metal-organic compounds
Bis(η5-1-tert-butylindenyl)nickel(II)
aDepartment of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
*Correspondence e-mail: sitzmann@chemie.uni-kl.de
The title compound, [Ni(C13H15)2], shows a slightly distorted sandwich structure with two independent molecules in the Both Ni atoms are located on crystallographic centres of inversion.
Related literature
For the synthetic procedure of the analogous indenylcobalt complex, see: Gou et al. (2007). For a description of the Cambridge Structural Database, see: Allen (2002). For the use of bis(indenyl)nickel(II) complexes as starting compounds for poly- and catalysts, see: Xie et al. (2009); Fontaine & Zargarian et al. (2004). For the indenyl effect in SN1, SN2 and other reactions, see: Elschenbroich (2008); Rerek & Basolo (1984); Rerek et al. (1983), O'Connor & Casey (1987); Turaki et al. (1988); Caddy et al. (1978); Bönnemann (1985); Marder et al. (1988).
Experimental
Crystal data
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell CrysAlis RED (Oxford Diffraction, 2010); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SCHAKAL99 (Keller, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536811028510/im2294sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811028510/im2294Isup2.hkl
To a stirred solution of 1-tert-butylindene (862 mg, 5.0 mmol) in diethyl ether (10 ml) a solution of n-BuLi (1.6 mol/l, 3.44 ml, 5.5 mmol) in hexane was added slowly at 0 °C. Stirring was continued for 19 h at room temperature, then the solvent was removed in vacuo. The resulting white precipitate was suspended in pentane, cooled overnight in a fridge, filtered and washed with pentane. The lithium 1-tert-butylindenide was suspended in THF (10 ml) and NiBr2 × dme (1.54 g, 5.0 mmol) was added. The mixture was stirred for 24 h at room temperature. The solvent was removed in vacuo and the residue extracted with pentane. The product was obtained as dark red prisms at -30 °C (323 mg, 16%).
All hydrogen atoms were placed in calculated positions (C—H 0.95 or 0.98 Å) and refined by using a riding model, with Uiso(H)=1.2–1.5 Ueq of the parent atom.
Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell
CrysAlis RED (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Giacovazzo et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SCHAKAL99 (Keller, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. View of the title compound showing thermal ellipsoids at the 50% probability level. | |
Fig. 2. View of the title compound showing the folding angle of the indenyl ligand. |
[Ni(C13H15)2] | Z = 2 |
Mr = 401.21 | F(000) = 428 |
Triclinic, P1 | Dx = 1.295 Mg m−3 |
Hall symbol: -P 1 | Cu Kα radiation, λ = 1.54184 Å |
a = 9.8116 (5) Å | Cell parameters from 5554 reflections |
b = 10.9631 (7) Å | θ = 4.3–62.6° |
c = 11.1658 (7) Å | µ = 1.38 mm−1 |
α = 68.800 (6)° | T = 150 K |
β = 67.085 (5)° | Transparent prism, red |
γ = 85.212 (4)° | 0.11 × 0.07 × 0.04 mm |
V = 1029.10 (11) Å3 |
Oxford Diffraction Xcalibur Sapphire3 Gemini ultra diffractometer | 3283 independent reflections |
Radiation source: Enhance Ultra (Cu) X-ray Source | 2838 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.022 |
Detector resolution: 16.1399 pixels mm-1 | θmax = 62.6°, θmin = 4.3° |
ω scans | h = −9→11 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | k = −12→12 |
Tmin = 0.675, Tmax = 1.000 | l = −12→12 |
8813 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.075 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.049P)2] where P = (Fo2 + 2Fc2)/3 |
3283 reflections | (Δ/σ)max < 0.001 |
253 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
[Ni(C13H15)2] | γ = 85.212 (4)° |
Mr = 401.21 | V = 1029.10 (11) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.8116 (5) Å | Cu Kα radiation |
b = 10.9631 (7) Å | µ = 1.38 mm−1 |
c = 11.1658 (7) Å | T = 150 K |
α = 68.800 (6)° | 0.11 × 0.07 × 0.04 mm |
β = 67.085 (5)° |
Oxford Diffraction Xcalibur Sapphire3 Gemini ultra diffractometer | 3283 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | 2838 reflections with I > 2σ(I) |
Tmin = 0.675, Tmax = 1.000 | Rint = 0.022 |
8813 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 0 restraints |
wR(F2) = 0.075 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.24 e Å−3 |
3283 reflections | Δρmin = −0.25 e Å−3 |
253 parameters |
Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.66 (release 28-04-2010 CrysAlis171 .NET) (compiled Apr 28 2010,14:27:37) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.69298 (15) | 0.98880 (15) | 0.83091 (15) | 0.0224 (3) | |
C2 | 0.66605 (16) | 1.11686 (15) | 0.83603 (16) | 0.0253 (3) | |
H2 | 0.7279 | 1.1686 | 0.8495 | 0.030* | |
C3 | 0.53173 (17) | 1.15413 (15) | 0.81780 (16) | 0.0262 (3) | |
H3 | 0.4779 | 1.2263 | 0.8348 | 0.031* | |
C4 | 0.49048 (16) | 1.06274 (15) | 0.76852 (15) | 0.0246 (3) | |
C5 | 0.59070 (15) | 0.96046 (14) | 0.77499 (15) | 0.0215 (3) | |
C6 | 0.57746 (17) | 0.85971 (15) | 0.73069 (16) | 0.0265 (3) | |
H6 | 0.6427 | 0.7906 | 0.7348 | 0.032* | |
C7 | 0.46801 (18) | 0.86187 (17) | 0.68070 (17) | 0.0334 (4) | |
H7 | 0.4605 | 0.7948 | 0.6481 | 0.040* | |
C8 | 0.36868 (18) | 0.96052 (18) | 0.67725 (18) | 0.0360 (4) | |
H8 | 0.2937 | 0.9589 | 0.6438 | 0.043* | |
C9 | 0.37800 (17) | 1.06062 (17) | 0.72184 (17) | 0.0325 (4) | |
H9 | 0.3091 | 1.1269 | 0.7208 | 0.039* | |
C10 | 0.83254 (16) | 0.91731 (16) | 0.83483 (17) | 0.0273 (3) | |
C11 | 0.79792 (18) | 0.76942 (17) | 0.91908 (18) | 0.0370 (4) | |
H11A | 0.7370 | 0.7558 | 1.0169 | 0.056* | |
H11B | 0.8908 | 0.7264 | 0.9126 | 0.056* | |
H11C | 0.7439 | 0.7319 | 0.8815 | 0.056* | |
C12 | 0.93683 (17) | 0.93709 (17) | 0.68371 (17) | 0.0325 (4) | |
H12A | 0.8883 | 0.8985 | 0.6426 | 0.049* | |
H12B | 1.0288 | 0.8943 | 0.6829 | 0.049* | |
H12C | 0.9598 | 1.0311 | 0.6294 | 0.049* | |
C13 | 0.91121 (19) | 0.9744 (2) | 0.8992 (2) | 0.0457 (5) | |
H13A | 0.9415 | 1.0670 | 0.8421 | 0.069* | |
H13B | 0.9990 | 0.9260 | 0.9029 | 0.069* | |
H13C | 0.8435 | 0.9666 | 0.9937 | 0.069* | |
C14 | 1.06039 (15) | 0.56135 (14) | 0.63293 (15) | 0.0207 (3) | |
C15 | 1.03662 (17) | 0.66575 (14) | 0.52347 (16) | 0.0246 (3) | |
H15 | 1.1096 | 0.7312 | 0.4502 | 0.030* | |
C16 | 0.88655 (18) | 0.65609 (16) | 0.54168 (19) | 0.0304 (4) | |
H16 | 0.8453 | 0.7033 | 0.4752 | 0.036* | |
C17 | 0.80661 (17) | 0.56158 (16) | 0.67958 (19) | 0.0305 (4) | |
C18 | 0.91244 (16) | 0.50176 (15) | 0.73735 (16) | 0.0247 (3) | |
C19 | 0.86545 (19) | 0.40421 (17) | 0.86990 (17) | 0.0354 (4) | |
H19 | 0.9352 | 0.3626 | 0.9090 | 0.042* | |
C20 | 0.7145 (2) | 0.3692 (2) | 0.9435 (2) | 0.0499 (6) | |
H20 | 0.6813 | 0.3043 | 1.0344 | 0.060* | |
C21 | 0.6116 (2) | 0.4273 (2) | 0.8868 (3) | 0.0561 (7) | |
H21 | 0.5092 | 0.4011 | 0.9395 | 0.067* | |
C22 | 0.65523 (18) | 0.5224 (2) | 0.7551 (2) | 0.0463 (5) | |
H22 | 0.5842 | 0.5607 | 0.7165 | 0.056* | |
C23 | 1.20379 (16) | 0.54344 (15) | 0.65758 (16) | 0.0236 (3) | |
C24 | 1.18369 (17) | 0.58486 (17) | 0.78106 (17) | 0.0300 (4) | |
H24A | 1.1568 | 0.6761 | 0.7607 | 0.045* | |
H24B | 1.2767 | 0.5767 | 0.7959 | 0.045* | |
H24C | 1.1048 | 0.5281 | 0.8652 | 0.045* | |
C25 | 1.24681 (18) | 0.40112 (16) | 0.69020 (18) | 0.0338 (4) | |
H25A | 1.1628 | 0.3430 | 0.7666 | 0.051* | |
H25B | 1.3318 | 0.3913 | 0.7176 | 0.051* | |
H25C | 1.2734 | 0.3780 | 0.6073 | 0.051* | |
C26 | 1.33151 (17) | 0.63006 (17) | 0.52843 (18) | 0.0339 (4) | |
H26A | 1.3410 | 0.6090 | 0.4475 | 0.051* | |
H26B | 1.4241 | 0.6140 | 0.5439 | 0.051* | |
H26C | 1.3110 | 0.7225 | 0.5114 | 0.051* | |
Ni1 | 0.5000 | 1.0000 | 1.0000 | 0.02238 (12) | |
Ni2 | 1.0000 | 0.5000 | 0.5000 | 0.02285 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0222 (7) | 0.0248 (8) | 0.0166 (8) | −0.0013 (6) | −0.0025 (6) | −0.0083 (6) |
C2 | 0.0280 (8) | 0.0250 (8) | 0.0182 (8) | −0.0055 (6) | −0.0017 (6) | −0.0091 (6) |
C3 | 0.0313 (8) | 0.0201 (8) | 0.0194 (8) | 0.0025 (6) | −0.0032 (6) | −0.0057 (6) |
C4 | 0.0264 (8) | 0.0242 (8) | 0.0156 (8) | 0.0000 (6) | −0.0033 (6) | −0.0034 (6) |
C5 | 0.0221 (7) | 0.0226 (8) | 0.0139 (7) | −0.0017 (6) | −0.0020 (6) | −0.0049 (6) |
C6 | 0.0305 (8) | 0.0248 (8) | 0.0207 (8) | −0.0012 (6) | −0.0053 (6) | −0.0085 (6) |
C7 | 0.0383 (9) | 0.0367 (10) | 0.0245 (9) | −0.0108 (7) | −0.0084 (7) | −0.0113 (7) |
C8 | 0.0307 (9) | 0.0481 (11) | 0.0264 (9) | −0.0070 (8) | −0.0129 (7) | −0.0063 (8) |
C9 | 0.0287 (8) | 0.0371 (10) | 0.0248 (9) | 0.0035 (7) | −0.0100 (7) | −0.0044 (7) |
C10 | 0.0227 (7) | 0.0359 (9) | 0.0235 (8) | 0.0047 (6) | −0.0064 (6) | −0.0143 (7) |
C11 | 0.0317 (8) | 0.0390 (10) | 0.0293 (9) | 0.0106 (7) | −0.0085 (7) | −0.0053 (8) |
C12 | 0.0258 (8) | 0.0367 (10) | 0.0273 (9) | 0.0042 (7) | −0.0020 (7) | −0.0125 (7) |
C13 | 0.0297 (9) | 0.0751 (14) | 0.0486 (12) | 0.0102 (9) | −0.0185 (8) | −0.0381 (11) |
C14 | 0.0223 (7) | 0.0202 (7) | 0.0206 (8) | 0.0012 (6) | −0.0063 (6) | −0.0105 (6) |
C15 | 0.0310 (8) | 0.0179 (7) | 0.0281 (9) | 0.0035 (6) | −0.0135 (7) | −0.0100 (6) |
C16 | 0.0349 (9) | 0.0266 (8) | 0.0450 (10) | 0.0138 (7) | −0.0253 (8) | −0.0218 (8) |
C17 | 0.0241 (8) | 0.0349 (9) | 0.0464 (11) | 0.0071 (7) | −0.0121 (7) | −0.0326 (8) |
C18 | 0.0237 (7) | 0.0270 (8) | 0.0253 (8) | −0.0008 (6) | −0.0032 (6) | −0.0176 (7) |
C19 | 0.0413 (9) | 0.0367 (9) | 0.0245 (9) | −0.0125 (7) | −0.0011 (7) | −0.0163 (7) |
C20 | 0.0506 (12) | 0.0551 (12) | 0.0342 (11) | −0.0287 (10) | 0.0123 (9) | −0.0295 (10) |
C21 | 0.0280 (9) | 0.0732 (15) | 0.0689 (16) | −0.0203 (10) | 0.0151 (10) | −0.0591 (14) |
C22 | 0.0226 (8) | 0.0568 (12) | 0.0778 (16) | 0.0058 (8) | −0.0102 (9) | −0.0551 (13) |
C23 | 0.0224 (7) | 0.0282 (8) | 0.0220 (8) | 0.0026 (6) | −0.0090 (6) | −0.0106 (7) |
C24 | 0.0292 (8) | 0.0371 (9) | 0.0284 (9) | 0.0007 (7) | −0.0121 (7) | −0.0155 (7) |
C25 | 0.0375 (9) | 0.0353 (9) | 0.0373 (10) | 0.0131 (7) | −0.0233 (8) | −0.0152 (8) |
C26 | 0.0237 (8) | 0.0468 (11) | 0.0299 (9) | −0.0033 (7) | −0.0077 (7) | −0.0137 (8) |
Ni1 | 0.02328 (19) | 0.0207 (2) | 0.0179 (2) | 0.00272 (14) | −0.00330 (15) | −0.00650 (15) |
Ni2 | 0.0256 (2) | 0.0215 (2) | 0.0289 (2) | 0.00832 (14) | −0.01484 (16) | −0.01392 (16) |
C1—C2 | 1.424 (2) | C15—Ni2 | 2.0066 (15) |
C1—C5 | 1.474 (2) | C15—H15 | 0.9500 |
C1—C10 | 1.528 (2) | C16—C17 | 1.449 (2) |
C1—Ni1 | 2.1237 (14) | C16—Ni2 | 2.0588 (15) |
C2—C3 | 1.416 (2) | C16—H16 | 0.9500 |
C2—Ni1 | 1.9942 (15) | C17—C22 | 1.404 (2) |
C2—H2 | 0.9500 | C17—C18 | 1.424 (2) |
C3—C4 | 1.453 (2) | C17—Ni2 | 2.4247 (15) |
C3—Ni1 | 2.0492 (15) | C18—C19 | 1.397 (2) |
C3—H3 | 0.9500 | C18—Ni2 | 2.4543 (15) |
C4—C9 | 1.397 (2) | C19—C20 | 1.391 (3) |
C4—C5 | 1.429 (2) | C19—H19 | 0.9500 |
C4—Ni1 | 2.4604 (15) | C20—C21 | 1.387 (3) |
C5—C6 | 1.397 (2) | C20—H20 | 0.9500 |
C5—Ni1 | 2.5048 (14) | C21—C22 | 1.382 (3) |
C6—C7 | 1.385 (2) | C21—H21 | 0.9500 |
C6—H6 | 0.9500 | C22—H22 | 0.9500 |
C7—C8 | 1.394 (3) | C23—C25 | 1.531 (2) |
C7—H7 | 0.9500 | C23—C26 | 1.534 (2) |
C8—C9 | 1.381 (3) | C23—C24 | 1.540 (2) |
C8—H8 | 0.9500 | C24—H24A | 0.9800 |
C9—H9 | 0.9500 | C24—H24B | 0.9800 |
C10—C13 | 1.530 (2) | C24—H24C | 0.9800 |
C10—C11 | 1.539 (2) | C25—H25A | 0.9800 |
C10—C12 | 1.539 (2) | C25—H25B | 0.9800 |
C11—H11A | 0.9800 | C25—H25C | 0.9800 |
C11—H11B | 0.9800 | C26—H26A | 0.9800 |
C11—H11C | 0.9800 | C26—H26B | 0.9800 |
C12—H12A | 0.9800 | C26—H26C | 0.9800 |
C12—H12B | 0.9800 | Ni1—C2i | 1.9942 (15) |
C12—H12C | 0.9800 | Ni1—C3i | 2.0492 (15) |
C13—H13A | 0.9800 | Ni1—C1i | 2.1237 (14) |
C13—H13B | 0.9800 | Ni1—C4i | 2.4604 (15) |
C13—H13C | 0.9800 | Ni1—C5i | 2.5048 (14) |
C14—C15 | 1.423 (2) | Ni2—C15ii | 2.0066 (15) |
C14—C18 | 1.477 (2) | Ni2—C16ii | 2.0588 (15) |
C14—C23 | 1.520 (2) | Ni2—C14ii | 2.1166 (14) |
C14—Ni2 | 2.1166 (14) | Ni2—C17ii | 2.4247 (15) |
C15—C16 | 1.413 (2) | Ni2—C18ii | 2.4543 (15) |
C2—C1—C5 | 106.58 (13) | C14—C23—C24 | 108.71 (12) |
C2—C1—C10 | 125.06 (14) | C25—C23—C24 | 109.00 (13) |
C5—C1—C10 | 125.43 (13) | C26—C23—C24 | 108.56 (13) |
C2—C1—Ni1 | 64.95 (8) | C23—C24—H24A | 109.5 |
C5—C1—Ni1 | 86.25 (8) | C23—C24—H24B | 109.5 |
C10—C1—Ni1 | 128.67 (11) | H24A—C24—H24B | 109.5 |
C3—C2—C1 | 108.60 (13) | C23—C24—H24C | 109.5 |
C3—C2—Ni1 | 71.60 (9) | H24A—C24—H24C | 109.5 |
C1—C2—Ni1 | 74.74 (9) | H24B—C24—H24C | 109.5 |
C3—C2—H2 | 125.7 | C23—C25—H25A | 109.5 |
C1—C2—H2 | 125.7 | C23—C25—H25B | 109.5 |
Ni1—C2—H2 | 119.7 | H25A—C25—H25B | 109.5 |
C2—C3—C4 | 108.12 (13) | C23—C25—H25C | 109.5 |
C2—C3—Ni1 | 67.43 (9) | H25A—C25—H25C | 109.5 |
C4—C3—Ni1 | 87.54 (9) | H25B—C25—H25C | 109.5 |
C2—C3—H3 | 125.9 | C23—C26—H26A | 109.5 |
C4—C3—H3 | 125.9 | C23—C26—H26B | 109.5 |
Ni1—C3—H3 | 111.3 | H26A—C26—H26B | 109.5 |
C9—C4—C5 | 120.57 (14) | C23—C26—H26C | 109.5 |
C9—C4—C3 | 132.15 (14) | H26A—C26—H26C | 109.5 |
C5—C4—C3 | 107.27 (13) | H26B—C26—H26C | 109.5 |
C9—C4—Ni1 | 134.13 (11) | C2—Ni1—C2i | 180.0 |
C5—C4—Ni1 | 74.99 (8) | C2—Ni1—C3 | 40.96 (6) |
C3—C4—Ni1 | 56.32 (8) | C2i—Ni1—C3 | 139.04 (6) |
C6—C5—C4 | 119.25 (14) | C2—Ni1—C3i | 139.04 (6) |
C6—C5—C1 | 133.14 (14) | C2i—Ni1—C3i | 40.96 (6) |
C4—C5—C1 | 107.61 (13) | C3—Ni1—C3i | 180.00 (8) |
C6—C5—Ni1 | 137.16 (11) | C2—Ni1—C1i | 139.68 (6) |
C4—C5—Ni1 | 71.58 (8) | C2i—Ni1—C1i | 40.32 (6) |
C1—C5—Ni1 | 57.78 (7) | C3—Ni1—C1i | 112.92 (6) |
C7—C6—C5 | 119.14 (15) | C3i—Ni1—C1i | 67.08 (6) |
C7—C6—H6 | 120.4 | C2—Ni1—C1 | 40.32 (6) |
C5—C6—H6 | 120.4 | C2i—Ni1—C1 | 139.68 (6) |
C6—C7—C8 | 121.33 (16) | C3—Ni1—C1 | 67.08 (6) |
C6—C7—H7 | 119.3 | C3i—Ni1—C1 | 112.92 (6) |
C8—C7—H7 | 119.3 | C1i—Ni1—C1 | 180.000 (2) |
C9—C8—C7 | 120.81 (15) | C2—Ni1—C4 | 61.80 (6) |
C9—C8—H8 | 119.6 | C2i—Ni1—C4 | 118.20 (6) |
C7—C8—H8 | 119.6 | C3—Ni1—C4 | 36.15 (6) |
C8—C9—C4 | 118.85 (15) | C3i—Ni1—C4 | 143.85 (6) |
C8—C9—H9 | 120.6 | C1i—Ni1—C4 | 119.04 (5) |
C4—C9—H9 | 120.6 | C1—Ni1—C4 | 60.96 (5) |
C1—C10—C13 | 110.58 (13) | C2—Ni1—C4i | 118.20 (6) |
C1—C10—C11 | 112.17 (13) | C2i—Ni1—C4i | 61.80 (6) |
C13—C10—C11 | 108.40 (15) | C3—Ni1—C4i | 143.85 (6) |
C1—C10—C12 | 107.69 (13) | C3i—Ni1—C4i | 36.15 (6) |
C13—C10—C12 | 108.98 (14) | C1i—Ni1—C4i | 60.96 (5) |
C11—C10—C12 | 108.97 (14) | C1—Ni1—C4i | 119.04 (5) |
C10—C11—H11A | 109.5 | C4—Ni1—C4i | 180.0 |
C10—C11—H11B | 109.5 | C2—Ni1—C5i | 119.05 (5) |
H11A—C11—H11B | 109.5 | C2i—Ni1—C5i | 60.95 (5) |
C10—C11—H11C | 109.5 | C3—Ni1—C5i | 119.72 (5) |
H11A—C11—H11C | 109.5 | C3i—Ni1—C5i | 60.28 (5) |
H11B—C11—H11C | 109.5 | C1i—Ni1—C5i | 35.97 (5) |
C10—C12—H12A | 109.5 | C1—Ni1—C5i | 144.03 (5) |
C10—C12—H12B | 109.5 | C4—Ni1—C5i | 146.56 (5) |
H12A—C12—H12B | 109.5 | C4i—Ni1—C5i | 33.44 (5) |
C10—C12—H12C | 109.5 | C2—Ni1—C5 | 60.95 (5) |
H12A—C12—H12C | 109.5 | C2i—Ni1—C5 | 119.05 (5) |
H12B—C12—H12C | 109.5 | C3—Ni1—C5 | 60.28 (5) |
C10—C13—H13A | 109.5 | C3i—Ni1—C5 | 119.72 (5) |
C10—C13—H13B | 109.5 | C1i—Ni1—C5 | 144.03 (5) |
H13A—C13—H13B | 109.5 | C1—Ni1—C5 | 35.97 (5) |
C10—C13—H13C | 109.5 | C4—Ni1—C5 | 33.44 (5) |
H13A—C13—H13C | 109.5 | C4i—Ni1—C5 | 146.56 (5) |
H13B—C13—H13C | 109.5 | C5i—Ni1—C5 | 180.000 (1) |
C15—C14—C18 | 106.70 (12) | C15—Ni2—C15ii | 180.00 (9) |
C15—C14—C23 | 125.15 (13) | C15—Ni2—C16 | 40.67 (6) |
C18—C14—C23 | 125.70 (13) | C15ii—Ni2—C16 | 139.33 (6) |
C15—C14—Ni2 | 65.71 (8) | C15—Ni2—C16ii | 139.33 (6) |
C18—C14—Ni2 | 84.13 (9) | C15ii—Ni2—C16ii | 40.67 (6) |
C23—C14—Ni2 | 128.84 (10) | C16—Ni2—C16ii | 180.000 (1) |
C16—C15—C14 | 108.81 (14) | C15—Ni2—C14 | 40.25 (6) |
C16—C15—Ni2 | 71.65 (9) | C15ii—Ni2—C14 | 139.75 (6) |
C14—C15—Ni2 | 74.04 (8) | C16—Ni2—C14 | 67.03 (6) |
C16—C15—H15 | 125.6 | C16ii—Ni2—C14 | 112.97 (6) |
C14—C15—H15 | 125.6 | C15—Ni2—C14ii | 139.75 (6) |
Ni2—C15—H15 | 120.4 | C15ii—Ni2—C14ii | 40.25 (6) |
C15—C16—C17 | 107.97 (14) | C16—Ni2—C14ii | 112.97 (6) |
C15—C16—Ni2 | 67.68 (8) | C16ii—Ni2—C14ii | 67.03 (6) |
C17—C16—Ni2 | 85.57 (9) | C14—Ni2—C14ii | 180.000 (1) |
C15—C16—H16 | 126.0 | C15—Ni2—C17 | 62.17 (6) |
C17—C16—H16 | 126.0 | C15ii—Ni2—C17 | 117.83 (6) |
Ni2—C16—H16 | 112.9 | C16—Ni2—C17 | 36.59 (6) |
C22—C17—C18 | 120.18 (18) | C16ii—Ni2—C17 | 143.41 (6) |
C22—C17—C16 | 132.02 (17) | C14—Ni2—C17 | 61.50 (5) |
C18—C17—C16 | 107.78 (13) | C14ii—Ni2—C17 | 118.50 (5) |
C22—C17—Ni2 | 132.89 (11) | C15—Ni2—C17ii | 117.83 (6) |
C18—C17—Ni2 | 74.18 (8) | C15ii—Ni2—C17ii | 62.17 (6) |
C16—C17—Ni2 | 57.84 (8) | C16—Ni2—C17ii | 143.41 (6) |
C19—C18—C17 | 119.91 (15) | C16ii—Ni2—C17ii | 36.59 (6) |
C19—C18—C14 | 132.77 (15) | C14—Ni2—C17ii | 118.50 (5) |
C17—C18—C14 | 107.31 (14) | C14ii—Ni2—C17ii | 61.50 (5) |
C19—C18—Ni2 | 134.13 (11) | C17—Ni2—C17ii | 180.000 (1) |
C17—C18—Ni2 | 71.90 (9) | C15—Ni2—C18 | 61.93 (6) |
C14—C18—Ni2 | 59.08 (7) | C15ii—Ni2—C18 | 118.07 (6) |
C20—C19—C18 | 118.66 (18) | C16—Ni2—C18 | 61.16 (6) |
C20—C19—H19 | 120.7 | C16ii—Ni2—C18 | 118.84 (6) |
C18—C19—H19 | 120.7 | C14—Ni2—C18 | 36.79 (5) |
C21—C20—C19 | 121.4 (2) | C14ii—Ni2—C18 | 143.21 (5) |
C21—C20—H20 | 119.3 | C17—Ni2—C18 | 33.92 (5) |
C19—C20—H20 | 119.3 | C17ii—Ni2—C18 | 146.08 (6) |
C22—C21—C20 | 121.16 (17) | C15—Ni2—C18ii | 118.07 (6) |
C22—C21—H21 | 119.4 | C15ii—Ni2—C18ii | 61.93 (6) |
C20—C21—H21 | 119.4 | C16—Ni2—C18ii | 118.84 (6) |
C21—C22—C17 | 118.71 (19) | C16ii—Ni2—C18ii | 61.16 (6) |
C21—C22—H22 | 120.6 | C14—Ni2—C18ii | 143.21 (5) |
C17—C22—H22 | 120.6 | C14ii—Ni2—C18ii | 36.79 (5) |
C14—C23—C25 | 112.06 (13) | C17—Ni2—C18ii | 146.08 (5) |
C14—C23—C26 | 110.38 (13) | C17ii—Ni2—C18ii | 33.92 (5) |
C25—C23—C26 | 108.07 (13) | C18—Ni2—C18ii | 180.000 (1) |
Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) −x+2, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C13H15)2] |
Mr | 401.21 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 150 |
a, b, c (Å) | 9.8116 (5), 10.9631 (7), 11.1658 (7) |
α, β, γ (°) | 68.800 (6), 67.085 (5), 85.212 (4) |
V (Å3) | 1029.10 (11) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 1.38 |
Crystal size (mm) | 0.11 × 0.07 × 0.04 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Sapphire3 Gemini ultra diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.675, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8813, 3283, 2838 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.576 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.075, 1.07 |
No. of reflections | 3283 |
No. of parameters | 253 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.25 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SIR92 (Giacovazzo et al., 1994), SHELXL97 (Sheldrick, 2008), SCHAKAL99 (Keller, 1999), publCIF (Westrip, 2010).
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Bönnemann, H. (1985). Angew. Chem. Int. Ed. 24, 248-262. Google Scholar
Caddy, P., Green, M., Smart, L. E. & White, N. (1978). J. Chem. Soc. Chem. Commun. 19, 839–841. CrossRef Web of Science Google Scholar
Elschenbroich, Ch. (2008). Organometallchemie, 6th ed, p. 463. Wiesbaden: Teubner. Google Scholar
Fontaine, F.-G. & Zargarian, D. (2004). J. Am. Chem. Soc. 126, 8786–8794. Web of Science CrossRef CAS Google Scholar
Gou, S., Hauptmann, R., Belaj, F. & Schneider, J. J. (2007). Z. Kristallogr. New Cryst. Struct. 222, 363-634. Google Scholar
Keller, E. (1999). SCHAKAL99. University of Freiburg, Germany. Google Scholar
Marder, T. B., Roe, D. C. & Milstein, D. (1988). Organometallics, 7, 1451–1453. CrossRef CAS Google Scholar
O'Connor, J. M. & Casey, C. P. (1987). Chem. Rev. 87, 307–318. CAS Google Scholar
Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Rerek, M. E. & Basolo, F. (1984). J. Am. Chem. Soc. 106, 5908–5912. CrossRef CAS Web of Science Google Scholar
Rerek, M. E., Ji, L.-N. & Basolo, F. (1983). J. Chem. Soc. Chem. Commun. pp. 1208–1209. CrossRef Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Turaki, N. N., Huggins, J. M. & Lebioda, L. (1988). Inorg. Chem. 27, 424–427. CrossRef CAS Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xie, L.-Z., Sun, H.-M., Hu, D.-M., Liu, Z.-H., Shen, Q. & Zhang, Y. (2009). Polyhedron, 28, 2585–2590. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The catalytic activity of indenylnickel(II) complexes has stimulated recent research activity. It is e.g. possible to oligomerize phenylsilane in the presence of a methylindenylnickel(II) phosphine complex (Fontaine & Zargarian, 2004). N-heterocyclic carbene complexes of indenylnickel(II) chloride have been shown to polymerize styrene (Xie et al., 2009). The starting compounds for these complexes are bis(indenyl)nickel(II) and bis(1-methylindenyl)nickel(II). With the well known indenyl effect (Elschenbroich, 2008) based on a slip-fold distortion of the indenyl ligand from η5 to η3 coordination, which greatly enhances the reactivity in SN1 and SN2 substitution reactions (Rerek & Basolo 1984, Rerek et al. 1983; O'Connor & Casey, 1987; Turaki et al., 1988) and other reactions, (Caddy et al., 1978; Bönnemann, 1985; Marder et al., 1988) the as yet unknown bis(η5-1-tert-butylindenyl)nickel(II) complex became interesting to us as a promising starting compound.
The title compound was synthesized from lithium 1-tert-butylindenide and nickel(II) bromide dimethoxyethane complex and crystallized as dark red prisms. In the structure shown here, the nickel atom is bound to the carbon atoms of the five-membered ring of the ligand by a distorted η5-coordination. The metal ion is positioned on a crystallographic centre of inversion and the two indenyl ligands are therefore arranged in a staggered coordination with a rotation angle of 180°. As known from similar complexes (Gou et al., 2007), the lengths of the five Ni—C bonds are split in two sets. The three shorter bond distances are 2.124 (1) Å, 1.994 (2) Å and 2.049 (2) Å, the two longer bond distances are 2.460 (2) Å and 2.505 (1) Å, which is even longer than for the Co complex (Gou et al., 2007). The distance between the nickel centre and the centroid of the five-membered ring is 1.7950 (8) Å. The folding angle of 4.28 (7)° shows a slightly smaller value than for unsubstituted indenyl complexes (Rerek et al., 1983). The two different bond length ranges are in accordance with the usual η2+η3-coordination of the indenyl ligand resulting from the reluctant participation of the benzene ring in the ligand-metal electron donation (Rerek et al., 1983). The bond between C1 and C10 is bending out 7.2 (1)° of the ring plane.