metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1258-m1259

[2-((R)-{2-[(S)-1-Benzylpyrrolidin-2-ylcarbonylazanidyl]­phen­yl}(phen­yl)methyl­­idene­amino)-4-hy­dr­oxy­butano­ato-κ4N,N′,N′′,O1]nickel(II) toluene disolvate

aDepartment of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic, and bDepartment of Chemistry and Environmental Technology, Faculty of Technology, Tomas Bata University in Zlín, nám T. G. Masaryka 275, 762 72 Zlín, Czech Republic
*Correspondence e-mail: milan.nadvornik@upce.cz

(Received 14 July 2011; accepted 2 August 2011; online 17 August 2011)

The central Ni atom in the title compound, [Ni(C29H29N3O4)]·2C7H8, is coordinated in a distorted square-planar environment by three N atoms [Ni—N = 1.942 (3), 1.843 (3) and 1.853 (3) Å] and one O atom [1.868 (3) Å] of the tetradentate ligand. The conformation of the hy­droxy­butano­ate side chain is controlled by an inter­molecular hydrogen bond.

Related literature

For the synthesis of similar complexes and their potential use as radiotracers, see: Bourdier et al. (2011[Bourdier, T., Shepherd, R., Berghofer, P., Jackson, T., Fookes, C. J. R., Denoyer, D., Dorow, D. S., Greguric, I., Gregoire, M. C., Hicks, R. & Katsifis, A. (2011). J. Med. Chem. 54, 1860-1870.]); Fasth & Långström (1990[Fasth, K. J. & Långström, B. (1990). Acta Chem. Scand. 44, 720-725.]); Kožíšek et al. (2004[Kožíšek, J., Fronc, M., Skubák, P., Popkov, A., Breza, M., Fuess, H. & Paulmann, C. (2004). Acta Cryst. A60, 510-516.]); Langer et al. (2007[Langer, V., Popkov, A., Nádvorník, M. & Lyčka, A. (2007). Polyhedron, 26, 911-917.]); Popkov & Breza (2010[Popkov, A. & Breza, M. (2010). J. Radioanal. Nucl. Chem. 286, 829-833.]); Popkov et al. (2005[Popkov, A., Císařová, I., Sopková, J., Jirman, J., Lyčka, A. & Kochetkov, K. A. (2005). Collect. Czech. Chem. Commun. 70, 1397-1410.], 2008[Popkov, A., Nádvorník, M. & Kožíšek, J. (2008). Acta Cryst. E64, m364-m365.], 2010[Popkov, A., Hanusek, J., Čermák, J., Langer, V., Jirásko, R., Holčapek, M. & Nádvorník, M. (2010). J. Radioanal. Nucl. Chem. 285, 621-626.]); Nádvorník et al. (2008[Nádvorník, M., Langer, V., Jirásko, R., Holčapek, M., Weidlich, T., Lyčka, A. & Popkov, A. (2008). Polyhedron, 27, 3477-3483.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C29H29N3O4)]·2C7H8

  • Mr = 726.53

  • Orthorhombic, P 21 21 21

  • a = 11.2660 (14) Å

  • b = 12.8570 (9) Å

  • c = 24.527 (3) Å

  • V = 3552.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 150 K

  • 0.36 × 0.23 × 0.20 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • Absorption correction: gaussian (Coppens, 1970[Coppens, P. (1970). In Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.]) Tmin = 0.852, Tmax = 0.924

  • 21133 measured reflections

  • 7165 independent reflections

  • 6170 reflections with I > 2σ(I)

  • Rint = 0.103

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.142

  • S = 1.01

  • 7165 reflections

  • 461 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.44 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3089 Friedel pairs

  • Flack parameter: 0.000 (17)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3i 0.82 1.94 2.720 (5) 159
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{5\over 2}}, -z+2].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. (1998). COLLECT. Enraf-Nonius, Delft, The Netherlands.]) and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); cell refinement: COLLECT and DENZO; data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Substituted Ni(II) complexes of Schiff bases derived from (S)-N-(2-benzoylphenyl)-1-benzylpyrrolidine-2-carboxamide and α-amino acids are intermediates for the synthesis of radiotracers for positron emission tomography (Fasth & Långström 1990, Popkov et al., 2010). In the search for efficient and cheap radiotracers new approaches employing ω-labelled amino acids are being developed (Bourdier et al., 2011). We published the first structure of a complex bearing a hydroxy group in ω-position of the amino acid fragment side chain (Popkov et al., 2008), which was used for MP2 modelling and topological QTAIM analysis of reactivity of the complexes in alkylation reactions (Popkov & Breza, 2010). The absolute configuration of the chiral centres of this diastereomer is SS. Due to our interest in chiral nickel (II) complexes suitable for charge density studies (Kožíšek et al., 2004), we intended to compare charge densities of two diastereomers of the same complex. In this communication we describe structure of the SR-diastereomer {2-[(R)-({2-(S)-1- benzylpyrrolidine-2-carboxamido]phenyl}(phenyl)methyleneamino]-4- hydroxybutanoato-κN-4,N',N'',O} nickel(II) (Ni(II) complex of the Schiff base from (S)-N-(2-benzoylphenyl)-1-benzylpyrrolidine-2-carboxamide and (R)-2-amino-4-hydroxybutanoic acid), which is a candidate for charge density measurement. Structures of the two diastereomers differ a lot. Like in complexes derived from quaternary α-amino acids (Langer et al., 2007) in the SR-diastereomer steric repulsion of the benzyl group and the side chain is very strong. It compensates steric factors which distort the coordination plane of the SS-complex and the SR-complex is approaching an ideal square-planar coordination. Unlike the SS -diastereomer where the hydrogen bond O4—H4AW···O3 is intramolecular, in the SR-complex a bond O2—H2···O3 is intermolecular. In both diastereomers the benzyl group is in apical position towards the nickel atom.

Related literature top

For the synthesis of similar complexes and their potential use as radiotracers, see: Bourdier et al. (2011); Fasth & Långström (1990); Kožíšek et al. (2004); Langer et al. (2007); Popkov & Breza (2010); Popkov et al. (2005, 2008, 2010); Nádvorník et al. (2008).

Experimental top

{2-[(R)-({2-(S)-1-benzylpyrrolidine-2-carboxamido]phenyl}(phenyl)methyleneamino]-4-hydroxybutanoato-κN-4,N',N'',O} nickel(II) was chromatographically isolated as the minor diastereomer (4% yield) in the synthesis of {2-[(S)-({2-(S)-1-benzylpyrrolidine-2-carboxamido]phenyl} (phenyl)methylene)amino]-4-hydroxybutanoato-κN-4,N',N'',O} nickel(II) (Popkov et al., 2008). Crystals suitable for X-ray diffraction were prepared by crystallization from toluene-methanol (2:1) by slow evaporation at room temperature.

Refinement top

All hydrogen atoms were discernible in the difference electron density map. However, all hydrogen atoms were situated into idealized positions and refined riding on their parent C or O atoms, with O—H = 0.82 Å, C—H = 0.97 Å for methylene, 0.96 Å for methine, 0.93 Å for aromatic H atoms, with U(H) = 1.2Ueq(O) for the alcohol and U(H) = 1.5Ueq(C) for other H atoms, respectively.

Computing details top

Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); cell refinement: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); data reduction: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids shown at the 50% probability level. H atoms are shown with arbitrary radii.
[Figure 2] Fig. 2. View of the motif of the crystal structure with hydrogen bonds indicated as dashed lines.
[2-((R)-{2-[(S)-1-Benzylpyrrolidin-2- ylcarbonylazanidyl]phenyl}(phenyl)methylideneamino)-4-hydroxybutanoato- κ4N,N',N'',O1]nickel(II) toluene disolvate top
Crystal data top
[Ni(C29H29N3O4)]·2C7H8F(000) = 1536
Mr = 726.53Dx = 1.358 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 21280 reflections
a = 11.2660 (14) Åθ = 1–26.5°
b = 12.8570 (9) ŵ = 0.60 mm1
c = 24.527 (3) ÅT = 150 K
V = 3552.7 (6) Å3Block, red
Z = 40.36 × 0.23 × 0.20 mm
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
7165 independent reflections
Radiation source: fine-focus sealed tube6170 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.103
Detector resolution: 9.091 pixels mm-1θmax = 26.5°, θmin = 2.0°
ϕ and ω scans to fill the Ewald sphereh = 1314
Absorption correction: gaussian
(Coppens, 1970)
k = 1516
Tmin = 0.852, Tmax = 0.924l = 2730
21133 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0456P)2 + 5.8181P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
7165 reflectionsΔρmax = 0.41 e Å3
461 parametersΔρmin = 0.44 e Å3
0 restraintsAbsolute structure: Flack (1983), 3089 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.000 (17)
Crystal data top
[Ni(C29H29N3O4)]·2C7H8V = 3552.7 (6) Å3
Mr = 726.53Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.2660 (14) ŵ = 0.60 mm1
b = 12.8570 (9) ÅT = 150 K
c = 24.527 (3) Å0.36 × 0.23 × 0.20 mm
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
7165 independent reflections
Absorption correction: gaussian
(Coppens, 1970)
6170 reflections with I > 2σ(I)
Tmin = 0.852, Tmax = 0.924Rint = 0.103
21133 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.142Δρmax = 0.41 e Å3
S = 1.01Δρmin = 0.44 e Å3
7165 reflectionsAbsolute structure: Flack (1983), 3089 Friedel pairs
461 parametersAbsolute structure parameter: 0.000 (17)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.41796 (4)0.96012 (4)0.967796 (19)0.02409 (13)
O40.4291 (3)1.1043 (2)0.97576 (11)0.0313 (6)
N30.5515 (3)0.9687 (3)0.92463 (12)0.0243 (6)
N10.2795 (3)0.9604 (3)1.01498 (12)0.0276 (7)
N20.4009 (3)0.8177 (2)0.95941 (13)0.0254 (7)
C120.5905 (4)0.9023 (3)0.88878 (14)0.0252 (8)
C220.4189 (4)0.9437 (3)1.09551 (14)0.0308 (9)
C50.3250 (4)0.7761 (3)0.99831 (16)0.0292 (9)
C280.7135 (3)1.0520 (3)0.97481 (17)0.0287 (8)
H28A0.75610.98910.96520.034*
H28B0.67821.04101.01040.034*
O30.5443 (3)1.2393 (2)0.95379 (13)0.0366 (7)
O10.3252 (3)0.6883 (2)1.01642 (12)0.0355 (7)
C200.5239 (4)1.1452 (3)0.95497 (16)0.0297 (9)
C40.2299 (4)0.8524 (3)1.01382 (16)0.0285 (9)
H40.19640.83441.04950.034*
C90.5605 (4)0.6291 (4)0.83845 (17)0.0336 (10)
H90.59330.58840.81100.040*
C190.6139 (3)1.0688 (3)0.93337 (16)0.0250 (8)
H190.64681.09390.89880.030*
C230.5277 (4)0.9944 (4)1.09517 (18)0.0384 (11)
H230.53281.05941.07870.046*
C210.3124 (4)0.9958 (3)1.07169 (16)0.0330 (10)
H21A0.24530.98361.09560.040*
H21B0.32681.07021.07090.040*
C110.5450 (4)0.7964 (3)0.88514 (15)0.0255 (8)
C60.4583 (3)0.7542 (3)0.92145 (15)0.0250 (8)
C80.4775 (4)0.5876 (3)0.87468 (18)0.0349 (10)
H80.45490.51830.87150.042*
C130.6839 (4)0.9361 (3)0.84898 (16)0.0278 (9)
O20.8883 (3)1.1086 (3)1.01775 (18)0.0631 (12)
H20.94141.15221.01820.076*
C70.4286 (4)0.6479 (3)0.91515 (17)0.0323 (9)
H70.37440.61820.93910.039*
C180.8040 (4)0.9271 (4)0.85954 (17)0.0359 (10)
H180.83000.89550.89150.043*
C30.1311 (4)0.8533 (4)0.97001 (19)0.0373 (10)
H3A0.05550.83290.98560.045*
H3B0.15020.80610.94040.045*
C270.4135 (5)0.8469 (4)1.12086 (16)0.0364 (10)
H270.34160.81141.12180.044*
C100.5920 (4)0.7317 (3)0.84435 (15)0.0304 (8)
H100.64760.75930.82040.037*
C20.1265 (5)0.9646 (5)0.94919 (19)0.0473 (12)
H2A0.04510.98550.94230.057*
H2B0.17180.97230.91580.057*
C140.6456 (4)0.9796 (4)0.79975 (16)0.0384 (11)
H140.56480.98430.79230.046*
C250.6204 (4)0.8544 (4)1.14307 (18)0.0402 (11)
H250.68740.82401.15840.048*
C10.1801 (4)1.0286 (4)0.99426 (18)0.0382 (10)
H1A0.21031.09430.98060.046*
H1B0.12251.04211.02280.046*
C150.7278 (5)1.0161 (4)0.7621 (2)0.0490 (13)
H150.70221.04490.72940.059*
C260.5126 (5)0.8026 (4)1.14463 (19)0.0405 (11)
H260.50670.73811.16160.049*
C170.8863 (4)0.9650 (4)0.82149 (18)0.0422 (11)
H170.96720.96090.82880.051*
C320.8207 (5)0.5005 (5)0.7516 (2)0.0555 (14)
H320.87000.55590.76080.067*
C310.7956 (7)0.4249 (5)0.7887 (2)0.0687 (18)
H310.83280.42670.82260.082*
C160.8479 (5)1.0092 (4)0.7733 (2)0.0502 (14)
H160.90271.03480.74830.060*
C240.6281 (5)0.9516 (5)1.11859 (19)0.0475 (12)
H240.69960.98761.11790.057*
C290.7998 (5)1.1393 (4)0.9789 (2)0.0536 (15)
H29A0.76021.20230.99080.064*
H29B0.83611.15230.94370.064*
C300.7161 (6)0.3442 (5)0.7772 (2)0.0616 (16)
C350.6702 (6)0.3399 (5)0.7253 (3)0.0666 (17)
H350.61960.28570.71580.080*
C330.7705 (6)0.4941 (5)0.6997 (2)0.0623 (16)
H330.78870.54370.67340.075*
C340.6963 (6)0.4156 (6)0.6886 (3)0.0674 (18)
H340.66290.41190.65390.081*
C420.7867 (9)0.7455 (5)0.6131 (3)0.078 (2)
H420.73210.74700.58470.094*
C380.8331 (8)0.7707 (5)0.7070 (3)0.076 (2)
H380.80890.78790.74200.092*
C390.9515 (8)0.7540 (6)0.6966 (3)0.081 (2)
H391.00610.75600.72500.097*
C410.9073 (9)0.7280 (5)0.6024 (3)0.082 (2)
H410.93180.71100.56740.098*
C370.7498 (8)0.7643 (5)0.6665 (3)0.074 (2)
C400.9906 (8)0.7345 (6)0.6443 (3)0.084 (2)
H401.07100.72510.63730.101*
C360.6855 (11)0.2664 (8)0.8205 (3)0.120 (4)
H36A0.74920.21730.82400.144*
H36B0.67440.30200.85450.144*
H36C0.61380.23030.81100.144*
C430.6229 (9)0.7779 (9)0.6775 (4)0.113 (3)
H43A0.61250.83590.70170.136*
H43B0.58120.79090.64410.136*
H43C0.59200.71620.69430.136*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0244 (2)0.0219 (2)0.0260 (2)0.0005 (2)0.0026 (2)0.0001 (2)
O40.0314 (15)0.0260 (13)0.0366 (15)0.0005 (13)0.0081 (14)0.0015 (12)
N30.0293 (17)0.0172 (14)0.0264 (14)0.0012 (14)0.0020 (12)0.0002 (13)
N10.0286 (16)0.0262 (16)0.0278 (15)0.0026 (16)0.0002 (12)0.0028 (15)
N20.0241 (17)0.0251 (16)0.0269 (16)0.0012 (14)0.0002 (14)0.0004 (13)
C120.0227 (18)0.0280 (19)0.0249 (17)0.0030 (17)0.0036 (16)0.0019 (15)
C220.033 (2)0.036 (2)0.0242 (17)0.000 (2)0.0026 (17)0.0118 (16)
C50.029 (2)0.034 (2)0.0252 (19)0.0097 (19)0.0021 (16)0.0007 (17)
C280.0259 (18)0.0228 (19)0.037 (2)0.0020 (16)0.0009 (16)0.0007 (18)
O30.0333 (15)0.0251 (14)0.0513 (18)0.0014 (13)0.0081 (13)0.0002 (13)
O10.0424 (17)0.0281 (15)0.0361 (16)0.0066 (14)0.0027 (13)0.0037 (12)
C200.028 (2)0.028 (2)0.033 (2)0.0009 (17)0.0005 (16)0.0019 (17)
C40.0244 (19)0.032 (2)0.0289 (19)0.0059 (18)0.0058 (16)0.0022 (17)
C90.030 (2)0.036 (2)0.034 (2)0.0021 (19)0.0030 (17)0.0102 (18)
C190.027 (2)0.0195 (18)0.0288 (18)0.0062 (15)0.0059 (15)0.0010 (14)
C230.042 (3)0.043 (3)0.031 (2)0.006 (2)0.0013 (19)0.0049 (19)
C210.034 (2)0.034 (2)0.030 (2)0.0008 (19)0.0052 (18)0.0081 (17)
C110.0265 (19)0.0271 (19)0.0227 (17)0.0013 (16)0.0039 (15)0.0017 (15)
C60.0222 (17)0.0238 (19)0.0289 (19)0.0008 (16)0.0035 (15)0.0009 (16)
C80.034 (2)0.030 (2)0.041 (2)0.0021 (19)0.0030 (19)0.0095 (19)
C130.032 (2)0.0209 (19)0.0301 (19)0.0032 (17)0.0037 (17)0.0023 (15)
O20.051 (2)0.0374 (18)0.101 (3)0.0065 (17)0.039 (2)0.0001 (19)
C70.033 (2)0.028 (2)0.036 (2)0.0074 (19)0.0013 (19)0.0014 (16)
C180.034 (2)0.045 (3)0.029 (2)0.001 (2)0.0042 (18)0.0009 (18)
C30.0254 (19)0.051 (3)0.035 (2)0.0065 (19)0.000 (2)0.003 (2)
C270.037 (2)0.040 (2)0.032 (2)0.001 (2)0.000 (2)0.0053 (18)
C100.028 (2)0.034 (2)0.0292 (19)0.001 (2)0.0037 (17)0.0026 (16)
C20.042 (3)0.059 (3)0.041 (2)0.007 (3)0.006 (2)0.004 (3)
C140.038 (2)0.050 (3)0.027 (2)0.003 (2)0.0023 (18)0.003 (2)
C250.042 (3)0.047 (3)0.031 (2)0.006 (2)0.0071 (19)0.008 (2)
C10.032 (2)0.037 (2)0.045 (2)0.005 (2)0.0045 (19)0.004 (2)
C150.051 (3)0.060 (3)0.036 (2)0.001 (3)0.007 (2)0.015 (2)
C260.051 (3)0.039 (3)0.031 (2)0.004 (2)0.001 (2)0.001 (2)
C170.033 (2)0.049 (3)0.046 (2)0.004 (2)0.0067 (18)0.003 (2)
C320.048 (3)0.062 (4)0.057 (3)0.008 (3)0.002 (3)0.013 (3)
C310.093 (5)0.068 (4)0.045 (3)0.007 (4)0.010 (3)0.013 (3)
C160.053 (3)0.058 (3)0.040 (3)0.009 (3)0.014 (2)0.010 (2)
C240.046 (3)0.058 (3)0.039 (2)0.011 (3)0.001 (2)0.015 (2)
C290.044 (3)0.041 (3)0.076 (4)0.014 (2)0.031 (3)0.014 (3)
C300.075 (4)0.052 (3)0.059 (3)0.004 (3)0.007 (3)0.002 (3)
C350.065 (4)0.065 (4)0.070 (4)0.019 (3)0.010 (3)0.001 (3)
C330.066 (4)0.066 (4)0.054 (3)0.013 (3)0.004 (3)0.001 (3)
C340.057 (4)0.091 (5)0.054 (3)0.016 (3)0.014 (3)0.004 (3)
C420.119 (7)0.060 (4)0.056 (4)0.000 (4)0.008 (4)0.002 (3)
C380.113 (6)0.057 (4)0.059 (4)0.008 (4)0.002 (4)0.003 (3)
C390.107 (6)0.081 (5)0.056 (4)0.009 (5)0.010 (4)0.002 (4)
C410.135 (7)0.054 (4)0.057 (4)0.020 (5)0.003 (5)0.006 (3)
C370.110 (6)0.053 (4)0.059 (4)0.001 (4)0.011 (4)0.003 (3)
C400.116 (7)0.072 (5)0.064 (4)0.018 (5)0.005 (4)0.003 (4)
C360.179 (11)0.097 (7)0.084 (6)0.008 (7)0.013 (6)0.030 (5)
C430.126 (9)0.130 (9)0.083 (5)0.025 (7)0.017 (5)0.018 (5)
Geometric parameters (Å, º) top
Ni1—N31.843 (3)C27—H270.9299
Ni1—N21.853 (3)C10—H100.9299
Ni1—O41.868 (3)C2—C11.504 (7)
Ni1—N11.942 (3)C2—H2A0.9699
O4—C201.294 (5)C2—H2B0.9700
N3—C121.302 (5)C14—C151.390 (7)
N3—C191.482 (5)C14—H140.9300
N1—C41.498 (5)C25—C261.385 (7)
N1—C11.510 (5)C25—C241.388 (8)
N1—C211.510 (5)C25—H250.9301
N2—C51.388 (5)C1—H1A0.9700
N2—C61.396 (5)C1—H1B0.9700
C12—C111.458 (6)C15—C161.383 (8)
C12—C131.500 (5)C15—H150.9300
C22—C231.389 (6)C26—H260.9301
C22—C271.392 (6)C17—C161.381 (7)
C22—C211.493 (6)C17—H170.9300
C5—O11.213 (5)C32—C311.361 (9)
C5—C41.502 (6)C32—C331.395 (8)
C28—C291.487 (6)C32—H320.9300
C28—C191.530 (5)C31—C301.400 (9)
C28—H28A0.9699C31—H310.9301
C28—H28B0.9699C16—H160.9301
O3—C201.232 (5)C24—H240.9300
C20—C191.508 (6)C29—H29A0.9701
C4—C31.547 (6)C29—H29B0.9700
C4—H40.9798C30—C351.374 (9)
C9—C101.374 (6)C30—C361.500 (9)
C9—C81.395 (6)C35—C341.359 (9)
C9—H90.9300C35—H350.9300
C19—H190.9800C33—C341.338 (9)
C23—C241.383 (7)C33—H330.9301
C23—H230.9300C34—H340.9299
C21—H21A0.9699C42—C411.402 (12)
C21—H21B0.9700C42—C371.393 (10)
C11—C101.405 (6)C42—H420.9301
C11—C61.429 (5)C38—C371.369 (10)
C6—C71.415 (5)C38—C391.375 (11)
C8—C71.375 (6)C38—H380.9300
C8—H80.9299C39—C401.378 (10)
C13—C181.382 (6)C39—H390.9300
C13—C141.399 (6)C41—C401.394 (11)
O2—C291.434 (6)C41—H410.9300
O2—H20.8199C37—C431.466 (12)
C7—H70.9299C40—H400.9300
C18—C171.403 (6)C36—H36A0.9601
C18—H180.9300C36—H36B0.9601
C3—C21.521 (7)C36—H36C0.9600
C3—H3A0.9700C43—H43A0.9599
C3—H3B0.9701C43—H43B0.9601
C27—C261.383 (7)C43—H43C0.9599
N3—Ni1—N294.59 (14)C9—C10—H10118.3
N3—Ni1—O486.88 (14)C11—C10—H10118.6
N2—Ni1—O4177.89 (15)C1—C2—C3104.7 (4)
N3—Ni1—N1176.16 (15)C1—C2—H2A110.8
N2—Ni1—N189.15 (14)C3—C2—H2A110.6
O4—Ni1—N189.41 (14)C1—C2—H2B110.7
C20—O4—Ni1114.7 (3)C3—C2—H2B111.2
C12—N3—C19120.5 (3)H2A—C2—H2B108.8
C12—N3—Ni1128.6 (3)C15—C14—C13120.2 (5)
C19—N3—Ni1110.8 (2)C15—C14—H14120.0
C4—N1—C1104.7 (3)C13—C14—H14119.9
C4—N1—C21112.9 (3)C26—C25—C24120.0 (5)
C1—N1—C21108.5 (3)C26—C25—H25119.8
C4—N1—Ni1106.6 (2)C24—C25—H25120.2
C1—N1—Ni1113.4 (2)C2—C1—N1103.2 (4)
C21—N1—Ni1110.7 (3)C2—C1—H1A111.3
C5—N2—C6121.2 (3)N1—C1—H1A111.1
C5—N2—Ni1111.6 (3)C2—C1—H1B111.1
C6—N2—Ni1127.1 (3)N1—C1—H1B110.9
N3—C12—C11122.4 (4)H1A—C1—H1B109.1
N3—C12—C13119.1 (3)C16—C15—C14119.9 (5)
C11—C12—C13118.5 (3)C16—C15—H15120.1
C23—C22—C27117.4 (4)C14—C15—H15120.0
C23—C22—C21119.7 (4)C27—C26—C25119.9 (5)
C27—C22—C21122.7 (4)C27—C26—H26119.9
O1—C5—N2127.5 (4)C25—C26—H26120.3
O1—C5—C4121.1 (4)C16—C17—C18120.3 (5)
N2—C5—C4111.2 (3)C16—C17—H17119.7
C29—C28—C19114.7 (3)C18—C17—H17120.0
C29—C28—H28A108.8C31—C32—C33118.9 (6)
C19—C28—H28A108.6C31—C32—H32120.6
C29—C28—H28B108.5C33—C32—H32120.5
C19—C28—H28B108.5C32—C31—C30121.8 (6)
H28A—C28—H28B107.5C32—C31—H31119.1
O3—C20—O4124.2 (4)C30—C31—H31119.1
O3—C20—C19120.4 (4)C15—C16—C17120.2 (5)
O4—C20—C19115.4 (3)C15—C16—H16119.7
N1—C4—C5110.1 (3)C17—C16—H16120.0
N1—C4—C3106.0 (3)C23—C24—C25119.2 (5)
C5—C4—C3110.0 (3)C23—C24—H24120.2
N1—C4—H4110.2C25—C24—H24120.7
C5—C4—H4110.3O2—C29—C28107.0 (4)
C3—C4—H4110.1O2—C29—H29A110.5
C10—C9—C8118.2 (4)C28—C29—H29A110.5
C10—C9—H9120.9O2—C29—H29B110.2
C8—C9—H9120.8C28—C29—H29B110.2
N3—C19—C20107.3 (3)H29A—C29—H29B108.5
N3—C19—C28108.8 (3)C35—C30—C31117.3 (6)
C20—C19—C28110.6 (3)C35—C30—C36122.8 (7)
N3—C19—H19109.9C31—C30—C36119.8 (7)
C20—C19—H19110.1C34—C35—C30120.2 (6)
C28—C19—H19110.1C34—C35—H35120.2
C24—C23—C22122.2 (5)C30—C35—H35119.6
C24—C23—H23119.2C34—C33—C32119.0 (6)
C22—C23—H23118.6C34—C33—H33120.8
C22—C21—N1115.0 (3)C32—C33—H33120.2
C22—C21—H21A108.4C33—C34—C35122.6 (6)
N1—C21—H21A108.6C33—C34—H34118.6
C22—C21—H21B108.4C35—C34—H34118.7
N1—C21—H21B108.7C41—C42—C37119.5 (7)
H21A—C21—H21B107.5C41—C42—H42120.2
C10—C11—C6118.5 (4)C37—C42—H42120.2
C10—C11—C12117.6 (4)C37—C38—C39121.5 (7)
C6—C11—C12123.8 (4)C37—C38—H38119.0
N2—C6—C7121.9 (4)C39—C38—H38119.6
N2—C6—C11120.7 (3)C38—C39—C40120.6 (8)
C7—C6—C11117.4 (4)C38—C39—H39119.9
C7—C8—C9120.9 (4)C40—C39—H39119.5
C7—C8—H8119.4C42—C41—C40120.3 (7)
C9—C8—H8119.7C42—C41—H41120.0
C18—C13—C14119.8 (4)C40—C41—H41119.7
C18—C13—C12122.7 (4)C38—C37—C42119.1 (8)
C14—C13—C12117.4 (4)C38—C37—C43121.8 (7)
C29—O2—H2109.1C42—C37—C43119.0 (8)
C8—C7—C6121.9 (4)C39—C40—C41118.8 (9)
C8—C7—H7119.2C39—C40—H40120.4
C6—C7—H7118.9C41—C40—H40120.8
C13—C18—C17119.5 (4)C30—C36—H36A109.3
C13—C18—H18120.2C30—C36—H36B109.2
C17—C18—H18120.3H36A—C36—H36B109.5
C2—C3—C4105.4 (4)C30—C36—H36C110.0
C2—C3—H3A110.9H36A—C36—H36C109.5
C4—C3—H3A110.9H36B—C36—H36C109.4
C2—C3—H3B110.2C37—C43—H43A109.0
C4—C3—H3B110.8C37—C43—H43B109.9
H3A—C3—H3B108.7H43A—C43—H43B109.5
C26—C27—C22121.4 (5)C37—C43—H43C109.5
C26—C27—H27119.4H43A—C43—H43C109.5
C22—C27—H27119.2H43B—C43—H43C109.5
C9—C10—C11123.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.821.942.720 (5)159
Symmetry code: (i) x+1/2, y+5/2, z+2.

Experimental details

Crystal data
Chemical formula[Ni(C29H29N3O4)]·2C7H8
Mr726.53
Crystal system, space groupOrthorhombic, P212121
Temperature (K)150
a, b, c (Å)11.2660 (14), 12.8570 (9), 24.527 (3)
V3)3552.7 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.36 × 0.23 × 0.20
Data collection
DiffractometerBruker–Nonius KappaCCD area-detector
diffractometer
Absorption correctionGaussian
(Coppens, 1970)
Tmin, Tmax0.852, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
21133, 7165, 6170
Rint0.103
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.142, 1.01
No. of reflections7165
No. of parameters461
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.44
Absolute structureFlack (1983), 3089 Friedel pairs
Absolute structure parameter0.000 (17)

Computer programs: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.821.942.720 (5)158.8
Symmetry code: (i) x+1/2, y+5/2, z+2.
 

Acknowledgements

ZP and MN thank the Ministry of Education, Youth and Sports of the Czech Republic for financial support of this work within the framework of research project MSM 0021627501.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBourdier, T., Shepherd, R., Berghofer, P., Jackson, T., Fookes, C. J. R., Denoyer, D., Dorow, D. S., Greguric, I., Gregoire, M. C., Hicks, R. & Katsifis, A. (2011). J. Med. Chem. 54, 1860–1870.  Google Scholar
First citationCoppens, P. (1970). In Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.  Google Scholar
First citationFasth, K. J. & Långström, B. (1990). Acta Chem. Scand. 44, 720–725.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. W. (1998). COLLECT. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationKožíšek, J., Fronc, M., Skubák, P., Popkov, A., Breza, M., Fuess, H. & Paulmann, C. (2004). Acta Cryst. A60, 510–516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLanger, V., Popkov, A., Nádvorník, M. & Lyčka, A. (2007). Polyhedron, 26, 911–917.  Web of Science CSD CrossRef CAS Google Scholar
First citationNádvorník, M., Langer, V., Jirásko, R., Holčapek, M., Weidlich, T., Lyčka, A. & Popkov, A. (2008). Polyhedron, 27, 3477–3483.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPopkov, A. & Breza, M. (2010). J. Radioanal. Nucl. Chem. 286, 829–833.  Google Scholar
First citationPopkov, A., Císařová, I., Sopková, J., Jirman, J., Lyčka, A. & Kochetkov, K. A. (2005). Collect. Czech. Chem. Commun. 70, 1397–1410.  Web of Science CSD CrossRef CAS Google Scholar
First citationPopkov, A., Hanusek, J., Čermák, J., Langer, V., Jirásko, R., Holčapek, M. & Nádvorník, M. (2010). J. Radioanal. Nucl. Chem. 285, 621–626.  Web of Science CrossRef CAS Google Scholar
First citationPopkov, A., Nádvorník, M. & Kožíšek, J. (2008). Acta Cryst. E64, m364–m365.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1258-m1259
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds