organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-(Ethane-1,2-di­yl)di­benzene­sulfonamide

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bChemistry School, Virginia Commonwealth University, USA, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 21 July 2011; accepted 26 July 2011; online 2 August 2011)

In the title compound, C14H16N2O4S2, the dihedral angle between the terminal phenyl rings is 77.07 (13)°. The geometries around the S atoms are distorted tetra­hedral, with O—S—O angles of 120.66 (12) and 119.44 (11)°. In the crystal, mol­ecules are stacked in columns along the a axis via inter­molecular N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For biological activities and applications of sulfonamide derivatives, see: Misra et al. (1982[Misra, V. S., Saxena, V. K. & Srivastava, R. J. (1982). J. Indian Chem. Soc. 59, 781.]); Maren (1976[Maren, T. H. (1976). Annu. Rev. Pharmacol. Toxicol. 16, 309-327.]); Li et al. (1995[Li, J. J., et al. (1995). J. Med. Chem. 38, 4570-4578.]); Yoshino et al. (1992[Yoshino, H., Ueda, N., Niijma, J., Sugumi, H., Kotake, Y., Koyanagi, N., Yoshimatsu, K., Asada, M., Watanabe, T., Nagasu, T., Tsukahara, K., Lijima, A. & Kitoh, K. (1992). J. Med. Chem. 35, 2496-2497.]). For related structures, see: Basak et al. (1982[Basak, A. K., Mazumdar, S. K. & Chaudhuri, S. (1982). Cryst. Struct. Commun. 11, 1609-1616.]); Cotton & Stokley (1970[Cotton, F. A. & Stokley, P. F. (1970). J. Am. Chem. Soc. 92, 294-302.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N2O4S2

  • Mr = 340.41

  • Monoclinic, P 21 /c

  • a = 5.2115 (4) Å

  • b = 16.6905 (13) Å

  • c = 17.8750 (14) Å

  • β = 93.187 (2)°

  • V = 1552.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 296 K

  • 0.46 × 0.08 × 0.07 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.852, Tmax = 0.975

  • 14604 measured reflections

  • 3545 independent reflections

  • 2628 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.119

  • S = 1.04

  • 3545 reflections

  • 207 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2i 0.73 (3) 2.40 (3) 3.053 (3) 149 (3)
N2—H1N2⋯O3i 0.83 (3) 2.15 (3) 2.924 (3) 157 (2)
C10—H10A⋯O1ii 0.93 2.57 3.294 (3) 135
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sulfonamide is found in a number of synthetic as well as natural compounds. These molecules exhibit antibacterial (Misra et al., 1982), insulin-releasing (Maren, 1976), anti-inflammatory (Li et al., 1995) and antitumor (Yoshino et al., 1992) activities. An X-ray study of the title compound was undertaken in order to determine its crystal and molecular structure owing to the biological importance of its analogues. The molecular structure is shown in Fig. 1.

The molecule is bent at the N atoms with C9-S2-N2-C8 and C7-N1-S1-C6 torsion angles of 58.48 (18) and 72.6 (2)°, respectively. The geometries around the sulfonamide S atoms are in a slightly distorted tetrahedral configuration, similar to that observed in other reported structures (Basak et al., 1982). The maximum and minimum values of the angles around S are 121.62 (17) and 105.92 (11)°, respectively. This deviation can be attributed to the non-bonded interactions involving the S–O bonds, resulting in a structure with less steric interference (Cotton & Stokley, 1970) and the varied steric bulk of the substituents. The dihedral angle between the terminal phenyl C1–C6 and C9–C14 rings is 77.07 (13)°.

In the crystal structure, the molecules are connected via intermolecular N1—H1N1···O2, N2—H1N2···O3 and C10—H10A···O1 hydrogen bonds (Table 1) forming one-dimensional supramolecular chains along the a axis (Fig. 2).

Related literature top

For biological activities and applications of sulfonamide derivatives, see: Misra et al. (1982); Maren (1976); Li et al. (1995); Yoshino et al. (1992). For related structures, see: Basak et al. (1982); Cotton & Stokley (1970).

Experimental top

In a round bottom flask, 25ml from toluene was mixed with benzenesulfonyl chloride (0.02 mol, 3.5 g) with stirring. Drops of ethylenediamine (0.01 mol, 0.5 g ) was added and the mixture was refluxed for 30 min. The yellow gum formed was dissolved in hot water and sodium bicarbonate was added. The yellow precipitate formed was dissolved in methanol at 60 °C, yielding colourless crystals.

Refinement top

Atoms H1N1 and H1N2 were located from a difference Fourier map and refined freely [N—H = 0.73 (3)–0.82 (3) Å]. The remaining H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound with dashed lines representing hydrogen bonds.
N,N'-(Ethane-1,2-diyl)dibenzenesulfonamide top
Crystal data top
C14H16N2O4S2F(000) = 712
Mr = 340.41Dx = 1.456 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3372 reflections
a = 5.2115 (4) Åθ = 2.4–32.2°
b = 16.6905 (13) ŵ = 0.36 mm1
c = 17.8750 (14) ÅT = 296 K
β = 93.187 (2)°Needle, colourless
V = 1552.4 (2) Å30.46 × 0.08 × 0.07 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3545 independent reflections
Radiation source: fine-focus sealed tube2628 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 66
Tmin = 0.852, Tmax = 0.975k = 2121
14604 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.062P)2 + 0.174P]
where P = (Fo2 + 2Fc2)/3
3545 reflections(Δ/σ)max = 0.001
207 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C14H16N2O4S2V = 1552.4 (2) Å3
Mr = 340.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.2115 (4) ŵ = 0.36 mm1
b = 16.6905 (13) ÅT = 296 K
c = 17.8750 (14) Å0.46 × 0.08 × 0.07 mm
β = 93.187 (2)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3545 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2628 reflections with I > 2σ(I)
Tmin = 0.852, Tmax = 0.975Rint = 0.047
14604 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.28 e Å3
3545 reflectionsΔρmin = 0.33 e Å3
207 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.29124 (10)0.88198 (3)0.48674 (3)0.03665 (17)
S20.52329 (10)0.99919 (3)0.80016 (3)0.03343 (16)
O10.2344 (4)0.92155 (10)0.41688 (9)0.0546 (5)
O20.5474 (3)0.88119 (11)0.51993 (11)0.0563 (5)
O30.7660 (3)0.98466 (10)0.76908 (10)0.0484 (4)
O40.4855 (4)0.97572 (10)0.87531 (9)0.0514 (5)
N10.1146 (4)0.92431 (11)0.54596 (11)0.0349 (4)
N20.3085 (4)0.95274 (10)0.74743 (10)0.0330 (4)
C10.0240 (5)0.76368 (15)0.43026 (14)0.0502 (6)
H1A0.11240.80430.40420.060*
C20.1056 (6)0.68534 (16)0.42342 (16)0.0595 (7)
H2A0.25050.67310.39290.071*
C30.0258 (6)0.62555 (15)0.46139 (17)0.0606 (8)
H3A0.02960.57280.45600.073*
C40.2370 (7)0.64248 (16)0.50704 (16)0.0643 (8)
H4A0.32440.60150.53280.077*
C50.3216 (5)0.72138 (15)0.51494 (14)0.0518 (6)
H5A0.46540.73340.54610.062*
C60.1905 (4)0.78130 (13)0.47623 (11)0.0353 (5)
C70.1430 (4)0.90629 (12)0.62583 (12)0.0368 (5)
H7A0.23380.85590.63320.044*
H7B0.02550.90060.64570.044*
C80.2890 (5)0.97194 (13)0.66725 (11)0.0370 (5)
H8A0.45960.97680.64860.044*
H8B0.20061.02260.65930.044*
C90.4584 (4)1.10252 (12)0.79155 (11)0.0325 (5)
C100.5938 (5)1.14968 (14)0.74477 (13)0.0451 (6)
H10A0.72531.12790.71810.054*
C110.5318 (6)1.23066 (15)0.73773 (15)0.0557 (7)
H11A0.62141.26320.70590.067*
C120.3395 (6)1.26242 (15)0.77743 (16)0.0566 (7)
H12A0.30011.31660.77300.068*
C130.2043 (6)1.21465 (16)0.82375 (17)0.0592 (7)
H13A0.07211.23660.85000.071*
C140.2625 (5)1.13442 (14)0.83181 (14)0.0456 (6)
H14A0.17201.10220.86370.055*
H1N10.017 (5)0.9291 (15)0.5307 (14)0.034 (7)*
H1N20.168 (5)0.9581 (14)0.7659 (13)0.036 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0300 (3)0.0369 (3)0.0434 (3)0.0052 (2)0.0060 (2)0.0049 (2)
S20.0273 (3)0.0334 (3)0.0391 (3)0.0054 (2)0.0026 (2)0.0020 (2)
O10.0715 (13)0.0515 (10)0.0419 (9)0.0085 (9)0.0125 (9)0.0041 (7)
O20.0266 (9)0.0588 (11)0.0835 (12)0.0066 (8)0.0036 (9)0.0167 (9)
O30.0240 (8)0.0516 (10)0.0694 (11)0.0088 (7)0.0001 (8)0.0077 (8)
O40.0628 (12)0.0508 (9)0.0397 (9)0.0058 (9)0.0064 (8)0.0064 (7)
N10.0268 (10)0.0378 (10)0.0397 (10)0.0006 (8)0.0024 (9)0.0045 (8)
N20.0276 (10)0.0339 (9)0.0378 (9)0.0010 (8)0.0057 (8)0.0022 (7)
C10.0468 (15)0.0431 (13)0.0595 (15)0.0009 (12)0.0085 (13)0.0065 (11)
C20.0548 (17)0.0508 (15)0.0714 (18)0.0129 (13)0.0094 (15)0.0140 (13)
C30.075 (2)0.0389 (13)0.0684 (17)0.0122 (14)0.0061 (16)0.0111 (12)
C40.086 (2)0.0411 (13)0.0645 (17)0.0081 (15)0.0052 (17)0.0018 (12)
C50.0519 (16)0.0467 (13)0.0550 (14)0.0048 (12)0.0123 (13)0.0053 (11)
C60.0315 (12)0.0365 (11)0.0383 (11)0.0003 (9)0.0052 (10)0.0064 (9)
C70.0366 (12)0.0330 (10)0.0408 (11)0.0065 (9)0.0033 (10)0.0018 (9)
C80.0388 (12)0.0333 (10)0.0385 (11)0.0073 (10)0.0012 (10)0.0005 (9)
C90.0285 (11)0.0341 (10)0.0340 (10)0.0012 (9)0.0059 (9)0.0059 (8)
C100.0467 (14)0.0427 (12)0.0462 (13)0.0003 (11)0.0056 (11)0.0038 (10)
C110.0676 (19)0.0419 (13)0.0573 (15)0.0067 (13)0.0012 (14)0.0049 (11)
C120.0651 (19)0.0312 (12)0.0719 (17)0.0059 (12)0.0101 (15)0.0042 (11)
C130.0524 (16)0.0446 (14)0.0805 (19)0.0124 (13)0.0043 (15)0.0164 (13)
C140.0392 (13)0.0401 (12)0.0581 (14)0.0039 (10)0.0093 (12)0.0083 (10)
Geometric parameters (Å, º) top
S1—O11.4291 (17)C4—H4A0.9300
S1—O21.4307 (19)C5—C61.376 (3)
S1—N11.605 (2)C5—H5A0.9300
S1—C61.767 (2)C7—C81.505 (3)
S2—O41.4233 (17)C7—H7A0.9700
S2—O31.4300 (17)C7—H7B0.9700
S2—N21.6202 (19)C8—H8A0.9700
S2—C91.763 (2)C8—H8B0.9700
N1—C71.459 (3)C9—C101.372 (3)
N1—H1N10.73 (3)C9—C141.387 (3)
N2—C81.467 (3)C10—C111.394 (3)
N2—H1N20.82 (3)C10—H10A0.9300
C1—C21.378 (3)C11—C121.367 (4)
C1—C61.382 (3)C11—H11A0.9300
C1—H1A0.9300C12—C131.372 (4)
C2—C31.369 (4)C12—H12A0.9300
C2—H2A0.9300C13—C141.379 (3)
C3—C41.363 (4)C13—H13A0.9300
C3—H3A0.9300C14—H14A0.9300
C4—C51.393 (4)
O1—S1—O2120.66 (12)C5—C6—C1120.5 (2)
O1—S1—N1105.92 (11)C5—C6—S1120.09 (19)
O2—S1—N1106.67 (11)C1—C6—S1119.43 (18)
O1—S1—C6107.49 (10)N1—C7—C8110.63 (17)
O2—S1—C6107.46 (11)N1—C7—H7A109.5
N1—S1—C6108.11 (10)C8—C7—H7A109.5
O4—S2—O3119.44 (11)N1—C7—H7B109.5
O4—S2—N2106.86 (11)C8—C7—H7B109.5
O3—S2—N2106.87 (10)H7A—C7—H7B108.1
O4—S2—C9108.40 (10)N2—C8—C7109.10 (17)
O3—S2—C9107.56 (10)N2—C8—H8A109.9
N2—S2—C9107.12 (10)C7—C8—H8A109.9
C7—N1—S1121.62 (17)N2—C8—H8B109.9
C7—N1—H1N1115.6 (19)C7—C8—H8B109.9
S1—N1—H1N1111 (2)H8A—C8—H8B108.3
C8—N2—S2118.16 (14)C10—C9—C14120.9 (2)
C8—N2—H1N2110.7 (16)C10—C9—S2120.78 (17)
S2—N2—H1N2108.3 (16)C14—C9—S2118.26 (17)
C2—C1—C6119.4 (2)C9—C10—C11119.1 (2)
C2—C1—H1A120.3C9—C10—H10A120.4
C6—C1—H1A120.3C11—C10—H10A120.4
C3—C2—C1120.3 (3)C12—C11—C10120.2 (2)
C3—C2—H2A119.9C12—C11—H11A119.9
C1—C2—H2A119.9C10—C11—H11A119.9
C4—C3—C2120.7 (2)C11—C12—C13120.3 (2)
C4—C3—H3A119.6C11—C12—H12A119.9
C2—C3—H3A119.6C13—C12—H12A119.9
C3—C4—C5119.8 (3)C12—C13—C14120.7 (2)
C3—C4—H4A120.1C12—C13—H13A119.7
C5—C4—H4A120.1C14—C13—H13A119.7
C6—C5—C4119.4 (3)C13—C14—C9118.8 (2)
C6—C5—H5A120.3C13—C14—H14A120.6
C4—C5—H5A120.3C9—C14—H14A120.6
O1—S1—N1—C7172.40 (17)N1—S1—C6—C180.2 (2)
O2—S1—N1—C742.7 (2)S1—N1—C7—C8102.1 (2)
C6—S1—N1—C772.6 (2)S2—N2—C8—C7162.43 (15)
O4—S2—N2—C8174.49 (16)N1—C7—C8—N2178.68 (19)
O3—S2—N2—C856.57 (19)O4—S2—C9—C10145.79 (19)
C9—S2—N2—C858.48 (18)O3—S2—C9—C1015.4 (2)
C6—C1—C2—C30.5 (4)N2—S2—C9—C1099.2 (2)
C1—C2—C3—C40.7 (5)O4—S2—C9—C1435.8 (2)
C2—C3—C4—C50.4 (5)O3—S2—C9—C14166.27 (18)
C3—C4—C5—C60.2 (4)N2—S2—C9—C1479.1 (2)
C4—C5—C6—C10.4 (4)C14—C9—C10—C110.2 (4)
C4—C5—C6—S1178.9 (2)S2—C9—C10—C11178.08 (19)
C2—C1—C6—C50.1 (4)C9—C10—C11—C120.4 (4)
C2—C1—C6—S1178.6 (2)C10—C11—C12—C130.8 (4)
O1—S1—C6—C5147.7 (2)C11—C12—C13—C140.9 (4)
O2—S1—C6—C516.4 (2)C12—C13—C14—C90.7 (4)
N1—S1—C6—C598.4 (2)C10—C9—C14—C130.4 (4)
O1—S1—C6—C133.8 (2)S2—C9—C14—C13178.0 (2)
O2—S1—C6—C1165.05 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i0.73 (3)2.40 (3)3.053 (3)149 (3)
N2—H1N2···O3i0.83 (3)2.15 (3)2.924 (3)157 (2)
C10—H10A···O1ii0.932.573.294 (3)135
Symmetry codes: (i) x1, y, z; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC14H16N2O4S2
Mr340.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)5.2115 (4), 16.6905 (13), 17.8750 (14)
β (°) 93.187 (2)
V3)1552.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.46 × 0.08 × 0.07
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.852, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
14604, 3545, 2628
Rint0.047
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.119, 1.04
No. of reflections3545
No. of parameters207
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.33

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i0.73 (3)2.40 (3)3.053 (3)149 (3)
N2—H1N2···O3i0.83 (3)2.15 (3)2.924 (3)157 (2)
C10—H10A···O1ii0.93002.57003.294 (3)135.00
Symmetry codes: (i) x1, y, z; (ii) x+1, y+2, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

NM gratefully acknowledges funding from Universiti Sains Malaysia (USM) under the Research University Grant No. 1001/PFARMASI/821142. HKF and MH thank the Malaysian government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

References

First citationBasak, A. K., Mazumdar, S. K. & Chaudhuri, S. (1982). Cryst. Struct. Commun. 11, 1609–1616.  CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCotton, F. A. & Stokley, P. F. (1970). J. Am. Chem. Soc. 92, 294–302.  CSD CrossRef CAS Web of Science Google Scholar
First citationLi, J. J., et al. (1995). J. Med. Chem. 38, 4570–4578.  CrossRef CAS Web of Science Google Scholar
First citationMaren, T. H. (1976). Annu. Rev. Pharmacol. Toxicol. 16, 309–327.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMisra, V. S., Saxena, V. K. & Srivastava, R. J. (1982). J. Indian Chem. Soc. 59, 781.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoshino, H., Ueda, N., Niijma, J., Sugumi, H., Kotake, Y., Koyanagi, N., Yoshimatsu, K., Asada, M., Watanabe, T., Nagasu, T., Tsukahara, K., Lijima, A. & Kitoh, K. (1992). J. Med. Chem. 35, 2496–2497.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds