organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2542-o2543

1-Methyl-4-(4-nitro­benzo­yl)pyridinium perchlorate

aUFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstrasse 15, D-04318 Leipzig, Germany, and bInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: edwin.weber@chemie.tu-freiberg.de

(Received 18 August 2011; accepted 25 August 2011; online 31 August 2011)

In the main mol­ecule of the title compound, C13H11N2O3+·ClO4, the two aromatic rings are twisted by 56.19 (3)° relative to each other and the nitro group is not coplanar with the benzene ring [36.43 (4)°]. The crystal packing is dominated by infinite aromatic stacks in the a-axis direction. These are formed by the benzene units of the mol­ecule featuring an alternating arrangement, which explains the two different distances of 3.3860 (4) and 3.4907 (4) Å for the aromatic units (these are the perpendicular distances of the centroid of one aromatic ring on the mean plane of the other other aromatic ring). Adjacent stacks are connected by ππ stacking between two pyridinium units [3.5949 (4) Å] and weak C—H⋯O inter­actions. The perchlorate anions are accomodated in the lattice voids connected to the cation via weak C—H⋯O contacts between the O atoms of the anion and various aromatic as well as methyl H atoms.

Related literature

For an alternative synthesis and the electrochemical and host/guest characteristics of the title compound, see: Fischer (1973[Fischer, G. W. (1973). J. Prakt. Chem. 315, 901-908.]); Leventis et al. (2004a[Leventis, N., Meador, M. A. B., Zhang, G., Dass, A. & Sotiriou-Leventis, C. (2004a). J. Phys. Chem. B, 108, 11228-11235.],b[Leventis, N., Yang, J., Fabrizio, E. F., Rawashdeh, A.-M. M., Oh, W. S. & Sotiriou-Leventis, C. (2004b). J. Am. Chem. Soc. 126, 4094-4095.]); Rawashdeh et al. (2008[Rawashdeh, A.-M. M., Thangavel, A., Sotiriou-Leventis, C. & Leventis, N. (2008). Org. Lett. 10, 1131-1134.]). For related pyridinium ions, see: Kolev et al. (2001[Kolev, T., Yancheva, D., Kleb, D. C., Schürmann, M., Preut, H. & Bleckmann, P. (2001). Z. Kristallogr. New Cryst. Struct. 216, 65-66.], 2005[Kolev, T., Yancheva, D., Shivachev, B., Petrova, R. & Spiteller, M. (2005). Acta Cryst. C61, o213-o215.], 2006[Kolev, T., Stamboliyska, B. & Yancheva, D. (2006). Chem. Phys. 324, 489-496.]). For complexes of 4-benzoyl­pyridine with transistion metals, see: Araki et al. (2005[Araki, H., Tsuge, K., Sasaki, Y., Ishizaka, S. & Kitamura, N. (2005). Inorg. Chem. 44, 9667-9675.]); Mautner & Gohera (1998[Mautner, F. A. & Gohera, M. A. S. (1998). Polyhedron, 18, 553-559.]); Gohera & Mak (1998[Gohera, M. A. S. & Mak, T. C. W. (1998). Polyhedron, 17, 3485-3494.]); Escuer et al. (2000[Escuer, A., Mautner, F. A., Sanz, N. & Vicente, R. (2000). Inorg. Chem. 39, 1668-1673.]); Gohera & Mautner (1999[Gohera, M. A. S. & Mautner, F. A. (1999). Transition Met. Chem. 24, 693-696.]); Drew et al. (1985[Drew, M. G. B., Gray, N. I., Cabral, M. F. & Cabral, J. de O. (1985). Acta Cryst. C41, 1434-1437.]); Gotsis & White (1987[Gotsis, S. & White, A. H. (1987). Aust. J. Chem. C40, 1603-1608.]). Respective co-crystals and derivatives are discussed in Sugiyama et al. (2002a[Sugiyama, T., Meng, J. & Matsuura, T. (2002a). J. Mol. Struct. 611, 53-64.],b[Sugiyama, T., Meng, J. & Matsuura, T. (2002b). Mol. Cryst. Liq. Cryst. 389, 25-31.]) and Syed et al. (1984[Syed, A., Foss, L. I. & Stevens, E. D. (1984). Acta Cryst. C40, 834-836.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11N2O3+·ClO4

  • Mr = 342.69

  • Triclinic, [P \overline 1]

  • a = 7.9240 (3) Å

  • b = 7.9800 (3) Å

  • c = 12.6350 (6) Å

  • α = 105.980 (2)°

  • β = 104.119 (1)°

  • γ = 99.138 (1)°

  • V = 722.67 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 153 K

  • 0.45 × 0.39 × 0.15 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.875, Tmax = 0.919

  • 20599 measured reflections

  • 5199 independent reflections

  • 4759 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.092

  • S = 1.06

  • 5199 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O7i 0.95 2.60 3.478 (1) 153
C3—H3⋯O7ii 0.95 2.42 3.277 (1) 150
C5—H5⋯O4 0.95 2.51 3.394 (1) 154
C9—H9⋯O7iii 0.95 2.42 3.132 (1) 132
C10—H10⋯O3iv 0.95 2.52 3.392 (1) 153
C11—H11⋯O1v 0.95 2.43 3.200 (1) 138
C12—H12⋯O5vi 0.95 2.39 3.134 (1) 135
C13—H13A⋯O3iv 0.98 2.63 3.373 (1) 133
C13—H13B⋯O6vii 0.98 2.59 3.429 (1) 144
C13—H13C⋯O2viii 0.98 2.63 3.446 (1) 141
C13—H13C⋯O6 0.98 2.60 3.402 (1) 139
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x-1, y-1, z; (iii) x-1, y, z; (iv) x, y+1, z; (v) x, y, z-1; (vi) -x+1, -y, -z; (vii) -x+1, -y+1, -z; (viii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The development of nonlinear optical materials has attracted much attention in the last years. A typical representative consists of conjugated π-systems in which nonlinearities can be achieved by introduction of donor and acceptor substituents. A compound family with such properties relates to appropriately derivatized 4-benzoylpyridine and its respective pyridinium ions (Kolev et al., 2006), with the title compound (I) as an example. Its electrochemical (Leventis et al., 2004a,b) and host/guest (Rawashdeh et al., 2008) characteristics have already been reported earlier. However, considering research on the behaviour in the crystal state, only 4-benzoylpyridine as a mother compound was described so far in complexes with transition metals (Araki et al., 2005; Mautner & Gohera, 1998; Gohera & Mak, 1998; Escuer et al., 2000; Gohera & Mautner, 1999; Drew et al., 1985; Gotsis & White, 1987) as well as in co-crystals with various benzoic acids (Sugiyama et al., 2002a,b) and being derivatized with chlorine in the para position of the benzene ring (Syed et al., 1984). Structural studies on the respective benzoyl-pyridinium species are rather rare both featuring a squaric acid group at the nitrogen atom (Kolev et al., 2001; Kolev et al., 2005). As an extension to the literature, we present in this paper the synthesis and structure characteristics of N-methyl-4-(4-nitrobenzoyl)pyridinium perchlorate (I).

Compound (I) crystallizes from a mixture of ethanol and perchloric acid (20:3 v/v) as colourless crystals in the triclinic space group P-1 with one cation and one anion in the asymmetric unit (Fig. 1). No solvent is included in the crystal structure. In the perchlorate anion, the Cl—O bond distances [1.4337 (8)–1.4401 (8) Å] and O—Cl—O bond angles [108.89 (6)–110.12 (6)°] confirm a tetrahedral configuration. Considering the cation, the aromatic and the pyridinium ring are more or less planar with atoms C3 and C8 deviating as much as 0.0115 (6) and 0.0183 (6) Å from their respective meanplanes. Furthermore, the nitro group is not completely coplanar to the corresponding benzene ring [36.43 (4)°]. As anticipated, the central carbonyl part of the structure shows a high degree of planarity, though the overall cation adopts a twisted conformation to minimalize the repulsion between its two rings: torsion angles C5—C4—C7—C8 and C4—C7—C8—C9 are -23.70 (11) and -42.06 (11)°, respectively, and we observed a dihedral angle for the two rings of 56.19 (3)°.

The title compound lacks of donors for strong hydrogen bonds, thus the crystal packing is dominated by aromatic stacks in direction of the crystallographic a axis. These are formed by the slightly displaced and tilted benzene units of the molecule featuring an alternating arrangement, which explains the two different distances of 3.3860 (4) and 3.4907 (4) Å for the aromatic units (Fig. 2). Similar to the dimeric structure of the 4-benzoylpyridine in its monoprotonated form (Mautner & Gohera, 1998), adjacent stacks are connected by π-π-stacking between two pyridinium units [d = 3.5949 (4) Å] and weak C—H···O interactions [d(H···O) = 2.43–2.63 Å] involving two of the aromatic H atoms (H10, H11) and two methyl H atoms (H13A, H13C) on the one hand and the carbonyl oxygen (O3) as well as the two nitro O atoms (O1, O2) on the other hand. The perchlorate anions are accommodated in the lattice voids connected to the cation via weak C—H···O contacts between the O atoms of the anion and various aromatic as well as methyl H atoms.

In conclusion, the title compound, similar to the related compounds, shows a twisted conformation in the crystalline state [56.19 (3)°], in order to avoid sterical clash. It is interesting to note that another substituent at the benzene unit [p-chlorobenzoylpyridine (Syed et al., 1984)] produces a more similar dihedral angle (52.2°) than observed for the squaric acid derivative of benzoyl pyridinium (82.6°) (Kolev et al., 2005). Compared to them, the torsion angles of the title compound reveal a much higher twist of the carbonyl group and the two adjacent rings. Further investigation on the influence of different substituents at the benzene and pyridine entities will deliver more information about this interesting class of compounds.

Related literature top

For an alternative synthesis and the electrochemical and host/guest characteristics of the title compound, see: Fischer (1973); Leventis et al. (2004a,b); Rawashdeh et al. (2008). For related pyridinium ions, see: Kolev et al. (2001, 2005, 2006). For complexes of 4-benzoylpyridine with transistion metals, see: Araki et al. (2005); Mautner & Gohera (1998); Gohera & Mak (1998); Escuer et al. (2000); Gohera & Mautner (1999); Drew et al. (1985); Gotsis & White (1987). Respective co-crystals and derivatives are discussed in Sugiyama et al. (2002a,b) and Syed et al. (1984).

Experimental top

Following a procedure for the synthesis of N-methyl-4-(4-nitrobenzyl)pyridinium iodide described by Fischer (1973), we obtained the respective benzoyl species in a two-step synthesis.

To a stirred solution of 2.14 g (10 mmol) 4-(4-nitrobenzyl)pyridine in 20 ml toluene, 2.50 g (17.6 mmol) methyl iodide were added. While heating under reflux for 30 min, the colour of the solution changed from yellow to purple, and a solid precipitated, which was collected and recrystallized from acetone/methanol (1:1 v/v). After several days, N-Methyl-4-(4-nitrobenzoyl)pyridinium iodide could be harvested as deep red crystals (1.65 g, 45%). M.p. 484–485 K. A solution of 1.0 g (2.7 mmol) of N-Methyl-4-(4-nitrobenzoyl)pyridinium iodide in 100 ml ethanol was reacted with 15 ml perchloric acid (70%) (Caution!) to yield colourless crystals of the title compound after four weeks (230 mg, 25%). M.p. 464–465 K.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl, and C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aryl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of (I). Hydrogen atoms have been omitted for clarity.
[Figure 3] Fig. 3. Synthesis scheme.
1-Methyl-4-(4-nitrobenzoyl)pyridinium perchlorate top
Crystal data top
C13H11N2O3+·ClO4Z = 2
Mr = 342.69F(000) = 352
Triclinic, P1Dx = 1.575 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9240 (3) ÅCell parameters from 6858 reflections
b = 7.9800 (3) Åθ = 2.7–44.1°
c = 12.6350 (6) ŵ = 0.31 mm1
α = 105.980 (2)°T = 153 K
β = 104.119 (1)°Piece, colourless
γ = 99.138 (1)°0.45 × 0.39 × 0.15 mm
V = 722.67 (5) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5199 independent reflections
Radiation source: fine-focus sealed tube4759 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 32.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1111
Tmin = 0.875, Tmax = 0.919k = 1212
20599 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0551P)2 + 0.1728P]
where P = (Fo2 + 2Fc2)/3
5199 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C13H11N2O3+·ClO4γ = 99.138 (1)°
Mr = 342.69V = 722.67 (5) Å3
Triclinic, P1Z = 2
a = 7.9240 (3) ÅMo Kα radiation
b = 7.9800 (3) ŵ = 0.31 mm1
c = 12.6350 (6) ÅT = 153 K
α = 105.980 (2)°0.45 × 0.39 × 0.15 mm
β = 104.119 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5199 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
4759 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.919Rint = 0.019
20599 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.06Δρmax = 0.65 e Å3
5199 reflectionsΔρmin = 0.46 e Å3
209 parameters
Special details top

Experimental. N-Methyl-4-(4-nitrobenzoyl)pyridinium iodide (II). To a stirred solution of 2.14?g (10?mmol) 4-(4-nitrobenzyl)pyridine in 20?ml toluene, 2.50 g (17.6 mmol) methyl iodide were added. While heating under reflux for 30 min, the colour of the solution changed from yellow to purple, and a solid precipitated, which was collected and recrystallized from acetone/methanol (1:1 v/v). After several days, II could be harvested as deep red crystals (1.65 g, 45%). M.p. 484–485 K. 1H-NMR (DMSO-d6) δ 4.50 (s, 3 H, CH3), 8.10 (d, 2 H, ArH-9, ArH-12), 8.45 (m, 4 H, ArH-2, ArH-3, ArH-5, ArH-6), 9.28 (d, 2 H, ArH-10, ArH-11); 13C-NMR (DMSO-d6) δ 48.44 (CH3), 123.92, 126.84 (2-, 6-, 9-, 12-ArC), 131.60 (3-, 5-ArC), 139.13 (4-ArC), 146.66 (8-ArC), 149.73, 150.44 (1-, 10-, 11-ArC), 191.03 (C=O).

N-Methyl-4-(4-nitrobenzoyl)pyridinium perchlorate (I). A solution of 1.0 g (2.7 mmol) of II in 100 ml ethanol was reacted with 15 ml perchloric acid (70%) (Caution!) to yield colourless crystals of (I) after four weeks (230 mg, 25%). M.p. 464–465 K. 1H-NMR (DMSO-d6) δ 4.46 (s, 3 H, CH3), 8.06 (d, 2 H, ArH-9, ArH-12), 8.28 (m, 4 H, ArH-2, ArH-3, ArH-5, ArH-6), 9.21 (d, 2 H, ArH-10, ArH-11); 13C-NMR (DMSO-d6) δ 48.33 (CH3), 123.98, 126.91 (2-, 6-, 9-, 12-ArC), 131.57 (3-, 5-ArC), 139.22 (4-ArC), 146.70 (8-ArC), 149.84, 150.54 (1-, 10-, 11-ArC), 191.08 (C=O).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.21076 (10)0.03649 (11)0.75601 (6)0.02567 (14)
O20.48688 (9)0.15551 (10)0.77549 (6)0.02398 (14)
O30.09175 (9)0.25751 (9)0.16586 (6)0.02171 (13)
N10.33202 (10)0.07804 (10)0.71642 (6)0.01796 (13)
N20.23169 (10)0.29598 (10)0.06813 (6)0.01774 (13)
C10.28772 (11)0.03276 (11)0.59073 (7)0.01597 (13)
C20.16321 (11)0.12663 (11)0.52203 (7)0.01882 (15)
H20.10830.20490.55530.023*
C30.12131 (11)0.16827 (11)0.40303 (7)0.01830 (14)
H30.03890.27800.35350.022*
C40.20033 (11)0.04878 (10)0.35605 (7)0.01519 (13)
C50.32546 (11)0.11108 (11)0.42782 (7)0.01684 (14)
H50.37860.19140.39520.020*
C60.37179 (11)0.15206 (11)0.54715 (7)0.01746 (14)
H60.45850.25870.59730.021*
C70.15140 (10)0.10129 (11)0.22792 (7)0.01583 (13)
C80.17711 (10)0.04177 (11)0.17269 (7)0.01528 (13)
C90.13320 (12)0.20531 (11)0.21083 (7)0.01856 (15)
H90.08450.23030.27350.022*
C100.16116 (12)0.33074 (12)0.15649 (8)0.01980 (15)
H100.13050.44230.18150.024*
C110.27066 (12)0.13678 (12)0.02789 (7)0.01927 (15)
H110.31810.11450.03540.023*
C120.24204 (12)0.00559 (12)0.07807 (7)0.01801 (14)
H120.26640.10790.04830.022*
C130.27377 (13)0.43875 (13)0.01795 (8)0.02376 (17)
H13A0.17770.50260.01220.036*
H13B0.28390.38470.05920.036*
H13C0.38750.52350.06760.036*
Cl10.70498 (3)0.38019 (2)0.243705 (16)0.01746 (6)
O40.58098 (11)0.28582 (13)0.28579 (8)0.03593 (19)
O50.69466 (14)0.27089 (12)0.12976 (7)0.0388 (2)
O60.66108 (14)0.54567 (11)0.23798 (8)0.0376 (2)
O70.88363 (10)0.41729 (10)0.32064 (7)0.02936 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0294 (3)0.0341 (4)0.0188 (3)0.0093 (3)0.0123 (3)0.0115 (3)
O20.0234 (3)0.0258 (3)0.0179 (3)0.0067 (2)0.0007 (2)0.0054 (2)
O30.0258 (3)0.0173 (3)0.0178 (3)0.0018 (2)0.0047 (2)0.0028 (2)
N10.0216 (3)0.0198 (3)0.0142 (3)0.0086 (2)0.0048 (2)0.0068 (2)
N20.0178 (3)0.0209 (3)0.0143 (3)0.0026 (2)0.0037 (2)0.0078 (2)
C10.0170 (3)0.0192 (3)0.0127 (3)0.0059 (3)0.0044 (2)0.0059 (3)
C20.0205 (3)0.0196 (3)0.0166 (3)0.0020 (3)0.0055 (3)0.0081 (3)
C30.0196 (3)0.0173 (3)0.0159 (3)0.0003 (3)0.0041 (3)0.0056 (3)
C40.0161 (3)0.0160 (3)0.0135 (3)0.0033 (2)0.0044 (2)0.0052 (2)
C50.0180 (3)0.0170 (3)0.0150 (3)0.0018 (3)0.0053 (3)0.0055 (3)
C60.0181 (3)0.0174 (3)0.0151 (3)0.0021 (3)0.0042 (3)0.0045 (3)
C70.0154 (3)0.0174 (3)0.0144 (3)0.0038 (2)0.0042 (2)0.0052 (3)
C80.0155 (3)0.0177 (3)0.0125 (3)0.0041 (2)0.0039 (2)0.0049 (2)
C90.0213 (3)0.0203 (3)0.0183 (3)0.0079 (3)0.0100 (3)0.0076 (3)
C100.0228 (4)0.0201 (3)0.0193 (4)0.0075 (3)0.0085 (3)0.0077 (3)
C110.0210 (3)0.0244 (4)0.0129 (3)0.0055 (3)0.0062 (3)0.0061 (3)
C120.0215 (3)0.0205 (3)0.0122 (3)0.0068 (3)0.0056 (3)0.0041 (3)
C130.0254 (4)0.0250 (4)0.0209 (4)0.0003 (3)0.0053 (3)0.0124 (3)
Cl10.01988 (9)0.01675 (9)0.01702 (9)0.00538 (6)0.00752 (7)0.00529 (7)
O40.0248 (3)0.0491 (5)0.0350 (4)0.0025 (3)0.0119 (3)0.0193 (4)
O50.0544 (5)0.0345 (4)0.0236 (4)0.0117 (4)0.0172 (4)0.0019 (3)
O60.0580 (6)0.0274 (4)0.0320 (4)0.0249 (4)0.0095 (4)0.0123 (3)
O70.0185 (3)0.0273 (3)0.0383 (4)0.0036 (2)0.0036 (3)0.0102 (3)
Geometric parameters (Å, º) top
O1—N11.2280 (10)C6—H60.9500
O2—N11.2260 (10)C7—C81.5052 (11)
O3—C71.2191 (10)C8—C121.3910 (11)
N1—C11.4655 (10)C8—C91.3915 (11)
N2—C111.3466 (11)C9—C101.3800 (12)
N2—C101.3487 (11)C9—H90.9500
N2—C131.4803 (11)C10—H100.9500
C1—C61.3855 (11)C11—C121.3819 (12)
C1—C21.3858 (11)C11—H110.9500
C2—C31.3885 (11)C12—H120.9500
C2—H20.9500C13—H13A0.9800
C3—C41.3988 (11)C13—H13B0.9800
C3—H30.9500C13—H13C0.9800
C4—C51.3984 (11)Cl1—O41.4337 (8)
C4—C71.4885 (11)Cl1—O61.4340 (8)
C5—C61.3911 (11)Cl1—O51.4383 (8)
C5—H50.9500Cl1—O71.4401 (8)
O2—N1—O1124.08 (8)C12—C8—C9119.35 (7)
O2—N1—C1118.26 (7)C12—C8—C7118.31 (7)
O1—N1—C1117.66 (7)C9—C8—C7122.32 (7)
C11—N2—C10121.28 (7)C10—C9—C8119.22 (7)
C11—N2—C13119.58 (7)C10—C9—H9120.4
C10—N2—C13119.09 (8)C8—C9—H9120.4
C6—C1—C2123.63 (7)N2—C10—C9120.44 (8)
C6—C1—N1118.23 (7)N2—C10—H10119.8
C2—C1—N1118.14 (7)C9—C10—H10119.8
C1—C2—C3117.82 (7)N2—C11—C12120.44 (7)
C1—C2—H2121.1N2—C11—H11119.8
C3—C2—H2121.1C12—C11—H11119.8
C2—C3—C4120.07 (7)C11—C12—C8119.18 (8)
C2—C3—H3120.0C11—C12—H12120.4
C4—C3—H3120.0C8—C12—H12120.4
C5—C4—C3120.66 (7)N2—C13—H13A109.5
C5—C4—C7121.64 (7)N2—C13—H13B109.5
C3—C4—C7117.66 (7)H13A—C13—H13B109.5
C6—C5—C4119.76 (7)N2—C13—H13C109.5
C6—C5—H5120.1H13A—C13—H13C109.5
C4—C5—H5120.1H13B—C13—H13C109.5
C1—C6—C5118.03 (7)O4—Cl1—O6110.12 (6)
C1—C6—H6121.0O4—Cl1—O5109.24 (6)
C5—C6—H6121.0O6—Cl1—O5108.89 (6)
O3—C7—C4121.94 (7)O4—Cl1—O7109.05 (5)
O3—C7—C8118.68 (7)O6—Cl1—O7109.59 (5)
C4—C7—C8119.37 (7)O5—Cl1—O7109.94 (5)
O2—N1—C1—C636.02 (11)C5—C4—C7—C823.70 (11)
O1—N1—C1—C6143.63 (8)C3—C4—C7—C8158.50 (8)
O2—N1—C1—C2144.34 (8)O3—C7—C8—C1239.66 (11)
O1—N1—C1—C236.01 (11)C4—C7—C8—C12139.93 (8)
C6—C1—C2—C30.10 (13)O3—C7—C8—C9138.36 (9)
N1—C1—C2—C3179.72 (7)C4—C7—C8—C942.06 (11)
C1—C2—C3—C41.68 (13)C12—C8—C9—C102.33 (13)
C2—C3—C4—C51.70 (13)C7—C8—C9—C10179.68 (8)
C2—C3—C4—C7179.52 (8)C11—N2—C10—C92.39 (13)
C3—C4—C5—C60.10 (13)C13—N2—C10—C9175.05 (8)
C7—C4—C5—C6177.83 (7)C8—C9—C10—N20.59 (13)
C2—C1—C6—C51.46 (13)C10—N2—C11—C121.20 (13)
N1—C1—C6—C5178.16 (7)C13—N2—C11—C12176.23 (8)
C4—C5—C6—C11.43 (12)N2—C11—C12—C81.75 (13)
C5—C4—C7—O3155.88 (8)C9—C8—C12—C113.47 (12)
C3—C4—C7—O321.92 (12)C7—C8—C12—C11178.45 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O7i0.952.603.478 (1)153
C3—H3···O7ii0.952.423.277 (1)150
C5—H5···O40.952.513.394 (1)154
C9—H9···O7iii0.952.423.132 (1)132
C10—H10···O3iv0.952.523.392 (1)153
C11—H11···O1v0.952.433.200 (1)138
C12—H12···O5vi0.952.393.134 (1)135
C13—H13A···O3iv0.982.633.373 (1)133
C13—H13B···O6vii0.982.593.429 (1)144
C13—H13C···O2viii0.982.633.446 (1)141
C13—H13C···O60.982.603.402 (1)139
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y1, z; (iii) x1, y, z; (iv) x, y+1, z; (v) x, y, z1; (vi) x+1, y, z; (vii) x+1, y+1, z; (viii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H11N2O3+·ClO4
Mr342.69
Crystal system, space groupTriclinic, P1
Temperature (K)153
a, b, c (Å)7.9240 (3), 7.9800 (3), 12.6350 (6)
α, β, γ (°)105.980 (2), 104.119 (1), 99.138 (1)
V3)722.67 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.45 × 0.39 × 0.15
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.875, 0.919
No. of measured, independent and
observed [I > 2σ(I)] reflections
20599, 5199, 4759
Rint0.019
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.092, 1.06
No. of reflections5199
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.46

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O7i0.952.603.478 (1)152.9
C3—H3···O7ii0.952.423.277 (1)150.4
C5—H5···O40.952.513.394 (1)154.0
C9—H9···O7iii0.952.423.132 (1)131.8
C10—H10···O3iv0.952.523.392 (1)153.1
C11—H11···O1v0.952.433.200 (1)138.3
C12—H12···O5vi0.952.393.134 (1)135.1
C13—H13A···O3iv0.982.633.373 (1)132.9
C13—H13B···O6vii0.982.593.429 (1)143.9
C13—H13C···O2viii0.982.633.446 (1)140.9
C13—H13C···O60.982.603.402 (1)139.3
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y1, z; (iii) x1, y, z; (iv) x, y+1, z; (v) x, y, z1; (vi) x+1, y, z; (vii) x+1, y+1, z; (viii) x+1, y+1, z+1.
 

Footnotes

Current address: Institut für Organische Chemie, TU Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany.

Acknowledgements

Financial support from the German Federal Ministry of Economics and Technolgy (BMWi) under grant No. 16IN0218 `ChemoChips' is gratefully acknowledged.

References

First citationAraki, H., Tsuge, K., Sasaki, Y., Ishizaka, S. & Kitamura, N. (2005). Inorg. Chem. 44, 9667–9675.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDrew, M. G. B., Gray, N. I., Cabral, M. F. & Cabral, J. de O. (1985). Acta Cryst. C41, 1434–1437.  Google Scholar
First citationEscuer, A., Mautner, F. A., Sanz, N. & Vicente, R. (2000). Inorg. Chem. 39, 1668–1673.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFischer, G. W. (1973). J. Prakt. Chem. 315, 901–908.  Google Scholar
First citationGohera, M. A. S. & Mak, T. C. W. (1998). Polyhedron, 17, 3485–3494.  Google Scholar
First citationGohera, M. A. S. & Mautner, F. A. (1999). Transition Met. Chem. 24, 693–696.  Google Scholar
First citationGotsis, S. & White, A. H. (1987). Aust. J. Chem. C40, 1603–1608.  Google Scholar
First citationKolev, T., Stamboliyska, B. & Yancheva, D. (2006). Chem. Phys. 324, 489–496.  Google Scholar
First citationKolev, T., Yancheva, D., Kleb, D. C., Schürmann, M., Preut, H. & Bleckmann, P. (2001). Z. Kristallogr. New Cryst. Struct. 216, 65–66.  Google Scholar
First citationKolev, T., Yancheva, D., Shivachev, B., Petrova, R. & Spiteller, M. (2005). Acta Cryst. C61, o213–o215.  CSD CAS Google Scholar
First citationLeventis, N., Meador, M. A. B., Zhang, G., Dass, A. & Sotiriou-Leventis, C. (2004a). J. Phys. Chem. B, 108, 11228–11235.  Google Scholar
First citationLeventis, N., Yang, J., Fabrizio, E. F., Rawashdeh, A.-M. M., Oh, W. S. & Sotiriou-Leventis, C. (2004b). J. Am. Chem. Soc. 126, 4094–4095.  Google Scholar
First citationMautner, F. A. & Gohera, M. A. S. (1998). Polyhedron, 18, 553–559.  Google Scholar
First citationRawashdeh, A.-M. M., Thangavel, A., Sotiriou-Leventis, C. & Leventis, N. (2008). Org. Lett. 10, 1131–1134.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSugiyama, T., Meng, J. & Matsuura, T. (2002a). J. Mol. Struct. 611, 53–64.  Google Scholar
First citationSugiyama, T., Meng, J. & Matsuura, T. (2002b). Mol. Cryst. Liq. Cryst. 389, 25–31.  Web of Science CrossRef CAS Google Scholar
First citationSyed, A., Foss, L. I. & Stevens, E. D. (1984). Acta Cryst. C40, 834–836.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2542-o2543
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds