organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(tert-But­­oxy­carbon­yl)piperidine-4-carb­­oxy­lic acid

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Mangalore University, Karnataka, India
*Correspondence e-mail: hkfun@usm.my

(Received 18 July 2011; accepted 26 July 2011; online 2 August 2011)

In the title compound, C11H19NO4, the piperidine ring adopts a chair conformation. In the crystal, mol­ecules are linked by inter­molecular O—H⋯O and C—H⋯O hydrogen bonds, forming a layer parallel to the bc plane.

Related literature

For general background and application of helical peptides, see: Albrecht & Stortz (2005[Albrecht, M. & Stortz, P. (2005). Chem. Soc. Rev. 34, 496-506.]); Garner & Harding (2007[Garner, J. & Harding, M. M. (2007). Org. Biomol. Chem. 5, 3577-3585.]); Wang et al. (2008[Wang, D., Lu, M. & Arora, P. S. (2008). Angew. Chem. Int. Ed. 47, 1879-1882.]); Walensky et al. (2004[Walensky, L. D., Kung, A. L., Escher, I., Malia, T. J., Barbuto, S., Wright, R. D., Wagner, G., Verdine, G. L. & Korsmeyer, S. J. (2004). Science, 305, 1466-1470.]); Boal et al. (2007[Boal, A. K., Guryanov, I., Moretto, A., Crisma, M., Lanni, E. L., Toniolo, C., Grubbs, R. H. & O'Leary, D. J. (2007). J. Am. Chem. Soc. 129, 6986-6987.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For stability of the temperature controller used for data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C11H19NO4

  • Mr = 229.27

  • Monoclinic, P 21 /c

  • a = 10.7006 (3) Å

  • b = 6.5567 (2) Å

  • c = 17.9297 (6) Å

  • β = 104.564 (2)°

  • V = 1217.54 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.57 × 0.21 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.948, Tmax = 0.993

  • 5360 measured reflections

  • 2116 independent reflections

  • 1762 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.092

  • S = 1.07

  • 2116 reflections

  • 152 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1O4⋯O1i 0.86 (2) 1.82 (2) 2.6562 (16) 164 (2)
C5—H5B⋯O4ii 0.99 2.56 3.476 (2) 154
Symmetry codes: (i) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

An intramolecular side-chain metal ligation is a useful method for stabilizing β-sheet, turn and helical structures in short peptides (Albrecht & Stortz, 2005; Garner & Harding, 2007). The stabilization of helical structure may enhance biological activities and protease resistance in vitro or in vivo (Wang et al., 2008; Walensky et al., 2004). The present compound, 1-(tert-butoxycarbonyl)piperidine-4-carboxylic acid, may be used as a rigid backbone to design the metal-ligating 310-helical peptide. In this way we may be able to design, synthesize and characterize a dynamically optically inactive 310-helical peptide which possess a metal-chelating ability (Boal et al., 2007).

In the molecular structure (Fig. 1), the piperidine ring (N1/C1–C5) adopts a chair conformation with puckering amplitude Q = 0.5505 (16) Å, Θ= 179.17 (18)° and ϕ= 90 (11)° (Cremer & Pople, 1975). The bond lengths (Allen et al., 1987) and angles are within normal ranges.

The crystal packing is shown in Fig. 2. The molecules are linked by intermolecular O4—H1O4···O1 and C5—H5B···O4 (Table 1) hydrogen bonds, forming two-molecular sheets parallel to the bc plane.

Related literature top

For general background and application of helical peptides, see: Albrecht & Stortz (2005); Garner & Harding (2007); Wang et al. (2008); Walensky et al. (2004); Boal et al. (2007). For bond-length data, see: Allen et al. (1987). For ring conformations, see: Cremer & Pople (1975). For stability of the temperature controller used for data collection, see: Cosier & Glazer (1986).

Experimental top

To isopicotinic acid (1 eq) dissolved in a dichloromethane (10 ml), triethylamine (3 eq) was added. The reaction mixture was stirred at room temperature for half an hour. BOC-anhydride (2 eq) was then added and the reaction mixture heated at 40 °C for 12 h. Completion of the reaction was confirmed by TLC and the solvent content was evaporated away under reduced pressure. The reaction mixture was acidified with diluted. HCl and the solid obtained was filtered off. M. p.: 135–137 °C.

Refinement top

H1O4 atom attached to the O atom was located in a difference map and refined freely [O—H = 0.86 (2) Å]. The remaining H atoms were positioned geometrically (C—H = 0.98–1.00 Å) and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound showing a two-molecular thick sheet. Dashed lines represent the intermolecular hydrogen bonds.
1-(tert-Butoxycarbonyl)piperidine-4-carboxylic acid top
Crystal data top
C11H19NO4F(000) = 496
Mr = 229.27Dx = 1.251 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1750 reflections
a = 10.7006 (3) Åθ = 2.4–28.5°
b = 6.5567 (2) ŵ = 0.10 mm1
c = 17.9297 (6) ÅT = 100 K
β = 104.564 (2)°Plate, colourless
V = 1217.54 (6) Å30.57 × 0.21 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2116 independent reflections
Radiation source: fine-focus sealed tube1762 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1211
Tmin = 0.948, Tmax = 0.993k = 77
5360 measured reflectionsl = 1621
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0362P)2 + 0.3737P]
where P = (Fo2 + 2Fc2)/3
2116 reflections(Δ/σ)max < 0.001
152 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C11H19NO4V = 1217.54 (6) Å3
Mr = 229.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.7006 (3) ŵ = 0.10 mm1
b = 6.5567 (2) ÅT = 100 K
c = 17.9297 (6) Å0.57 × 0.21 × 0.08 mm
β = 104.564 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2116 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1762 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 0.993Rint = 0.027
5360 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.18 e Å3
2116 reflectionsΔρmin = 0.22 e Å3
152 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.26358 (11)0.05214 (18)0.13924 (6)0.0249 (3)
O20.20095 (11)0.21800 (16)0.20083 (6)0.0229 (3)
O30.34156 (12)0.53547 (17)0.46087 (7)0.0265 (3)
O40.35972 (11)0.25776 (18)0.53522 (6)0.0244 (3)
N10.34480 (13)0.0015 (2)0.26790 (7)0.0188 (3)
C10.42896 (16)0.1805 (2)0.27802 (9)0.0213 (4)
H1A0.52020.13640.29480.026*
H1B0.41670.25250.22820.026*
C20.39922 (16)0.3257 (2)0.33783 (9)0.0195 (4)
H2A0.46280.43850.34730.023*
H2B0.31230.38550.31760.023*
C30.40397 (15)0.2158 (2)0.41359 (9)0.0178 (4)
H3A0.49490.17050.43610.021*
C40.31744 (15)0.0254 (2)0.39936 (9)0.0186 (4)
H4A0.22590.06770.38190.022*
H4B0.32840.05090.44820.022*
C50.35063 (16)0.1126 (2)0.33908 (9)0.0202 (4)
H5A0.28910.22800.32800.024*
H5B0.43850.16900.35910.024*
C60.26959 (15)0.0473 (2)0.19822 (9)0.0190 (4)
C70.10863 (15)0.2991 (3)0.13127 (9)0.0221 (4)
C80.06014 (17)0.4903 (3)0.16286 (10)0.0288 (4)
H8A0.01890.45280.20390.043*
H8B0.00270.55960.12140.043*
H8C0.13300.58180.18370.043*
C90.17864 (18)0.3540 (3)0.07020 (10)0.0330 (5)
H9A0.25380.43910.09320.049*
H9B0.12010.42940.02850.049*
H9C0.20730.22910.04950.049*
C100.00063 (17)0.1463 (3)0.10281 (10)0.0303 (4)
H10A0.04000.11370.14460.046*
H10B0.03610.02150.08610.046*
H10C0.06390.20480.05940.046*
C110.36557 (14)0.3565 (2)0.47085 (9)0.0183 (4)
H1O40.333 (2)0.340 (4)0.5652 (13)0.058 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0329 (7)0.0282 (7)0.0148 (6)0.0004 (5)0.0084 (5)0.0034 (5)
O20.0274 (6)0.0221 (6)0.0170 (6)0.0056 (5)0.0018 (5)0.0005 (5)
O30.0390 (7)0.0190 (7)0.0240 (7)0.0008 (5)0.0125 (6)0.0008 (5)
O40.0353 (7)0.0226 (7)0.0175 (6)0.0008 (5)0.0109 (6)0.0003 (5)
N10.0264 (8)0.0164 (7)0.0138 (7)0.0028 (6)0.0056 (6)0.0008 (6)
C10.0253 (9)0.0206 (9)0.0201 (9)0.0064 (7)0.0099 (7)0.0003 (7)
C20.0234 (9)0.0174 (8)0.0191 (9)0.0044 (7)0.0082 (7)0.0014 (7)
C30.0181 (8)0.0183 (9)0.0168 (8)0.0005 (7)0.0043 (7)0.0012 (7)
C40.0218 (9)0.0189 (9)0.0153 (8)0.0010 (7)0.0051 (7)0.0019 (7)
C50.0271 (9)0.0166 (8)0.0164 (8)0.0002 (7)0.0048 (7)0.0011 (7)
C60.0215 (9)0.0184 (9)0.0190 (9)0.0017 (7)0.0086 (7)0.0033 (7)
C70.0205 (9)0.0276 (9)0.0159 (8)0.0012 (7)0.0006 (7)0.0046 (7)
C80.0264 (10)0.0274 (10)0.0296 (10)0.0053 (8)0.0017 (8)0.0026 (8)
C90.0311 (10)0.0395 (11)0.0297 (10)0.0074 (9)0.0101 (8)0.0152 (9)
C100.0257 (10)0.0341 (11)0.0295 (10)0.0009 (8)0.0039 (8)0.0021 (8)
C110.0167 (8)0.0204 (9)0.0170 (8)0.0034 (7)0.0025 (7)0.0003 (7)
Geometric parameters (Å, º) top
O1—C61.2303 (18)C4—C51.519 (2)
O2—C61.3457 (19)C4—H4A0.9900
O2—C71.4815 (18)C4—H4B0.9900
O3—C111.2050 (19)C5—H5A0.9900
O4—C111.3384 (18)C5—H5B0.9900
O4—H1O40.86 (2)C7—C91.517 (2)
N1—C61.344 (2)C7—C101.518 (2)
N1—C11.463 (2)C7—C81.519 (2)
N1—C51.4669 (19)C8—H8A0.9800
C1—C21.526 (2)C8—H8B0.9800
C1—H1A0.9900C8—H8C0.9800
C1—H1B0.9900C9—H9A0.9800
C2—C31.527 (2)C9—H9B0.9800
C2—H2A0.9900C9—H9C0.9800
C2—H2B0.9900C10—H10A0.9800
C3—C111.512 (2)C10—H10B0.9800
C3—C41.537 (2)C10—H10C0.9800
C3—H3A1.0000
C6—O2—C7121.57 (12)C4—C5—H5B109.6
C11—O4—H1O4109.2 (15)H5A—C5—H5B108.1
C6—N1—C1120.84 (13)O1—C6—N1124.22 (15)
C6—N1—C5124.88 (13)O1—C6—O2124.04 (15)
C1—N1—C5114.27 (12)N1—C6—O2111.74 (13)
N1—C1—C2110.93 (12)O2—C7—C9110.31 (13)
N1—C1—H1A109.5O2—C7—C10109.63 (13)
C2—C1—H1A109.5C9—C7—C10112.73 (15)
N1—C1—H1B109.5O2—C7—C8101.56 (12)
C2—C1—H1B109.5C9—C7—C8110.50 (14)
H1A—C1—H1B108.0C10—C7—C8111.56 (14)
C1—C2—C3111.36 (13)C7—C8—H8A109.5
C1—C2—H2A109.4C7—C8—H8B109.5
C3—C2—H2A109.4H8A—C8—H8B109.5
C1—C2—H2B109.4C7—C8—H8C109.5
C3—C2—H2B109.4H8A—C8—H8C109.5
H2A—C2—H2B108.0H8B—C8—H8C109.5
C11—C3—C2111.22 (13)C7—C9—H9A109.5
C11—C3—C4110.67 (12)C7—C9—H9B109.5
C2—C3—C4110.60 (13)H9A—C9—H9B109.5
C11—C3—H3A108.1C7—C9—H9C109.5
C2—C3—H3A108.1H9A—C9—H9C109.5
C4—C3—H3A108.1H9B—C9—H9C109.5
C5—C4—C3111.29 (12)C7—C10—H10A109.5
C5—C4—H4A109.4C7—C10—H10B109.5
C3—C4—H4A109.4H10A—C10—H10B109.5
C5—C4—H4B109.4C7—C10—H10C109.5
C3—C4—H4B109.4H10A—C10—H10C109.5
H4A—C4—H4B108.0H10B—C10—H10C109.5
N1—C5—C4110.43 (12)O3—C11—O4122.99 (15)
N1—C5—H5A109.6O3—C11—C3125.29 (14)
C4—C5—H5A109.6O4—C11—C3111.72 (13)
N1—C5—H5B109.6
C6—N1—C1—C2123.01 (15)C1—N1—C6—O2179.20 (13)
C5—N1—C1—C256.56 (17)C5—N1—C6—O21.3 (2)
N1—C1—C2—C353.55 (17)C7—O2—C6—O11.2 (2)
C1—C2—C3—C11176.11 (13)C7—O2—C6—N1178.49 (13)
C1—C2—C3—C452.71 (17)C6—O2—C7—C961.40 (18)
C11—C3—C4—C5177.27 (13)C6—O2—C7—C1063.30 (17)
C2—C3—C4—C553.56 (17)C6—O2—C7—C8178.59 (13)
C6—N1—C5—C4122.38 (16)C2—C3—C11—O34.2 (2)
C1—N1—C5—C457.18 (17)C4—C3—C11—O3127.55 (17)
C3—C4—C5—N154.71 (17)C2—C3—C11—O4175.19 (13)
C1—N1—C6—O11.1 (2)C4—C3—C11—O451.83 (17)
C5—N1—C6—O1178.39 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1O4···O1i0.86 (2)1.82 (2)2.6562 (16)164 (2)
C5—H5B···O4ii0.992.563.476 (2)154
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC11H19NO4
Mr229.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.7006 (3), 6.5567 (2), 17.9297 (6)
β (°) 104.564 (2)
V3)1217.54 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.57 × 0.21 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.948, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
5360, 2116, 1762
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.092, 1.07
No. of reflections2116
No. of parameters152
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.22

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1O4···O1i0.86 (2)1.82 (2)2.6562 (16)164 (2)
C5—H5B···O4ii0.99002.56003.476 (2)154.00
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for a Research University Grant (No. 1001/PFIZIK/811160). SA thanks the Malaysian government and USM for the award of a research scholarship.

References

First citationAlbrecht, M. & Stortz, P. (2005). Chem. Soc. Rev. 34, 496–506.  Web of Science CrossRef CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBoal, A. K., Guryanov, I., Moretto, A., Crisma, M., Lanni, E. L., Toniolo, C., Grubbs, R. H. & O'Leary, D. J. (2007). J. Am. Chem. Soc. 129, 6986–6987.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGarner, J. & Harding, M. M. (2007). Org. Biomol. Chem. 5, 3577–3585.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWalensky, L. D., Kung, A. L., Escher, I., Malia, T. J., Barbuto, S., Wright, R. D., Wagner, G., Verdine, G. L. & Korsmeyer, S. J. (2004). Science, 305, 1466–1470.  Web of Science CrossRef CAS Google Scholar
First citationWang, D., Lu, M. & Arora, P. S. (2008). Angew. Chem. Int. Ed. 47, 1879–1882.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds