metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1294-m1295

catena-Poly[[[tri­aqua­europium(III)]-μ-(1H-benzimidazole-5,6-di­carboxyl­ato-κ2O5:O6)-μ-(1H,3H-benzimidazol-3-ium-5,6-di­carboxyl­ato-κ3O5:O6,O6′)] dihydrate]

aSchool of Chemistry and the Environment, South China Normal University, Guangzhou 510006, People's Republic of China, and bKey Laboratory of Technology on Electrochemical Energy Storage and Power Generation in Guangdong Universities, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: zrh321@yahoo.com.cn

(Received 11 August 2011; accepted 17 August 2011; online 27 August 2011)

In the title one-dimensional coordination polymer, {[Eu(C9H4N2O4)(C9H5N2O4)(H2O)3]·2H2O}n, one of the 1H-benzimidazole-5,6-dicarboxyl­ate (Hbdc) ligands is protonated at the imidazole group (H2bdc). The EuIII ion is eight-coordinated by two O atoms from two Hbdc ligands, three O atoms from two H2bdc ligands and three water mol­ecules, showing a distorted square-anti­prismatic geometry. The EuIII ions are bridged by the carboxyl­ate groups of the Hbdc and H2bdc ligands, forming a chain along [110], with an Eu⋯Eu separation of 5.4594 (3) Å. These chains are further connected by inter­molecular O—H⋯O, N—H⋯O and N—H⋯N hydrogen bonds, as well as ππ inter­actions between the imidazole and benzene rings [centroid–centroid distances = 3.558 (3), 3.906 (2), 3.397 (3), 3.796 (2) and 3.898 (2) Å], into a three-dimensional supra­molecular network.

Related literature

For background to 1H-benzimidazole-5,6-dicarboxyl­ate complexes, see: Fu et al. (2009[Fu, J.-D., Tang, Z.-W., Yuan, M.-Y. & Wen, Y.-H. (2009). Acta Cryst. E65, m1657.]); Huang et al. (2009[Huang, J.-X., Wu, Y.-Y., Huang, C.-D., Lian, Q.-Y. & Zeng, R.-H. (2009). Acta Cryst. E65, m1566-m1567.]); Pan et al. (2010[Pan, Z.-Y., Chen, J.-H., Lin, J.-F., Xu, X. & Luo, Y.-F. (2010). Acta Cryst. E66, m1302.]); Wei et al. (2009[Wei, Y.-Q., Yu, Y.-F., Sa, R.-J., Li, Q.-H. & Wu, K.-C. (2009). CrystEngComm, 11, 1054-1060.]); Yao et al. (2008[Yao, Y.-L., Che, Y.-X. & Zheng, J.-M. (2008). Cryst. Growth Des. 8, 2299-2306.]).

[Scheme 1]

Experimental

Crystal data
  • [Eu(C9H4N2O4)(C9H5N2O4)(H2O)3]·2H2O

  • Mr = 651.33

  • Triclinic, [P \overline 1]

  • a = 8.4530 (4) Å

  • b = 10.9757 (6) Å

  • c = 12.7124 (7) Å

  • α = 112.112 (1)°

  • β = 91.614 (1)°

  • γ = 104.453 (1)°

  • V = 1048.25 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.08 mm−1

  • T = 298 K

  • 0.24 × 0.22 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.526, Tmax = 0.578

  • 5435 measured reflections

  • 3711 independent reflections

  • 3454 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.057

  • S = 1.04

  • 3711 reflections

  • 328 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O1 0.85 1.95 2.727 (4) 152
O1W—H1WB⋯O4i 0.85 1.93 2.709 (4) 152
O2W—H2WA⋯O8 0.85 1.89 2.687 (4) 155
O2W—H2WB⋯O4W 0.85 2.23 2.608 (5) 107
O3W—H3WA⋯O7ii 0.85 2.01 2.815 (4) 159
O3W—H3WB⋯O5Wii 0.85 1.96 2.685 (4) 142
O4W—H4WA⋯O2iii 0.85 2.19 2.968 (4) 153
O4W—H4WB⋯O1Wiv 0.85 2.49 3.022 (4) 122
O4W—H4WB⋯O4iii 0.85 2.37 3.151 (4) 153
O5W—H5WA⋯O5 0.85 1.97 2.815 (4) 172
O5W—H5WB⋯O4v 0.85 1.99 2.757 (4) 150
N1—H1⋯O1vi 0.86 2.06 2.900 (4) 165
N3—H3A⋯N2vii 0.86 1.88 2.725 (5) 168
N4—H4⋯O6viii 0.86 1.98 2.750 (4) 148
Symmetry codes: (i) -x, -y, -z; (ii) x-1, y, z; (iii) -x, -y+1, -z; (iv) -x+1, -y+1, -z; (v) x+1, y, z; (vi) -x, -y, -z-1; (vii) x+2, y+1, z+1; (viii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

There is currently much interest in employing N-heterocyclic carboxylic acids as multidentate ligands to design metal coordination polymers with intriguing structures and potential applications. Particular attention has been paid to 1H-benzimidazole-5,6-dicarboxylic acid (H3bdc) ligand. It has rich coordination sites (two N atoms and four O atoms) and can be partially or fully deprotonated to produce [H2bdc]-, [Hbdc]2- and [bdc]3- anions at different pH values. Thus, H3bdc can potentially afford different coordination modes in multicoordinated ways with transition metal ions (Fu et al., 2009; Wei et al., 2009) or rare earth metal ions (Huang et al., 2009; Pan et al., 2010; Yao et al., 2008) to form metal coordination polymers with various structures and interesting properties. In this paper, we report the crystal structure of the title compound, which was synthesized under hydrothermal conditions.

As shown in Fig. 1, the title compound has two forms of the ligands, [Hbdc]2- and [H2bdc]- anions, and the latter is protonated at the imidazole group. The EuIII ion is eight-coordinated by five O atoms from two Hbdc and two H2bdc ligands and by three water molecules. The coordination geometry around the EuIII ion can be described as distorted square-antiprismatic, with Eu—O bond lengths ranging from 2.343 (2) to 2.656 (3) Å and O—Eu—O bond angles varying from 68.99 (9) to 156.77 (9)°. In the crystal, the EuIII ions are alternately bridged by the carboxylate groups of the Hbdc and H2bdc ligands, forming chains along [1 1 0] (Fig. 2). These chains are further connected by intermolecular O—H···O, N—H···O and N—H···N hydrogen bonds (Table 1), as well as ππ interactions between the imidazole and benzene rings [centroid–centroid distances = 3.558 (3), 3.906 (2), 3.397 (3), 3.796 (2) and 3.898 (2) Å], into a three-dimensional supramolecular network (Fig. 3).

Related literature top

For background to 1H-benzimidazole-5,6-dicarboxylate complexes, see: Fu et al. (2009); Huang et al. (2009); Pan et al. (2010); Wei et al. (2009); Yao et al. (2008).

Experimental top

A mixture of Eu2O3 (0.352 g, 1 mmol), H3bdc (0.206 g, 1 mmol), water (10 ml) in the presence of HClO4 (0.039 g, 0.385 mmol) was stirred vigorously for 30 min and then sealed in a 20 ml Teflon-lined stainless-steel autoclave. The autoclave was heated and maintained at 443 K for 3 days, and then cooled to room temperature at 5K h-1. Colorless block crystals of the title compound were obtained.

Refinement top

Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O–H = 0.85 and H···H = 1.35 Å and with Uiso(H) = 1.5Ueq(O). H atoms of the ligands were positioned geometrically and refined as riding atoms, with C—H = 0.93 and N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: (i) 1-x, 1-y, -z; (ii) -x, -y, -z.]
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the chain structure extending along [1 1 0].
[Figure 3] Fig. 3. The crystal packing of the title compound, showing the three-dimensional supramolecular network. Hydrogen bonds are shown as dashed lines.
catena-Poly[[[triaquaeuropium(III)]-µ-(1H- benzimidazole-5,6-dicarboxylato-κ2O5:O6)-µ- (1H,3H-benzimidazol-3-ium-5,6-dicarboxylato- κ3O5:O6,O6')] dihydrate] top
Crystal data top
[Eu(C9H4N2O4)(C9H5N2O4)(H2O)3]·2H2OZ = 2
Mr = 651.33F(000) = 644
Triclinic, P1Dx = 2.064 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4530 (4) ÅCell parameters from 3764 reflections
b = 10.9757 (6) Åθ = 2.8–25.2°
c = 12.7124 (7) ŵ = 3.08 mm1
α = 112.112 (1)°T = 298 K
β = 91.614 (1)°Block, colorless
γ = 104.453 (1)°0.24 × 0.22 × 0.20 mm
V = 1048.25 (10) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3711 independent reflections
Radiation source: fine-focus sealed tube3454 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 25.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.526, Tmax = 0.578k = 137
5435 measured reflectionsl = 1315
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0269P)2 + 1.5288P]
where P = (Fo2 + 2Fc2)/3
3711 reflections(Δ/σ)max = 0.001
328 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Eu(C9H4N2O4)(C9H5N2O4)(H2O)3]·2H2Oγ = 104.453 (1)°
Mr = 651.33V = 1048.25 (10) Å3
Triclinic, P1Z = 2
a = 8.4530 (4) ÅMo Kα radiation
b = 10.9757 (6) ŵ = 3.08 mm1
c = 12.7124 (7) ÅT = 298 K
α = 112.112 (1)°0.24 × 0.22 × 0.20 mm
β = 91.614 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3711 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3454 reflections with I > 2σ(I)
Tmin = 0.526, Tmax = 0.578Rint = 0.016
5435 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.057H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.63 e Å3
3711 reflectionsΔρmin = 0.67 e Å3
328 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0343 (4)0.0408 (4)0.2244 (3)0.0189 (8)
C20.1313 (4)0.0377 (4)0.2964 (3)0.0187 (8)
C30.1457 (5)0.0513 (4)0.4085 (3)0.0244 (9)
H30.051 (5)0.019 (4)0.434 (3)0.029*
C40.3019 (5)0.1056 (4)0.4725 (3)0.0232 (8)
C50.5240 (5)0.1795 (4)0.5977 (3)0.0299 (9)
H50.59150.20330.66550.036*
C60.4412 (4)0.1460 (4)0.4248 (3)0.0213 (8)
C70.4269 (4)0.1359 (4)0.3119 (3)0.0210 (8)
H70.51960.16420.28010.025*
C80.2722 (4)0.0831 (4)0.2488 (3)0.0171 (7)
C90.2606 (4)0.0819 (4)0.1297 (3)0.0185 (8)
C100.5024 (4)0.4467 (4)0.2501 (3)0.0198 (8)
C110.6702 (4)0.5243 (4)0.3216 (3)0.0174 (7)
C120.6891 (4)0.5302 (4)0.4319 (3)0.0219 (8)
H120.60190.48830.46090.026*
C130.8420 (4)0.6003 (4)0.4979 (3)0.0198 (8)
C141.0585 (5)0.7001 (4)0.6311 (3)0.0271 (9)
H141.12470.73340.70120.033*
C150.9760 (4)0.6562 (4)0.4530 (3)0.0190 (8)
C160.9601 (4)0.6502 (4)0.3422 (3)0.0198 (8)
H161.05010.68690.31220.024*
C170.8053 (4)0.5876 (4)0.2777 (3)0.0174 (7)
C180.7878 (4)0.6050 (4)0.1667 (3)0.0174 (7)
Eu10.24165 (2)0.308010 (18)0.021383 (14)0.01508 (7)
N10.3591 (4)0.1283 (4)0.5833 (3)0.0302 (8)
H10.30030.11260.63340.036*
N20.5797 (4)0.1922 (4)0.5056 (3)0.0271 (8)
N31.1094 (4)0.7157 (3)0.5386 (3)0.0239 (7)
H3A1.20810.75560.53260.029*
N40.8992 (4)0.6303 (3)0.6108 (3)0.0248 (7)
H40.84220.60800.65910.030*
O10.1619 (3)0.0246 (3)0.2694 (2)0.0282 (6)
O20.0329 (3)0.1254 (3)0.1235 (2)0.0218 (6)
O30.1766 (3)0.1539 (3)0.1112 (2)0.0232 (6)
O40.3436 (3)0.0182 (3)0.0613 (2)0.0286 (6)
O50.5008 (3)0.3761 (3)0.1434 (2)0.0233 (6)
O60.3781 (3)0.4550 (3)0.2988 (3)0.0357 (7)
O70.8941 (3)0.5849 (3)0.1007 (2)0.0251 (6)
O80.6729 (3)0.6529 (3)0.1488 (2)0.0217 (6)
O1W0.3986 (3)0.1495 (3)0.0826 (2)0.0225 (6)
H1WA0.34690.09360.14810.027*
H1WB0.41220.10320.04420.027*
O2W0.3436 (3)0.5492 (3)0.1002 (3)0.0327 (7)
H2WA0.44040.59070.13610.039*
H2WB0.32950.58150.05060.039*
O3W0.0181 (3)0.3743 (3)0.1123 (2)0.0277 (6)
H3WA0.00360.44980.12570.033*
H3WB0.04560.33220.14590.033*
O4W0.2568 (4)0.7730 (3)0.1413 (3)0.0389 (7)
H4WA0.15770.77720.13980.047*
H4WB0.31400.83820.12590.047*
O5W0.7262 (3)0.2225 (3)0.1315 (2)0.0302 (6)
H5WA0.66210.27060.13000.036*
H5WB0.72620.16860.06280.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0164 (18)0.0202 (19)0.0207 (19)0.0007 (15)0.0012 (14)0.0129 (16)
C20.0184 (18)0.0187 (19)0.0173 (18)0.0028 (15)0.0028 (14)0.0067 (15)
C30.0187 (19)0.033 (2)0.0191 (19)0.0015 (17)0.0035 (15)0.0109 (17)
C40.0226 (19)0.032 (2)0.0153 (18)0.0067 (17)0.0029 (15)0.0101 (16)
C50.025 (2)0.041 (3)0.019 (2)0.0059 (18)0.0054 (16)0.0098 (18)
C60.0217 (19)0.022 (2)0.0167 (18)0.0034 (16)0.0014 (14)0.0063 (15)
C70.0173 (18)0.025 (2)0.0215 (19)0.0038 (16)0.0048 (15)0.0121 (16)
C80.0197 (18)0.0151 (18)0.0170 (18)0.0041 (14)0.0004 (14)0.0077 (15)
C90.0188 (18)0.0167 (18)0.0170 (18)0.0018 (15)0.0015 (14)0.0080 (15)
C100.0157 (18)0.0199 (19)0.023 (2)0.0002 (15)0.0022 (15)0.0109 (16)
C110.0139 (17)0.0192 (19)0.0152 (17)0.0018 (14)0.0015 (13)0.0046 (15)
C120.0168 (18)0.026 (2)0.023 (2)0.0023 (16)0.0042 (15)0.0119 (17)
C130.0201 (18)0.025 (2)0.0155 (18)0.0077 (16)0.0029 (14)0.0082 (16)
C140.029 (2)0.028 (2)0.018 (2)0.0055 (18)0.0055 (16)0.0060 (17)
C150.0159 (17)0.0169 (19)0.0201 (19)0.0034 (15)0.0010 (14)0.0038 (15)
C160.0170 (18)0.0217 (19)0.0204 (19)0.0017 (15)0.0030 (14)0.0102 (16)
C170.0189 (18)0.0171 (18)0.0168 (18)0.0042 (15)0.0017 (14)0.0080 (15)
C180.0144 (17)0.0149 (18)0.0190 (18)0.0025 (14)0.0023 (14)0.0071 (15)
Eu10.01417 (10)0.01681 (11)0.01459 (10)0.00295 (7)0.00063 (6)0.00757 (7)
N10.0256 (18)0.049 (2)0.0148 (16)0.0055 (16)0.0020 (13)0.0141 (16)
N20.0207 (16)0.035 (2)0.0213 (17)0.0029 (15)0.0044 (13)0.0102 (15)
N30.0139 (15)0.0304 (19)0.0211 (17)0.0001 (13)0.0064 (12)0.0079 (14)
N40.0252 (17)0.0329 (19)0.0171 (16)0.0051 (15)0.0009 (13)0.0129 (15)
O10.0166 (13)0.0372 (17)0.0244 (14)0.0037 (12)0.0034 (11)0.0075 (13)
O20.0195 (13)0.0199 (14)0.0184 (13)0.0001 (11)0.0002 (10)0.0032 (11)
O30.0231 (14)0.0250 (14)0.0281 (14)0.0046 (11)0.0029 (11)0.0191 (12)
O40.0384 (16)0.0338 (16)0.0204 (14)0.0179 (13)0.0094 (12)0.0128 (12)
O50.0226 (13)0.0224 (14)0.0220 (14)0.0039 (11)0.0043 (11)0.0077 (12)
O60.0157 (14)0.052 (2)0.0389 (17)0.0044 (13)0.0067 (12)0.0197 (15)
O70.0228 (14)0.0356 (16)0.0224 (14)0.0111 (12)0.0055 (11)0.0155 (12)
O80.0192 (13)0.0260 (14)0.0260 (14)0.0080 (11)0.0040 (10)0.0160 (12)
O1W0.0239 (14)0.0249 (14)0.0194 (13)0.0065 (11)0.0000 (10)0.0099 (11)
O2W0.0279 (15)0.0213 (15)0.0426 (18)0.0016 (12)0.0120 (13)0.0103 (13)
O3W0.0262 (14)0.0305 (16)0.0355 (16)0.0138 (12)0.0128 (12)0.0187 (13)
O4W0.0299 (16)0.0295 (17)0.061 (2)0.0109 (13)0.0063 (14)0.0200 (15)
O5W0.0301 (15)0.0324 (16)0.0254 (15)0.0093 (13)0.0014 (12)0.0084 (13)
Geometric parameters (Å, º) top
C1—O11.256 (4)C14—H140.9300
C1—O21.272 (4)C15—N31.382 (4)
C1—C21.507 (5)C15—C161.386 (5)
C2—C31.374 (5)C16—C171.387 (5)
C2—C81.416 (5)C16—H160.9300
C3—C41.394 (5)C17—C181.502 (5)
C3—H30.91 (4)C18—O71.249 (4)
C4—N11.385 (5)C18—O81.267 (4)
C4—C61.391 (5)Eu1—O3i2.344 (2)
C5—N21.318 (5)Eu1—O2W2.360 (3)
C5—N11.345 (5)Eu1—O3W2.369 (3)
C5—H50.9300Eu1—O22.407 (2)
C6—N21.388 (5)Eu1—O52.425 (2)
C6—C71.396 (5)Eu1—O8ii2.453 (2)
C7—C81.379 (5)Eu1—O1W2.460 (2)
C7—H70.9300Eu1—O7ii2.656 (3)
C8—C91.509 (5)N1—H10.8600
C9—O41.248 (4)N3—H3A0.8600
C9—O31.263 (4)N4—H40.8600
C10—O61.239 (4)O1W—H1WA0.8500
C10—O51.282 (4)O1W—H1WB0.8500
C10—C111.518 (5)O2W—H2WA0.8500
C11—C121.382 (5)O2W—H2WB0.8498
C11—C171.424 (5)O3W—H3WA0.8500
C12—C131.387 (5)O3W—H3WB0.8500
C12—H120.9300O4W—H4WA0.8500
C13—N41.388 (5)O4W—H4WB0.8500
C13—C151.393 (5)O5W—H5WA0.8499
C14—N31.319 (5)O5W—H5WB0.8500
C14—N41.335 (5)
O1—C1—O2125.0 (3)O2W—Eu1—O570.78 (9)
O1—C1—C2118.5 (3)O3W—Eu1—O5116.75 (9)
O2—C1—C2116.3 (3)O2—Eu1—O5147.35 (9)
C3—C2—C8120.3 (3)O3i—Eu1—O8ii147.47 (9)
C3—C2—C1117.4 (3)O2W—Eu1—O8ii79.57 (10)
C8—C2—C1122.0 (3)O3W—Eu1—O8ii123.60 (9)
C2—C3—C4118.8 (3)O2—Eu1—O8ii80.30 (8)
C2—C3—H3116 (3)O5—Eu1—O8ii103.24 (8)
C4—C3—H3125 (3)O3i—Eu1—O1W81.33 (9)
N1—C4—C6105.6 (3)O2W—Eu1—O1W124.88 (9)
N1—C4—C3133.3 (3)O3W—Eu1—O1W156.77 (9)
C6—C4—C3121.0 (3)O2—Eu1—O1W77.56 (8)
N2—C5—N1112.8 (3)O5—Eu1—O1W73.73 (8)
N2—C5—H5123.6O8ii—Eu1—O1W69.16 (8)
N1—C5—H5123.6O3i—Eu1—O7ii142.44 (8)
N2—C6—C4109.1 (3)O2W—Eu1—O7ii68.99 (9)
N2—C6—C7130.4 (3)O3W—Eu1—O7ii72.82 (8)
C4—C6—C7120.5 (3)O2—Eu1—O7ii71.98 (9)
C8—C7—C6118.5 (3)O5—Eu1—O7ii135.26 (8)
C8—C7—H7120.8O8ii—Eu1—O7ii50.84 (8)
C6—C7—H7120.8O1W—Eu1—O7ii115.56 (8)
C7—C8—C2120.9 (3)O3i—Eu1—C18ii154.10 (9)
C7—C8—C9116.8 (3)O2W—Eu1—C18ii73.39 (10)
C2—C8—C9122.2 (3)O3W—Eu1—C18ii98.19 (10)
O4—C9—O3125.9 (3)O2—Eu1—C18ii73.86 (9)
O4—C9—C8117.4 (3)O5—Eu1—C18ii121.97 (9)
O3—C9—C8116.5 (3)O8ii—Eu1—C18ii25.48 (9)
O6—C10—O5125.0 (3)O1W—Eu1—C18ii92.14 (9)
O6—C10—C11118.1 (3)O7ii—Eu1—C18ii25.38 (9)
O5—C10—C11116.9 (3)O3i—Eu1—H2WB146.1
C12—C11—C17120.4 (3)O2W—Eu1—H2WB16.6
C12—C11—C10117.4 (3)O3W—Eu1—H2WB80.6
C17—C11—C10122.2 (3)O2—Eu1—H2WB125.6
C11—C12—C13118.0 (3)O5—Eu1—H2WB83.6
C11—C12—H12121.0O8ii—Eu1—H2WB65.6
C13—C12—H12121.0O1W—Eu1—H2WB122.2
C12—C13—N4132.5 (3)O7ii—Eu1—H2WB53.7
C12—C13—C15121.4 (3)C18ii—Eu1—H2WB56.9
N4—C13—C15106.1 (3)C5—N1—C4107.0 (3)
N3—C14—N4111.0 (3)C5—N1—H1126.5
N3—C14—H14124.5C4—N1—H1126.5
N4—C14—H14124.5C5—N2—C6105.5 (3)
N3—C15—C16131.3 (3)C14—N3—C15107.8 (3)
N3—C15—C13107.3 (3)C14—N3—H3A126.1
C16—C15—C13121.4 (3)C15—N3—H3A126.1
C15—C16—C17117.6 (3)C14—N4—C13107.8 (3)
C15—C16—H16121.2C14—N4—H4126.1
C17—C16—H16121.2C13—N4—H4126.1
C16—C17—C11121.0 (3)C1—O2—Eu1133.9 (2)
C16—C17—C18115.4 (3)C9—O3—Eu1i129.4 (2)
C11—C17—C18123.3 (3)C10—O5—Eu1116.1 (2)
O7—C18—O8122.0 (3)C18—O7—Eu1ii88.9 (2)
O7—C18—C17119.8 (3)C18—O8—Eu1ii98.1 (2)
O8—C18—C17117.8 (3)Eu1—O1W—H1WA111.5
O7—C18—Eu1ii65.67 (19)Eu1—O1W—H1WB108.5
O8—C18—Eu1ii56.45 (17)H1WA—O1W—H1WB107.7
C17—C18—Eu1ii169.2 (2)Eu1—O2W—H2WA122.2
O3i—Eu1—O2W130.52 (10)Eu1—O2W—H2WB111.0
O3i—Eu1—O3W80.33 (9)H2WA—O2W—H2WB107.7
O2W—Eu1—O3W78.17 (10)Eu1—O3W—H3WA125.9
O3i—Eu1—O280.26 (9)Eu1—O3W—H3WB125.9
O2W—Eu1—O2140.57 (9)H3WA—O3W—H3WB107.7
O3W—Eu1—O285.39 (9)H4WA—O4W—H4WB107.7
O3i—Eu1—O580.37 (9)H5WA—O5W—H5WB107.7
O1—C1—C2—C339.6 (5)C16—C17—C18—O747.4 (5)
O2—C1—C2—C3136.4 (4)C11—C17—C18—O7139.2 (4)
O1—C1—C2—C8147.3 (4)C16—C17—C18—O8125.8 (4)
O2—C1—C2—C836.7 (5)C11—C17—C18—O847.7 (5)
C8—C2—C3—C42.4 (6)C16—C17—C18—Eu1ii70.7 (14)
C1—C2—C3—C4170.8 (4)C11—C17—C18—Eu1ii102.8 (12)
C2—C3—C4—N1177.5 (4)N2—C5—N1—C40.0 (5)
C2—C3—C4—C60.2 (6)C6—C4—N1—C50.0 (5)
N1—C4—C6—N20.0 (4)C3—C4—N1—C5178.0 (5)
C3—C4—C6—N2178.3 (4)N1—C5—N2—C60.0 (5)
N1—C4—C6—C7179.8 (4)C4—C6—N2—C50.0 (5)
C3—C4—C6—C71.5 (6)C7—C6—N2—C5179.7 (4)
N2—C6—C7—C8178.7 (4)N4—C14—N3—C151.6 (5)
C4—C6—C7—C81.0 (6)C16—C15—N3—C14176.2 (4)
C6—C7—C8—C21.1 (5)C13—C15—N3—C141.6 (4)
C6—C7—C8—C9176.4 (3)N3—C14—N4—C131.0 (5)
C3—C2—C8—C72.9 (6)C12—C13—N4—C14179.4 (4)
C1—C2—C8—C7170.0 (3)C15—C13—N4—C140.0 (4)
C3—C2—C8—C9174.5 (4)O1—C1—O2—Eu18.7 (6)
C1—C2—C8—C912.6 (5)C2—C1—O2—Eu1166.9 (2)
C7—C8—C9—O458.4 (5)O3i—Eu1—O2—C1112.6 (3)
C2—C8—C9—O4124.1 (4)O2W—Eu1—O2—C1101.4 (3)
C7—C8—C9—O3116.7 (4)O3W—Eu1—O2—C1166.5 (3)
C2—C8—C9—O360.7 (5)O5—Eu1—O2—C158.2 (4)
O6—C10—C11—C1237.3 (5)O8ii—Eu1—O2—C141.2 (3)
O5—C10—C11—C12142.0 (4)O1W—Eu1—O2—C129.4 (3)
O6—C10—C11—C17143.7 (4)O7ii—Eu1—O2—C193.1 (3)
O5—C10—C11—C1737.0 (5)C18ii—Eu1—O2—C166.6 (3)
C17—C11—C12—C130.7 (6)O4—C9—O3—Eu1i41.5 (5)
C10—C11—C12—C13179.8 (3)C8—C9—O3—Eu1i133.1 (3)
C11—C12—C13—N4176.6 (4)O6—C10—O5—Eu117.8 (5)
C11—C12—C13—C154.0 (6)C11—C10—O5—Eu1163.0 (2)
C12—C13—C15—N3178.6 (3)O3i—Eu1—O5—C1075.4 (2)
N4—C13—C15—N31.0 (4)O2W—Eu1—O5—C1063.8 (2)
C12—C13—C15—C163.4 (6)O3W—Eu1—O5—C101.4 (3)
N4—C13—C15—C16177.1 (3)O2—Eu1—O5—C10129.7 (2)
N3—C15—C16—C17176.9 (4)O8ii—Eu1—O5—C10137.6 (2)
C13—C15—C16—C170.6 (5)O1W—Eu1—O5—C10159.1 (3)
C15—C16—C17—C113.8 (5)O7ii—Eu1—O5—C1090.8 (3)
C15—C16—C17—C18169.9 (3)C18ii—Eu1—O5—C10118.8 (2)
C12—C11—C17—C163.2 (6)O8—C18—O7—Eu1ii3.3 (3)
C10—C11—C17—C16175.8 (3)C17—C18—O7—Eu1ii169.6 (3)
C12—C11—C17—C18169.9 (3)O7—C18—O8—Eu1ii3.6 (4)
C10—C11—C17—C1811.1 (5)C17—C18—O8—Eu1ii169.4 (3)
Symmetry codes: (i) x, y, z; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O10.851.952.727 (4)152
O1W—H1WB···O4i0.851.932.709 (4)152
O2W—H2WA···O80.851.892.687 (4)155
O2W—H2WB···O4W0.852.232.608 (5)107
O3W—H3WA···O7iii0.852.012.815 (4)159
O3W—H3WB···O5Wiii0.851.962.685 (4)142
O4W—H4WA···O2iv0.852.192.968 (4)153
O4W—H4WB···O1Wii0.852.493.022 (4)122
O4W—H4WB···O4iv0.852.373.151 (4)153
O5W—H5WA···O50.851.972.815 (4)172
O5W—H5WB···O4v0.851.992.757 (4)150
N1—H1···O1vi0.862.062.900 (4)165
N3—H3A···N2vii0.861.882.725 (5)168
N4—H4···O6viii0.861.982.750 (4)148
Symmetry codes: (i) x, y, z; (ii) x+1, y+1, z; (iii) x1, y, z; (iv) x, y+1, z; (v) x+1, y, z; (vi) x, y, z1; (vii) x+2, y+1, z+1; (viii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Eu(C9H4N2O4)(C9H5N2O4)(H2O)3]·2H2O
Mr651.33
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.4530 (4), 10.9757 (6), 12.7124 (7)
α, β, γ (°)112.112 (1), 91.614 (1), 104.453 (1)
V3)1048.25 (10)
Z2
Radiation typeMo Kα
µ (mm1)3.08
Crystal size (mm)0.24 × 0.22 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.526, 0.578
No. of measured, independent and
observed [I > 2σ(I)] reflections
5435, 3711, 3454
Rint0.016
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.057, 1.04
No. of reflections3711
No. of parameters328
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.63, 0.67

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O10.851.952.727 (4)152
O1W—H1WB···O4i0.851.932.709 (4)152
O2W—H2WA···O80.851.892.687 (4)155
O2W—H2WB···O4W0.852.232.608 (5)107
O3W—H3WA···O7ii0.852.012.815 (4)159
O3W—H3WB···O5Wii0.851.962.685 (4)142
O4W—H4WA···O2iii0.852.192.968 (4)153
O4W—H4WB···O1Wiv0.852.493.022 (4)122
O4W—H4WB···O4iii0.852.373.151 (4)153
O5W—H5WA···O50.851.972.815 (4)172
O5W—H5WB···O4v0.851.992.757 (4)150
N1—H1···O1vi0.862.062.900 (4)165
N3—H3A···N2vii0.861.882.725 (5)168
N4—H4···O6viii0.861.982.750 (4)148
Symmetry codes: (i) x, y, z; (ii) x1, y, z; (iii) x, y+1, z; (iv) x+1, y+1, z; (v) x+1, y, z; (vi) x, y, z1; (vii) x+2, y+1, z+1; (viii) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge the Undergraduates Innovating Experimentation Project of Guangdong Province, the Undergraduates Innovating Experimentation Project of South China Normal University and the Students Extracurricular Scientific Research Project of South China Normal University for supporting this work.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFu, J.-D., Tang, Z.-W., Yuan, M.-Y. & Wen, Y.-H. (2009). Acta Cryst. E65, m1657.  Google Scholar
First citationHuang, J.-X., Wu, Y.-Y., Huang, C.-D., Lian, Q.-Y. & Zeng, R.-H. (2009). Acta Cryst. E65, m1566–m1567.  Google Scholar
First citationPan, Z.-Y., Chen, J.-H., Lin, J.-F., Xu, X. & Luo, Y.-F. (2010). Acta Cryst. E66, m1302.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, Y.-Q., Yu, Y.-F., Sa, R.-J., Li, Q.-H. & Wu, K.-C. (2009). CrystEngComm, 11, 1054–1060.  Google Scholar
First citationYao, Y.-L., Che, Y.-X. & Zheng, J.-M. (2008). Cryst. Growth Des. 8, 2299–2306.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1294-m1295
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds