 (2)0.0070 (18)0.0074 (17)0.0046 (17)
O70.027 (2)0.021 (2)0.024 (2)0.0095 (17)0.0053 (17)0.0065 (17)
O80.021 (2)0.020 (2)0.0140 (19)0.0041 (16)0.0042 (15)0.0017 (16)
O50.034 (2)0.023 (2)0.024 (2)0.0087 (18)0.0010 (18)0.0051 (18)
O60.042 (3)0.025 (2)0.018 (2)0.0020 (19)0.0083 (18)0.0016 (17)
N10.029 (3)0.027 (3)0.021 (3)0.005 (2)0.004 (2)0.011 (2)
N20.033 (3)0.022 (3)0.016 (2)0.003 (2)0.002 (2)0.001 (2)
C10.026 (3)0.013 (3)0.018 (3)0.001 (2)0.001 (2)0.004 (2)
C20.018 (3)0.020 (3)0.020 (3)0.000 (2)0.004 (2)0.004 (2)
C30.019 (3)0.013 (3)0.017 (3)0.001 (2)0.003 (2)0.002 (2)
C50.024 (3)0.013 (3)0.024 (3)0.002 (2)0.007 (2)0.002 (2)
C60.024 (3)0.022 (3)0.020 (3)0.000 (2)0.005 (2)0.007 (2)
C70.025 (3)0.022 (3)0.015 (3)0.002 (2)0.005 (2)0.002 (2)
C80.028 (3)0.039 (4)0.013 (3)0.001 (3)0.002 (2)0.007 (3)
C90.025 (3)0.015 (3)0.016 (3)0.001 (2)0.005 (2)0.002 (2)
O4W0.035 (2)0.037 (3)0.039 (3)0.003 (2)0.012 (2)0.014 (2)
O6W0.067 (4)0.036 (3)0.024 (3)0.016 (3)0.003 (2)0.002 (2)
O5W0.123 (6)0.031 (3)0.033 (3)0.003 (3)0.006 (3)0.007 (2)
O3W0.030 (2)0.019 (2)0.032 (2)0.0014 (18)0.0022 (18)0.0008 (18)
O1W0.024 (2)0.014 (2)0.043 (3)0.0046 (16)0.0111 (19)0.0037 (18)
O2W0.023 (2)0.035 (3)0.028 (2)0.0041 (18)0.0029 (18)0.0072 (19)
C40.024 (3)0.015 (3)0.015 (3)0.003 (2)0.007 (2)0.002 (2)
O40.030 (2)0.019 (2)0.019 (2)0.0003 (17)0.0081 (17)0.0012 (16)
O30.024 (2)0.025 (2)0.032 (2)0.0055 (18)0.0039 (18)0.0061 (19)
Geometric parameters (Å, º) top
Eu1—O4i2.374 (4)C3—C51.375 (8)
Eu1—O2W2.387 (4)C3—C41.510 (8)
Eu1—O3W2.427 (4)C5—C61.392 (8)
Eu1—O8ii2.434 (4)C5—H50.9300
Eu1—O1W2.439 (4)C6—C71.392 (9)
Eu1—O12.474 (4)C7—C91.381 (8)
Eu1—O22.518 (4)C8—H80.9300
Eu1—O82.607 (4)C9—H90.9300
S3—O61.451 (4)O4W—H8W0.8415
S3—O51.470 (4)O4W—H7W0.8612
S3—O71.493 (4)O6W—H11W0.8423
S3—O81.502 (4)O6W—H12W0.8471
O1—C11.256 (7)O5W—H9W0.8390
O2—C11.252 (7)O5W—H10W0.8403
N1—C81.319 (8)O3W—H5W0.8408
N1—C61.390 (8)O3W—H6W0.8534
N1—H1A0.86 (8)O1W—H2W0.8393
N2—C81.322 (8)O1W—H1W0.8396
N2—C71.392 (7)O2W—H4W0.8507
N2—H20.8600O2W—H3W0.8434
C1—C21.517 (8)C4—O31.235 (7)
C2—C91.387 (8)C4—O41.272 (7)
C2—C31.426 (8)
O4i—Eu1—O2W140.91 (14)C8—N1—C6108.3 (5)
O4i—Eu1—O3W76.22 (15)C8—N1—H1A127 (5)
O2W—Eu1—O3W71.09 (15)C6—N1—H1A124 (5)
O4i—Eu1—O8ii81.63 (13)C8—N2—C7108.3 (5)
O2W—Eu1—O8ii137.26 (14)C8—N2—H2125.8
O3W—Eu1—O8ii143.77 (14)C7—N2—H2125.8
O4i—Eu1—O1W140.46 (14)O2—C1—O1122.2 (5)
O2W—Eu1—O1W69.33 (15)O2—C1—C2118.8 (5)
O3W—Eu1—O1W140.36 (14)O1—C1—C2119.0 (5)
O8ii—Eu1—O1W71.68 (14)C9—C2—C3121.4 (5)
O4i—Eu1—O1126.79 (14)C9—C2—C1119.3 (5)
O2W—Eu1—O175.86 (15)C3—C2—C1119.1 (5)
O3W—Eu1—O192.05 (14)C5—C3—C2121.3 (5)
O8ii—Eu1—O178.65 (13)C5—C3—C4119.1 (5)
O1W—Eu1—O176.39 (14)C2—C3—C4119.1 (5)
O4i—Eu1—O275.47 (14)C3—C5—C6116.7 (5)
O2W—Eu1—O2111.08 (15)C3—C5—H5121.6
O3W—Eu1—O269.40 (14)C6—C5—H5121.6
O8ii—Eu1—O277.54 (13)N1—C6—C5131.7 (6)
O1W—Eu1—O2124.10 (14)N1—C6—C7106.4 (5)
O1—Eu1—O252.20 (13)C5—C6—C7121.8 (5)
O4i—Eu1—O871.41 (13)C9—C7—N2131.6 (6)
O2W—Eu1—O8116.64 (14)C9—C7—C6122.3 (5)
O3W—Eu1—O8131.57 (13)N2—C7—C6106.2 (5)
O8ii—Eu1—O864.15 (14)N1—C8—N2110.7 (5)
O1W—Eu1—O870.87 (13)N1—C8—H8124.6
O1—Eu1—O8136.26 (13)N2—C8—H8124.6
O2—Eu1—O8131.95 (13)C7—C9—C2116.4 (5)
O4i—Eu1—Eu1ii73.90 (10)C7—C9—H9121.8
O2W—Eu1—Eu1ii133.79 (11)C2—C9—H9121.8
O3W—Eu1—Eu1ii149.81 (11)H8W—O4W—H7W104.3
O8ii—Eu1—Eu1ii33.30 (9)H11W—O6W—H12W105.6
O1W—Eu1—Eu1ii67.72 (10)H9W—O5W—H10W101.4
O1—Eu1—Eu1ii109.19 (10)Eu1—O3W—H5W132.6
O2—Eu1—Eu1ii106.55 (10)Eu1—O3W—H6W122.9
O8—Eu1—Eu1ii30.84 (8)H5W—O3W—H6W104.1
O6—S3—O5111.0 (3)Eu1—O1W—H2W135.5
O6—S3—O7112.3 (3)Eu1—O1W—H1W120.5
O5—S3—O7109.6 (3)H2W—O1W—H1W101.5
O6—S3—O8110.1 (3)Eu1—O2W—H4W128.4
O5—S3—O8110.2 (2)Eu1—O2W—H3W128.4
O7—S3—O8103.5 (2)H4W—O2W—H3W103.2
C1—O1—Eu193.8 (3)O3—C4—O4125.0 (5)
C1—O2—Eu191.8 (3)O3—C4—C3116.9 (5)
S3—O8—Eu1ii146.0 (2)O4—C4—C3117.9 (5)
S3—O8—Eu197.84 (18)C4—O4—Eu1i135.3 (4)
Eu1ii—O8—Eu1115.85 (14)
Symmetry codes: (i) x+2, y, z; (ii) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O4iii0.841.902.717 (6)165
O1W—H2W···O7iv0.842.243.049 (6)163
O2W—H3W···O5iv0.841.962.775 (6)162
O2W—H4W···O3v0.851.852.659 (6)159
O3W—H5W···O4Wv0.842.072.810 (6)146
O3W—H6W···O2i0.852.102.864 (6)149
O4W—H7W···O5iv0.862.343.045 (6)139
O4W—H8W···O10.842.042.869 (6)168
O5W—H9W···O6W0.842.032.864 (8)171
O5W—H10W···O6vi0.842.012.790 (7)154
O6W—H11W···O6ii0.842.373.165 (8)158
O6W—H12W···O5iv0.852.202.895 (7)139
O6W—H12W···O1W0.852.463.060 (7)129
N1—H1A···O5Wvii0.86 (8)1.96 (8)2.752 (8)153 (7)
N1—H1A···O4Wvii0.86 (8)2.48 (8)2.989 (7)119 (6)
N2—H2···O6Wviii0.861.912.734 (7)161
Symmetry codes: (i) x+2, y, z; (ii) x+2, y+1, z; (iii) x, y+1, z; (iv) x+1, y+1, z; (v) x+1, y, z; (vi) x, y, z+1; (vii) x+2, y, z+1; (viii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Eu2(C9H5N2O4)2(SO4)2(H2O)6]·6H2O
Mr1122.58
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.1261 (16), 9.581 (2), 12.424 (3)
α, β, γ (°)100.496 (3), 98.060 (3), 94.979 (3)
V3)820.3 (3)
Z1
Radiation typeMo Kα
µ (mm1)4.03
Crystal size (mm)0.30 × 0.26 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.310, 0.446
No. of measured, independent and
observed [I > 2σ(I)] reflections
4076, 2841, 2669
Rint0.024
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.097, 1.02
No. of reflections2841
No. of parameters248
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.82, 2.51

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O4i0.841.902.717 (6)165
O1W—H2W···O7ii0.842.243.049 (6)163
O2W—H3W···O5ii0.841.962.775 (6)162
O2W—H4W···O3iii0.851.852.659 (6)159
O3W—H5W···O4Wiii0.842.072.810 (6)146
O3W—H6W···O2iv0.852.102.864 (6)149
O4W—H7W···O5ii0.862.343.045 (6)139
O4W—H8W···O10.842.042.869 (6)168
O5W—H9W···O6W0.842.032.864 (8)171
O5W—H10W···O6v0.842.012.790 (7)154
O6W—H11W···O6vi0.842.373.165 (8)158
O6W—H12W···O5ii0.852.202.895 (7)139
O6W—H12W···O1W0.852.463.060 (7)129
N1—H1A···O5Wvii0.86 (8)1.96 (8)2.752 (8)153 (7)
N1—H1A···O4Wvii0.86 (8)2.48 (8)2.989 (7)119 (6)
N2—H2···O6Wviii0.861.912.734 (7)161
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x+2, y, z; (v) x, y, z+1; (vi) x+2, y+1, z; (vii) x+2, y, z+1; (viii) x+2, y+1, z+1.
 

Acknowledgements

The authors acknowledge the Undergraduates' Innovating Experimentation Project of Guangdong Province, the Undergraduates' Innovating Experimentation Project of South China Normal University and the Students' Extracurricular Scientific Research Project of South China Normal University for supporting this work.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z.-X., Wu, X.-F., Liu, H.-J., Shao, M., Xiao, H.-P. & Li, M.-X. (2010). CrystEngComm, 12, 1139–1146.  Google Scholar
First citationWei, Y.-Q., Yu, Y.-F. & Wu, K.-C. (2008). Cryst. Growth Des. 8, 2087–2089.  Web of Science CrossRef CAS Google Scholar
First citationXie, Y., Xing, Y.-H., Wang, Z., Zhao, H.-Y., Zeng, X.-Q., Ge, M.-F. & Niu, S.-Y. (2010). Inorg. Chim. Acta, 363, 918–924.  Google Scholar
First citationYao, Y.-L., Che, Y.-X. & Zheng, J.-M. (2008). Cryst. Growth Des. 8, 2299–2306.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1310-m1311
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds