metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(η5-1-tert-butyl­inden­yl)nickel(II)

aDepartment of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
*Correspondence e-mail: sitzmann@chemie.uni-kl.de

(Received 1 June 2011; accepted 15 July 2011; online 2 August 2011)

The title compound, [Ni(C13H15)2], shows a slightly distorted sandwich structure with two independent mol­ecules in the asymmetric unit. Both Ni atoms are located on crystallographic centres of inversion.

Related literature

For the synthetic procedure of the analogous indenylcobalt complex, see: Gou et al. (2007[Gou, S., Hauptmann, R., Belaj, F. & Schneider, J. J. (2007). Z. Kristallogr. New Cryst. Struct. 222, 363-634.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For the use of bis­(inden­yl)nickel(II) complexes as starting compounds for poly- and oligomerization catalysts, see: Xie et al. (2009[Xie, L.-Z., Sun, H.-M., Hu, D.-M., Liu, Z.-H., Shen, Q. & Zhang, Y. (2009). Polyhedron, 28, 2585-2590.]); Fontaine & Zargarian et al. (2004[Fontaine, F.-G. & Zargarian, D. (2004). J. Am. Chem. Soc. 126, 8786-8794.]). For the indenyl effect in SN1, SN2 and other reactions, see: Elschenbroich (2008[Elschenbroich, Ch. (2008). Organometallchemie, 6th ed, p. 463. Wiesbaden: Teubner.]); Rerek & Basolo (1984[Rerek, M. E. & Basolo, F. (1984). J. Am. Chem. Soc. 106, 5908-5912.]); Rerek et al. (1983[Rerek, M. E., Ji, L.-N. & Basolo, F. (1983). J. Chem. Soc. Chem. Commun. pp. 1208-1209.]), O'Connor & Casey (1987[O'Connor, J. M. & Casey, C. P. (1987). Chem. Rev. 87, 307-318.]); Turaki et al. (1988[Turaki, N. N., Huggins, J. M. & Lebioda, L. (1988). Inorg. Chem. 27, 424-427.]); Caddy et al. (1978[Caddy, P., Green, M., Smart, L. E. & White, N. (1978). J. Chem. Soc. Chem. Commun. 19, 839-841.]); Bönnemann (1985[Bönnemann, H. (1985). Angew. Chem. Int. Ed. 24, 248-262.]); Marder et al. (1988[Marder, T. B., Roe, D. C. & Milstein, D. (1988). Organometallics, 7, 1451-1453.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C13H15)2]

  • Mr = 401.21

  • Triclinic, [P \overline 1]

  • a = 9.8116 (5) Å

  • b = 10.9631 (7) Å

  • c = 11.1658 (7) Å

  • α = 68.800 (6)°

  • β = 67.085 (5)°

  • γ = 85.212 (4)°

  • V = 1029.10 (11) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.38 mm−1

  • T = 150 K

  • 0.11 × 0.07 × 0.04 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.675, Tmax = 1.000

  • 8813 measured reflections

  • 3283 independent reflections

  • 2838 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.075

  • S = 1.07

  • 3283 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SCHAKAL99 (Keller, 1999[Keller, E. (1999). SCHAKAL99. University of Freiburg, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The catalytic activity of indenylnickel(II) complexes has stimulated recent research activity. It is e.g. possible to oligomerize phenylsilane in the presence of a methylindenylnickel(II) phosphine complex (Fontaine & Zargarian, 2004). N-heterocyclic carbene complexes of indenylnickel(II) chloride have been shown to polymerize styrene (Xie et al., 2009). The starting compounds for these complexes are bis(indenyl)nickel(II) and bis(1-methylindenyl)nickel(II). With the well known indenyl effect (Elschenbroich, 2008) based on a slip-fold distortion of the indenyl ligand from η5 to η3 coordination, which greatly enhances the reactivity in SN1 and SN2 substitution reactions (Rerek & Basolo 1984, Rerek et al. 1983; O'Connor & Casey, 1987; Turaki et al., 1988) and other reactions, (Caddy et al., 1978; Bönnemann, 1985; Marder et al., 1988) the as yet unknown bis(η5-1-tert-butylindenyl)nickel(II) complex became interesting to us as a promising starting compound.

The title compound was synthesized from lithium 1-tert-butylindenide and nickel(II) bromide dimethoxyethane complex and crystallized as dark red prisms. In the structure shown here, the nickel atom is bound to the carbon atoms of the five-membered ring of the ligand by a distorted η5-coordination. The metal ion is positioned on a crystallographic centre of inversion and the two indenyl ligands are therefore arranged in a staggered coordination with a rotation angle of 180°. As known from similar complexes (Gou et al., 2007), the lengths of the five Ni—C bonds are split in two sets. The three shorter bond distances are 2.124 (1) Å, 1.994 (2) Å and 2.049 (2) Å, the two longer bond distances are 2.460 (2) Å and 2.505 (1) Å, which is even longer than for the Co complex (Gou et al., 2007). The distance between the nickel centre and the centroid of the five-membered ring is 1.7950 (8) Å. The folding angle of 4.28 (7)° shows a slightly smaller value than for unsubstituted indenyl complexes (Rerek et al., 1983). The two different bond length ranges are in accordance with the usual η2+η3-coordination of the indenyl ligand resulting from the reluctant participation of the benzene ring in the ligand-metal electron donation (Rerek et al., 1983). The bond between C1 and C10 is bending out 7.2 (1)° of the ring plane.

Related literature top

For the synthetic procedure of the analogous indenylcobalt complex, see: Gou et al. (2007). For a description of the Cambridge Structural Database, see: Allen (2002). For the use of bis(indenyl)nickel(II) complexes as starting compounds for poly- and oligomerization catalysts, see: Xie et al. (2009); Fontaine & Zargarian et al. (2004). For the indenyl effect in SN1, SN2 and other reactions, see: Elschenbroich (2008); Rerek & Basolo (1984); Rerek et al. (1983), O'Connor & Casey (1987); Turaki et al. (1988); Caddy et al. (1978); Bönnemann (1985); Marder et al. (1988).

Experimental top

To a stirred solution of 1-tert-butylindene (862 mg, 5.0 mmol) in diethyl ether (10 ml) a solution of n-BuLi (1.6 mol/l, 3.44 ml, 5.5 mmol) in hexane was added slowly at 0 °C. Stirring was continued for 19 h at room temperature, then the solvent was removed in vacuo. The resulting white precipitate was suspended in pentane, cooled overnight in a fridge, filtered and washed with pentane. The lithium 1-tert-butylindenide was suspended in THF (10 ml) and NiBr2 × dme (1.54 g, 5.0 mmol) was added. The mixture was stirred for 24 h at room temperature. The solvent was removed in vacuo and the residue extracted with pentane. The product was obtained as dark red prisms at -30 °C (323 mg, 16%).

Refinement top

All hydrogen atoms were placed in calculated positions (C—H 0.95 or 0.98 Å) and refined by using a riding model, with Uiso(H)=1.2–1.5 Ueq of the parent atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis RED (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Giacovazzo et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SCHAKAL99 (Keller, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of the title compound showing thermal ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. View of the title compound showing the folding angle of the indenyl ligand.
Bis(η5-1-tert-butylindenyl)nickel(II) top
Crystal data top
[Ni(C13H15)2]Z = 2
Mr = 401.21F(000) = 428
Triclinic, P1Dx = 1.295 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 9.8116 (5) ÅCell parameters from 5554 reflections
b = 10.9631 (7) Åθ = 4.3–62.6°
c = 11.1658 (7) ŵ = 1.38 mm1
α = 68.800 (6)°T = 150 K
β = 67.085 (5)°Transparent prism, red
γ = 85.212 (4)°0.11 × 0.07 × 0.04 mm
V = 1029.10 (11) Å3
Data collection top
Oxford Diffraction Xcalibur Sapphire3 Gemini ultra
diffractometer
3283 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source2838 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.022
Detector resolution: 16.1399 pixels mm-1θmax = 62.6°, θmin = 4.3°
ω scansh = 911
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1212
Tmin = 0.675, Tmax = 1.000l = 1212
8813 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.049P)2]
where P = (Fo2 + 2Fc2)/3
3283 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Ni(C13H15)2]γ = 85.212 (4)°
Mr = 401.21V = 1029.10 (11) Å3
Triclinic, P1Z = 2
a = 9.8116 (5) ÅCu Kα radiation
b = 10.9631 (7) ŵ = 1.38 mm1
c = 11.1658 (7) ÅT = 150 K
α = 68.800 (6)°0.11 × 0.07 × 0.04 mm
β = 67.085 (5)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3 Gemini ultra
diffractometer
3283 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2838 reflections with I > 2σ(I)
Tmin = 0.675, Tmax = 1.000Rint = 0.022
8813 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.07Δρmax = 0.24 e Å3
3283 reflectionsΔρmin = 0.25 e Å3
253 parameters
Special details top

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.66 (release 28-04-2010 CrysAlis171 .NET) (compiled Apr 28 2010,14:27:37) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.69298 (15)0.98880 (15)0.83091 (15)0.0224 (3)
C20.66605 (16)1.11686 (15)0.83603 (16)0.0253 (3)
H20.72791.16860.84950.030*
C30.53173 (17)1.15413 (15)0.81780 (16)0.0262 (3)
H30.47791.22630.83480.031*
C40.49048 (16)1.06274 (15)0.76852 (15)0.0246 (3)
C50.59070 (15)0.96046 (14)0.77499 (15)0.0215 (3)
C60.57746 (17)0.85971 (15)0.73069 (16)0.0265 (3)
H60.64270.79060.73480.032*
C70.46801 (18)0.86187 (17)0.68070 (17)0.0334 (4)
H70.46050.79480.64810.040*
C80.36868 (18)0.96052 (18)0.67725 (18)0.0360 (4)
H80.29370.95890.64380.043*
C90.37800 (17)1.06062 (17)0.72184 (17)0.0325 (4)
H90.30911.12690.72080.039*
C100.83254 (16)0.91731 (16)0.83483 (17)0.0273 (3)
C110.79792 (18)0.76942 (17)0.91908 (18)0.0370 (4)
H11A0.73700.75581.01690.056*
H11B0.89080.72640.91260.056*
H11C0.74390.73190.88150.056*
C120.93683 (17)0.93709 (17)0.68371 (17)0.0325 (4)
H12A0.88830.89850.64260.049*
H12B1.02880.89430.68290.049*
H12C0.95981.03110.62940.049*
C130.91121 (19)0.9744 (2)0.8992 (2)0.0457 (5)
H13A0.94151.06700.84210.069*
H13B0.99900.92600.90290.069*
H13C0.84350.96660.99370.069*
C141.06039 (15)0.56135 (14)0.63293 (15)0.0207 (3)
C151.03662 (17)0.66575 (14)0.52347 (16)0.0246 (3)
H151.10960.73120.45020.030*
C160.88655 (18)0.65609 (16)0.54168 (19)0.0304 (4)
H160.84530.70330.47520.036*
C170.80661 (17)0.56158 (16)0.67958 (19)0.0305 (4)
C180.91244 (16)0.50176 (15)0.73735 (16)0.0247 (3)
C190.86545 (19)0.40421 (17)0.86990 (17)0.0354 (4)
H190.93520.36260.90900.042*
C200.7145 (2)0.3692 (2)0.9435 (2)0.0499 (6)
H200.68130.30431.03440.060*
C210.6116 (2)0.4273 (2)0.8868 (3)0.0561 (7)
H210.50920.40110.93950.067*
C220.65523 (18)0.5224 (2)0.7551 (2)0.0463 (5)
H220.58420.56070.71650.056*
C231.20379 (16)0.54344 (15)0.65758 (16)0.0236 (3)
C241.18369 (17)0.58486 (17)0.78106 (17)0.0300 (4)
H24A1.15680.67610.76070.045*
H24B1.27670.57670.79590.045*
H24C1.10480.52810.86520.045*
C251.24681 (18)0.40112 (16)0.69020 (18)0.0338 (4)
H25A1.16280.34300.76660.051*
H25B1.33180.39130.71760.051*
H25C1.27340.37800.60730.051*
C261.33151 (17)0.63006 (17)0.52843 (18)0.0339 (4)
H26A1.34100.60900.44750.051*
H26B1.42410.61400.54390.051*
H26C1.31100.72250.51140.051*
Ni10.50001.00001.00000.02238 (12)
Ni21.00000.50000.50000.02285 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0222 (7)0.0248 (8)0.0166 (8)0.0013 (6)0.0025 (6)0.0083 (6)
C20.0280 (8)0.0250 (8)0.0182 (8)0.0055 (6)0.0017 (6)0.0091 (6)
C30.0313 (8)0.0201 (8)0.0194 (8)0.0025 (6)0.0032 (6)0.0057 (6)
C40.0264 (8)0.0242 (8)0.0156 (8)0.0000 (6)0.0033 (6)0.0034 (6)
C50.0221 (7)0.0226 (8)0.0139 (7)0.0017 (6)0.0020 (6)0.0049 (6)
C60.0305 (8)0.0248 (8)0.0207 (8)0.0012 (6)0.0053 (6)0.0085 (6)
C70.0383 (9)0.0367 (10)0.0245 (9)0.0108 (7)0.0084 (7)0.0113 (7)
C80.0307 (9)0.0481 (11)0.0264 (9)0.0070 (8)0.0129 (7)0.0063 (8)
C90.0287 (8)0.0371 (10)0.0248 (9)0.0035 (7)0.0100 (7)0.0044 (7)
C100.0227 (7)0.0359 (9)0.0235 (8)0.0047 (6)0.0064 (6)0.0143 (7)
C110.0317 (8)0.0390 (10)0.0293 (9)0.0106 (7)0.0085 (7)0.0053 (8)
C120.0258 (8)0.0367 (10)0.0273 (9)0.0042 (7)0.0020 (7)0.0125 (7)
C130.0297 (9)0.0751 (14)0.0486 (12)0.0102 (9)0.0185 (8)0.0381 (11)
C140.0223 (7)0.0202 (7)0.0206 (8)0.0012 (6)0.0063 (6)0.0105 (6)
C150.0310 (8)0.0179 (7)0.0281 (9)0.0035 (6)0.0135 (7)0.0100 (6)
C160.0349 (9)0.0266 (8)0.0450 (10)0.0138 (7)0.0253 (8)0.0218 (8)
C170.0241 (8)0.0349 (9)0.0464 (11)0.0071 (7)0.0121 (7)0.0326 (8)
C180.0237 (7)0.0270 (8)0.0253 (8)0.0008 (6)0.0032 (6)0.0176 (7)
C190.0413 (9)0.0367 (9)0.0245 (9)0.0125 (7)0.0011 (7)0.0163 (7)
C200.0506 (12)0.0551 (12)0.0342 (11)0.0287 (10)0.0123 (9)0.0295 (10)
C210.0280 (9)0.0732 (15)0.0689 (16)0.0203 (10)0.0151 (10)0.0591 (14)
C220.0226 (8)0.0568 (12)0.0778 (16)0.0058 (8)0.0102 (9)0.0551 (13)
C230.0224 (7)0.0282 (8)0.0220 (8)0.0026 (6)0.0090 (6)0.0106 (7)
C240.0292 (8)0.0371 (9)0.0284 (9)0.0007 (7)0.0121 (7)0.0155 (7)
C250.0375 (9)0.0353 (9)0.0373 (10)0.0131 (7)0.0233 (8)0.0152 (8)
C260.0237 (8)0.0468 (11)0.0299 (9)0.0033 (7)0.0077 (7)0.0137 (8)
Ni10.02328 (19)0.0207 (2)0.0179 (2)0.00272 (14)0.00330 (15)0.00650 (15)
Ni20.0256 (2)0.0215 (2)0.0289 (2)0.00832 (14)0.01484 (16)0.01392 (16)
Geometric parameters (Å, º) top
C1—C21.424 (2)C15—Ni22.0066 (15)
C1—C51.474 (2)C15—H150.9500
C1—C101.528 (2)C16—C171.449 (2)
C1—Ni12.1237 (14)C16—Ni22.0588 (15)
C2—C31.416 (2)C16—H160.9500
C2—Ni11.9942 (15)C17—C221.404 (2)
C2—H20.9500C17—C181.424 (2)
C3—C41.453 (2)C17—Ni22.4247 (15)
C3—Ni12.0492 (15)C18—C191.397 (2)
C3—H30.9500C18—Ni22.4543 (15)
C4—C91.397 (2)C19—C201.391 (3)
C4—C51.429 (2)C19—H190.9500
C4—Ni12.4604 (15)C20—C211.387 (3)
C5—C61.397 (2)C20—H200.9500
C5—Ni12.5048 (14)C21—C221.382 (3)
C6—C71.385 (2)C21—H210.9500
C6—H60.9500C22—H220.9500
C7—C81.394 (3)C23—C251.531 (2)
C7—H70.9500C23—C261.534 (2)
C8—C91.381 (3)C23—C241.540 (2)
C8—H80.9500C24—H24A0.9800
C9—H90.9500C24—H24B0.9800
C10—C131.530 (2)C24—H24C0.9800
C10—C111.539 (2)C25—H25A0.9800
C10—C121.539 (2)C25—H25B0.9800
C11—H11A0.9800C25—H25C0.9800
C11—H11B0.9800C26—H26A0.9800
C11—H11C0.9800C26—H26B0.9800
C12—H12A0.9800C26—H26C0.9800
C12—H12B0.9800Ni1—C2i1.9942 (15)
C12—H12C0.9800Ni1—C3i2.0492 (15)
C13—H13A0.9800Ni1—C1i2.1237 (14)
C13—H13B0.9800Ni1—C4i2.4604 (15)
C13—H13C0.9800Ni1—C5i2.5048 (14)
C14—C151.423 (2)Ni2—C15ii2.0066 (15)
C14—C181.477 (2)Ni2—C16ii2.0588 (15)
C14—C231.520 (2)Ni2—C14ii2.1166 (14)
C14—Ni22.1166 (14)Ni2—C17ii2.4247 (15)
C15—C161.413 (2)Ni2—C18ii2.4543 (15)
C2—C1—C5106.58 (13)C14—C23—C24108.71 (12)
C2—C1—C10125.06 (14)C25—C23—C24109.00 (13)
C5—C1—C10125.43 (13)C26—C23—C24108.56 (13)
C2—C1—Ni164.95 (8)C23—C24—H24A109.5
C5—C1—Ni186.25 (8)C23—C24—H24B109.5
C10—C1—Ni1128.67 (11)H24A—C24—H24B109.5
C3—C2—C1108.60 (13)C23—C24—H24C109.5
C3—C2—Ni171.60 (9)H24A—C24—H24C109.5
C1—C2—Ni174.74 (9)H24B—C24—H24C109.5
C3—C2—H2125.7C23—C25—H25A109.5
C1—C2—H2125.7C23—C25—H25B109.5
Ni1—C2—H2119.7H25A—C25—H25B109.5
C2—C3—C4108.12 (13)C23—C25—H25C109.5
C2—C3—Ni167.43 (9)H25A—C25—H25C109.5
C4—C3—Ni187.54 (9)H25B—C25—H25C109.5
C2—C3—H3125.9C23—C26—H26A109.5
C4—C3—H3125.9C23—C26—H26B109.5
Ni1—C3—H3111.3H26A—C26—H26B109.5
C9—C4—C5120.57 (14)C23—C26—H26C109.5
C9—C4—C3132.15 (14)H26A—C26—H26C109.5
C5—C4—C3107.27 (13)H26B—C26—H26C109.5
C9—C4—Ni1134.13 (11)C2—Ni1—C2i180.0
C5—C4—Ni174.99 (8)C2—Ni1—C340.96 (6)
C3—C4—Ni156.32 (8)C2i—Ni1—C3139.04 (6)
C6—C5—C4119.25 (14)C2—Ni1—C3i139.04 (6)
C6—C5—C1133.14 (14)C2i—Ni1—C3i40.96 (6)
C4—C5—C1107.61 (13)C3—Ni1—C3i180.00 (8)
C6—C5—Ni1137.16 (11)C2—Ni1—C1i139.68 (6)
C4—C5—Ni171.58 (8)C2i—Ni1—C1i40.32 (6)
C1—C5—Ni157.78 (7)C3—Ni1—C1i112.92 (6)
C7—C6—C5119.14 (15)C3i—Ni1—C1i67.08 (6)
C7—C6—H6120.4C2—Ni1—C140.32 (6)
C5—C6—H6120.4C2i—Ni1—C1139.68 (6)
C6—C7—C8121.33 (16)C3—Ni1—C167.08 (6)
C6—C7—H7119.3C3i—Ni1—C1112.92 (6)
C8—C7—H7119.3C1i—Ni1—C1180.000 (2)
C9—C8—C7120.81 (15)C2—Ni1—C461.80 (6)
C9—C8—H8119.6C2i—Ni1—C4118.20 (6)
C7—C8—H8119.6C3—Ni1—C436.15 (6)
C8—C9—C4118.85 (15)C3i—Ni1—C4143.85 (6)
C8—C9—H9120.6C1i—Ni1—C4119.04 (5)
C4—C9—H9120.6C1—Ni1—C460.96 (5)
C1—C10—C13110.58 (13)C2—Ni1—C4i118.20 (6)
C1—C10—C11112.17 (13)C2i—Ni1—C4i61.80 (6)
C13—C10—C11108.40 (15)C3—Ni1—C4i143.85 (6)
C1—C10—C12107.69 (13)C3i—Ni1—C4i36.15 (6)
C13—C10—C12108.98 (14)C1i—Ni1—C4i60.96 (5)
C11—C10—C12108.97 (14)C1—Ni1—C4i119.04 (5)
C10—C11—H11A109.5C4—Ni1—C4i180.0
C10—C11—H11B109.5C2—Ni1—C5i119.05 (5)
H11A—C11—H11B109.5C2i—Ni1—C5i60.95 (5)
C10—C11—H11C109.5C3—Ni1—C5i119.72 (5)
H11A—C11—H11C109.5C3i—Ni1—C5i60.28 (5)
H11B—C11—H11C109.5C1i—Ni1—C5i35.97 (5)
C10—C12—H12A109.5C1—Ni1—C5i144.03 (5)
C10—C12—H12B109.5C4—Ni1—C5i146.56 (5)
H12A—C12—H12B109.5C4i—Ni1—C5i33.44 (5)
C10—C12—H12C109.5C2—Ni1—C560.95 (5)
H12A—C12—H12C109.5C2i—Ni1—C5119.05 (5)
H12B—C12—H12C109.5C3—Ni1—C560.28 (5)
C10—C13—H13A109.5C3i—Ni1—C5119.72 (5)
C10—C13—H13B109.5C1i—Ni1—C5144.03 (5)
H13A—C13—H13B109.5C1—Ni1—C535.97 (5)
C10—C13—H13C109.5C4—Ni1—C533.44 (5)
H13A—C13—H13C109.5C4i—Ni1—C5146.56 (5)
H13B—C13—H13C109.5C5i—Ni1—C5180.000 (1)
C15—C14—C18106.70 (12)C15—Ni2—C15ii180.00 (9)
C15—C14—C23125.15 (13)C15—Ni2—C1640.67 (6)
C18—C14—C23125.70 (13)C15ii—Ni2—C16139.33 (6)
C15—C14—Ni265.71 (8)C15—Ni2—C16ii139.33 (6)
C18—C14—Ni284.13 (9)C15ii—Ni2—C16ii40.67 (6)
C23—C14—Ni2128.84 (10)C16—Ni2—C16ii180.000 (1)
C16—C15—C14108.81 (14)C15—Ni2—C1440.25 (6)
C16—C15—Ni271.65 (9)C15ii—Ni2—C14139.75 (6)
C14—C15—Ni274.04 (8)C16—Ni2—C1467.03 (6)
C16—C15—H15125.6C16ii—Ni2—C14112.97 (6)
C14—C15—H15125.6C15—Ni2—C14ii139.75 (6)
Ni2—C15—H15120.4C15ii—Ni2—C14ii40.25 (6)
C15—C16—C17107.97 (14)C16—Ni2—C14ii112.97 (6)
C15—C16—Ni267.68 (8)C16ii—Ni2—C14ii67.03 (6)
C17—C16—Ni285.57 (9)C14—Ni2—C14ii180.000 (1)
C15—C16—H16126.0C15—Ni2—C1762.17 (6)
C17—C16—H16126.0C15ii—Ni2—C17117.83 (6)
Ni2—C16—H16112.9C16—Ni2—C1736.59 (6)
C22—C17—C18120.18 (18)C16ii—Ni2—C17143.41 (6)
C22—C17—C16132.02 (17)C14—Ni2—C1761.50 (5)
C18—C17—C16107.78 (13)C14ii—Ni2—C17118.50 (5)
C22—C17—Ni2132.89 (11)C15—Ni2—C17ii117.83 (6)
C18—C17—Ni274.18 (8)C15ii—Ni2—C17ii62.17 (6)
C16—C17—Ni257.84 (8)C16—Ni2—C17ii143.41 (6)
C19—C18—C17119.91 (15)C16ii—Ni2—C17ii36.59 (6)
C19—C18—C14132.77 (15)C14—Ni2—C17ii118.50 (5)
C17—C18—C14107.31 (14)C14ii—Ni2—C17ii61.50 (5)
C19—C18—Ni2134.13 (11)C17—Ni2—C17ii180.000 (1)
C17—C18—Ni271.90 (9)C15—Ni2—C1861.93 (6)
C14—C18—Ni259.08 (7)C15ii—Ni2—C18118.07 (6)
C20—C19—C18118.66 (18)C16—Ni2—C1861.16 (6)
C20—C19—H19120.7C16ii—Ni2—C18118.84 (6)
C18—C19—H19120.7C14—Ni2—C1836.79 (5)
C21—C20—C19121.4 (2)C14ii—Ni2—C18143.21 (5)
C21—C20—H20119.3C17—Ni2—C1833.92 (5)
C19—C20—H20119.3C17ii—Ni2—C18146.08 (6)
C22—C21—C20121.16 (17)C15—Ni2—C18ii118.07 (6)
C22—C21—H21119.4C15ii—Ni2—C18ii61.93 (6)
C20—C21—H21119.4C16—Ni2—C18ii118.84 (6)
C21—C22—C17118.71 (19)C16ii—Ni2—C18ii61.16 (6)
C21—C22—H22120.6C14—Ni2—C18ii143.21 (5)
C17—C22—H22120.6C14ii—Ni2—C18ii36.79 (5)
C14—C23—C25112.06 (13)C17—Ni2—C18ii146.08 (5)
C14—C23—C26110.38 (13)C17ii—Ni2—C18ii33.92 (5)
C25—C23—C26108.07 (13)C18—Ni2—C18ii180.000 (1)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C13H15)2]
Mr401.21
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)9.8116 (5), 10.9631 (7), 11.1658 (7)
α, β, γ (°)68.800 (6), 67.085 (5), 85.212 (4)
V3)1029.10 (11)
Z2
Radiation typeCu Kα
µ (mm1)1.38
Crystal size (mm)0.11 × 0.07 × 0.04
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3 Gemini ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.675, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8813, 3283, 2838
Rint0.022
(sin θ/λ)max1)0.576
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.075, 1.07
No. of reflections3283
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.25

Computer programs: CrysAlis CCD (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SIR92 (Giacovazzo et al., 1994), SHELXL97 (Sheldrick, 2008), SCHAKAL99 (Keller, 1999), publCIF (Westrip, 2010).

 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBönnemann, H. (1985). Angew. Chem. Int. Ed. 24, 248-262.  Google Scholar
First citationCaddy, P., Green, M., Smart, L. E. & White, N. (1978). J. Chem. Soc. Chem. Commun. 19, 839–841.  CrossRef Web of Science Google Scholar
First citationElschenbroich, Ch. (2008). Organometallchemie, 6th ed, p. 463. Wiesbaden: Teubner.  Google Scholar
First citationFontaine, F.-G. & Zargarian, D. (2004). J. Am. Chem. Soc. 126, 8786–8794.  Web of Science CrossRef CAS Google Scholar
First citationGou, S., Hauptmann, R., Belaj, F. & Schneider, J. J. (2007). Z. Kristallogr. New Cryst. Struct. 222, 363-634.  Google Scholar
First citationKeller, E. (1999). SCHAKAL99. University of Freiburg, Germany.  Google Scholar
First citationMarder, T. B., Roe, D. C. & Milstein, D. (1988). Organometallics, 7, 1451–1453.  CrossRef CAS Google Scholar
First citationO'Connor, J. M. & Casey, C. P. (1987). Chem. Rev. 87, 307–318.  CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRerek, M. E. & Basolo, F. (1984). J. Am. Chem. Soc. 106, 5908–5912.  CrossRef CAS Web of Science Google Scholar
First citationRerek, M. E., Ji, L.-N. & Basolo, F. (1983). J. Chem. Soc. Chem. Commun. pp. 1208–1209.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTuraki, N. N., Huggins, J. M. & Lebioda, L. (1988). Inorg. Chem. 27, 424–427.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, L.-Z., Sun, H.-M., Hu, D.-M., Liu, Z.-H., Shen, Q. & Zhang, Y. (2009). Polyhedron, 28, 2585–2590.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds