organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2221-o2222

(1E,1′E)-4,4′-[1,1′-(Hydrazine-1,2-diyl­­idene)bis­­(ethan-1-yl-1-yl­­idene)]diphenol dihydrate

aCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, bDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 9 July 2011; accepted 22 July 2011; online 2 August 2011)

The asymmetric unit of the title compound, C16H16N2O2·2H2O, contains one half-mol­ecule of diphenol and one water mol­ecule. The complete diphenol mol­ecule is generated by a crystallographic inversion centre. In the mol­ecule, the central Cmeth­yl—C=N—N=C—Cmeth­yl plane makes a dihedral angle of 8.88 (6)° with its adjacent benzene ring. In the crystal, the components are linked by O—H⋯N and O—H⋯O hydrogen bonds into a three-dimensional network. The crystal structure is further stabilized by a weak C—H⋯π inter­action.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Chantrapromma et al. (2010[Chantrapromma, S., Jansrisewangwong, P. & Fun, H.-K. (2010). Acta Cryst. E66, o2994-o2995.]); Fun et al. (2010[Fun, H.-K., Jansrisewangwong, P. & Chantrapromma, S. (2010). Acta Cryst. E66, o2401-o2402.]); Jansrisewangwong et al. (2010[Jansrisewangwong, P., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o2170.]). For background to and the biological activity of hydro­zones, see: Bendre et al. (1998[Bendre, R., Murugkar, A., Padhye, S., Kulkarni, P. & Karve, M. (1998). Met. Based Drugs, 5, 59-66.]); El-Tabl et al. (2008[El-Tabl, A. S., El-Saied, F. A., Plass, W. & Al-Hakimi, A. N. (2008). Spectrochim. Acta Part A, 71, 90-99.]); Kitaev et al. (1970[Kitaev, Y. P., Buzykin, B. I. & Troepolskaya, T. V. (1970). Russ. Chem. Rev. 39, 441-456.]); Qin et al. (2009[Qin, D.-D., Yang, Z.-Y. & Qi, G.-F. (2009). Spectrochim. Acta Part A, 74, 415-420.]); Ramamohan et al. (1995[Ramamohan, L., Shikkargol, R. K., Angadi, S. D. & Kulkarni, V. H. (1995). Asian J. Pure Appl. Chem. 1, 86.]); Rollas & Küçükgüzel (2007[Rollas, S. & Küçükgüzel, Ş. G. (2007). Molecules, 12, 1910-1939.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O2·2H2O

  • Mr = 304.34

  • Monoclinic, P 21 /c

  • a = 7.8522 (1) Å

  • b = 5.5151 (1) Å

  • c = 17.8918 (3) Å

  • β = 108.536 (1)°

  • V = 734.62 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.35 × 0.26 × 0.22 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.966, Tmax = 0.979

  • 8010 measured reflections

  • 2129 independent reflections

  • 1903 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.125

  • S = 1.06

  • 2129 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O1Wi 0.83 1.86 2.6747 (12) 171
O1W—H1W⋯O1ii 0.86 2.07 2.8429 (12) 149
O1W—H2W⋯N1iii 0.86 2.17 3.0132 (14) 166
C5—H5ACg1iv 0.93 2.80 3.5046 (12) 134
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hydrazones have been reported to possess fluorescence properties (Qin et al., 2009) and various biological activities such as to be used as insecticides, antitumor agents and antioxidants (Kitaev et al., 1970), as well as antimicrobial (Ramamohan et al., 1995) and antiviral properties (El-Tabl et al., 2008; Rollas & Küçükgüzel, 2007) and tyrosinase inhibitory activity (Bendre et al., 1998). With our on-going research on structural studies and properties of hydrazones (Chantrapromma et al., 2010; Fun et al., 2010; Jansrisewangwong et al., 2010), the title compound (I) was synthesized. Our results show that (I) was inactive for tyrosinase inhibitory activity. Herein we report the synthesis and crystal structure of the title compound (I).

The asymmetric unit of (I) (Fig. 1), C16H16N2O2.2H2O, contains one half-molecule of diphenol and the complete molecule is generated by a crystallographic inversion centre 1 - x, 1 - y, 1 - z. The molecule of (I) exists in an E,E configuration with respect to the two CN double bonds [1.2985 (13) Å] and the torsion angle N1A–N1–C7–C1 = 177.76 (10)°. The diethylidenehydrazine moiety (C7/C8/N1/N1A/C7A/C8A) is planar with an r.m.s deviation of 0.0084 (1) Å. This C/C/N/N/C/C plane makes a dihedral angle of 8.88 (6)° with its both adjacent benzene rings. Each hydroxy group is co-planarly attached with the benzene ring with the r.m.s. of 0.0056 (1) Å for the seven non H atoms. The bond distances are of normal values (Allen et al., 1987) and are comparable with related structures (Chantrapromma et al., 2010; Fun et al., 2010; Jansrisewangwong et al., 2010).

In the crystal structure (Fig. 2), the molecules are linked into three dimensional network by O—H···N and O—H···O hydrogen bonds (Table 1). C—H···π interaction was also also observed (Table 1).

Related literature top

For bond-length data, see: Allen et al. (1987). For related structures, see: Chantrapromma et al. (2010); Fun et al. (2010); Jansrisewangwong et al. (2010). For background to and the biological activity of hydrozones, see: Bendre et al. (1998); El-Tabl et al. (2008); Kitaev et al. (1970); Qin et al. (2009); Ramamohan et al. (1995); Rollas & Küçükgüzel (2007). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was synthesized by mixing a solution (1:2 molar ratio) of hydrazine hydrate (0.10 ml, 2 mmol) and 4-hydroxyacetophenone (0.54 g, 4 mmol) in ethanol (20 ml). The resulting solution was refluxed for 6 h, yielding the yellow solid. The resultant solid was filtered off and washed with methanol. Yellow block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystalized from acetone by slow evaporation of the solvent at room temperature over several days, m.p. 377–379 K.

Refinement top

The water hydrogen atoms were restrained to the ideal positions. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(O—H) = 0.86 Å, and d(C—H) = 0.93 Å for aromatic and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.40 Å from H1W and the deepest hole is located at 0.35 Å from H1W.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Atoms with suffix A were generated by symmetry code 1 - x, 1 - y, 1 - z.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed approximately along the b axis, showing three dimensional network.
4-[(1E)-1-[(E)-2-[1-(4-hydroxyphenyl)ethylidene]hydrazin- 1-ylidene]ethyl]phenol top
Crystal data top
C16H16N2O2·2H2OF(000) = 324
Mr = 304.34Dx = 1.376 Mg m3
Monoclinic, P21/cMelting point = 377–379 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.8522 (1) ÅCell parameters from 2129 reflections
b = 5.5151 (1) Åθ = 2.4–30.0°
c = 17.8918 (3) ŵ = 0.10 mm1
β = 108.536 (1)°T = 100 K
V = 734.62 (2) Å3Block, yellow
Z = 20.35 × 0.26 × 0.22 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2129 independent reflections
Radiation source: sealed tube1903 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 30.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1011
Tmin = 0.966, Tmax = 0.979k = 77
8010 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.061P)2 + 0.4114P]
where P = (Fo2 + 2Fc2)/3
2129 reflections(Δ/σ)max = 0.001
101 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C16H16N2O2·2H2OV = 734.62 (2) Å3
Mr = 304.34Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.8522 (1) ŵ = 0.10 mm1
b = 5.5151 (1) ÅT = 100 K
c = 17.8918 (3) Å0.35 × 0.26 × 0.22 mm
β = 108.536 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2129 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1903 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.979Rint = 0.021
8010 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.06Δρmax = 0.39 e Å3
2129 reflectionsΔρmin = 0.34 e Å3
101 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.97567 (10)0.63439 (15)0.90238 (4)0.01443 (19)
H1O11.01450.49710.91660.022*
N10.55899 (11)0.49760 (17)0.53887 (5)0.0144 (2)
C10.64270 (13)0.65293 (19)0.66844 (6)0.0106 (2)
C20.63628 (14)0.83658 (19)0.72163 (6)0.0131 (2)
H2A0.55660.96500.70450.016*
C30.74735 (14)0.82980 (19)0.79977 (6)0.0137 (2)
H3A0.74210.95340.83430.016*
C40.86615 (13)0.63756 (19)0.82596 (6)0.0111 (2)
C50.87307 (13)0.45094 (19)0.77420 (6)0.0126 (2)
H5A0.95150.32150.79180.015*
C60.76265 (13)0.45958 (19)0.69653 (6)0.0123 (2)
H6A0.76800.33500.66230.015*
C70.52532 (13)0.65863 (19)0.58524 (6)0.0113 (2)
C80.37991 (14)0.8466 (2)0.56043 (6)0.0160 (2)
H8A0.43261.00540.56960.024*
H8B0.29890.82690.59040.024*
H8C0.31520.82780.50540.024*
O1W0.07930 (12)0.31062 (17)0.45773 (6)0.0252 (2)
H1W0.07930.31130.50580.038*
H2W0.17220.38600.45410.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0167 (4)0.0153 (4)0.0088 (3)0.0003 (3)0.0007 (3)0.0002 (3)
N10.0136 (4)0.0180 (5)0.0093 (4)0.0038 (3)0.0002 (3)0.0019 (3)
C10.0106 (4)0.0118 (5)0.0093 (4)0.0001 (3)0.0029 (3)0.0004 (3)
C20.0145 (4)0.0122 (5)0.0121 (4)0.0025 (4)0.0034 (4)0.0005 (3)
C30.0163 (5)0.0125 (5)0.0120 (4)0.0007 (4)0.0041 (4)0.0025 (3)
C40.0114 (4)0.0131 (5)0.0087 (4)0.0023 (3)0.0030 (3)0.0001 (3)
C50.0132 (4)0.0125 (5)0.0116 (4)0.0026 (3)0.0033 (3)0.0004 (3)
C60.0141 (4)0.0121 (5)0.0106 (4)0.0013 (3)0.0039 (3)0.0017 (3)
C70.0103 (4)0.0131 (5)0.0102 (4)0.0005 (3)0.0028 (3)0.0006 (3)
C80.0164 (5)0.0166 (5)0.0128 (5)0.0059 (4)0.0016 (4)0.0010 (4)
O1W0.0194 (4)0.0227 (5)0.0337 (5)0.0016 (3)0.0089 (4)0.0060 (4)
Geometric parameters (Å, º) top
O1—C41.3644 (11)C4—C51.3971 (14)
O1—H1O10.8256C5—C61.3854 (13)
N1—C71.2985 (13)C5—H5A0.9300
N1—N1i1.4050 (16)C6—H6A0.9300
C1—C21.4016 (14)C7—C81.5010 (14)
C1—C61.4056 (14)C8—H8A0.9600
C1—C71.4814 (13)C8—H8B0.9600
C2—C31.3934 (13)C8—H8C0.9600
C2—H2A0.9300O1W—H1W0.8598
C3—C41.3913 (14)O1W—H2W0.8601
C3—H3A0.9300
C4—O1—H1O1111.9C6—C5—H5A120.1
C7—N1—N1i114.55 (10)C4—C5—H5A120.1
C2—C1—C6118.04 (9)C5—C6—C1121.28 (9)
C2—C1—C7121.45 (9)C5—C6—H6A119.4
C6—C1—C7120.50 (9)C1—C6—H6A119.4
C3—C2—C1121.04 (9)N1—C7—C1116.07 (9)
C3—C2—H2A119.5N1—C7—C8125.01 (9)
C1—C2—H2A119.5C1—C7—C8118.92 (9)
C4—C3—C2119.82 (9)C7—C8—H8A109.5
C4—C3—H3A120.1C7—C8—H8B109.5
C2—C3—H3A120.1H8A—C8—H8B109.5
O1—C4—C3119.26 (9)C7—C8—H8C109.5
O1—C4—C5120.65 (9)H8A—C8—H8C109.5
C3—C4—C5120.09 (9)H8B—C8—H8C109.5
C6—C5—C4119.72 (9)H1W—O1W—H2W110.1
C6—C1—C2—C30.95 (16)C2—C1—C6—C50.70 (15)
C7—C1—C2—C3179.93 (9)C7—C1—C6—C5179.83 (9)
C1—C2—C3—C40.37 (16)N1i—N1—C7—C1177.76 (10)
C2—C3—C4—O1179.26 (9)N1i—N1—C7—C82.78 (17)
C2—C3—C4—C50.48 (16)C2—C1—C7—N1171.18 (10)
O1—C4—C5—C6179.01 (9)C6—C1—C7—N19.72 (14)
C3—C4—C5—C60.72 (15)C2—C1—C7—C88.31 (15)
C4—C5—C6—C10.12 (16)C6—C1—C7—C8170.78 (10)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O1Wii0.831.862.6747 (12)171
O1W—H1W···O1iii0.862.072.8429 (12)149
O1W—H2W···N1i0.862.173.0132 (14)166
C5—H5A···Cg1iv0.932.803.5046 (12)134
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y1/2, z+3/2; (iv) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC16H16N2O2·2H2O
Mr304.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.8522 (1), 5.5151 (1), 17.8918 (3)
β (°) 108.536 (1)
V3)734.62 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.26 × 0.22
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.966, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
8010, 2129, 1903
Rint0.021
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.125, 1.06
No. of reflections2129
No. of parameters101
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.34

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O1Wi0.831.862.6747 (12)171
O1W—H1W···O1ii0.862.072.8429 (12)149
O1W—H2W···N1iii0.862.173.0132 (14)166
C5—H5A···Cg1iv0.932.803.5046 (12)134
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+3/2; (iii) x+1, y+1, z+1; (iv) x+2, y1/2, z+3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§Additional correspondence author, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

PJ thanks the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education, and the Graduate School, Prince of Songkla University, for financial support. The authors also thank the Prince of Songkla University and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBendre, R., Murugkar, A., Padhye, S., Kulkarni, P. & Karve, M. (1998). Met. Based Drugs, 5, 59–66.  CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Jansrisewangwong, P. & Fun, H.-K. (2010). Acta Cryst. E66, o2994–o2995.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEl-Tabl, A. S., El-Saied, F. A., Plass, W. & Al-Hakimi, A. N. (2008). Spectrochim. Acta Part A, 71, 90–99.  Google Scholar
First citationFun, H.-K., Jansrisewangwong, P. & Chantrapromma, S. (2010). Acta Cryst. E66, o2401–o2402.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJansrisewangwong, P., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o2170.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKitaev, Y. P., Buzykin, B. I. & Troepolskaya, T. V. (1970). Russ. Chem. Rev. 39, 441–456.  CrossRef Google Scholar
First citationQin, D.-D., Yang, Z.-Y. & Qi, G.-F. (2009). Spectrochim. Acta Part A, 74, 415–420.  CrossRef Google Scholar
First citationRamamohan, L., Shikkargol, R. K., Angadi, S. D. & Kulkarni, V. H. (1995). Asian J. Pure Appl. Chem. 1, 86.  Google Scholar
First citationRollas, S. & Küçükgüzel, Ş. G. (2007). Molecules, 12, 1910–1939.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2221-o2222
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds