organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(ethano­laminium) succinate–succinic acid (1/1)

aCollege of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and bCollege of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: fzt713@163.com

(Received 22 July 2011; accepted 22 August 2011; online 27 August 2011)

The asymmetric unit of the title compound, 2C2H8NO+·C4H4O42−·C4H6O4, consists of half a succinate anion, half a succinic acid mol­ecule and one ethano­laminium cation. The succinate anion and succinic acid mol­ecule, both of which are located on inversion centres, are linked by O—H⋯O hydrogen bonds, forming a chain along the [2[\overline{1}]0] direction. The chain and the ethano­laminium cation are further connected by O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For related structures of co-crystals and salts of succinic acid, see: Aakeroy et al. (1998[A. M. & Zou, M. (1998). Cryst. Eng. pp. 225-241.]); Batchelor et al. (2001[Batchelor, E., Klinowski, J. & Jones, W. (2001). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A, pp. 263-272.]); Borthwick (1980[Borthwick, P. W. (1980). Acta Cryst. B36, 628-632.]); Braga et al. (2003[Braga, D., Maini, L., Sanctis, G. D., Rubini, K., Grepioni, F., Chierotti, M. R. & Gobetto, R. (2003). Chem. Eur. J. pp. 5528-5537.]); Bruno et al. (2004[Bruno, G., Rotondo, A., De Luca, L., Sammartano, S. & Nicoló, F. (2004). Acta Cryst. C60, o287-o289.]); Büyükgüngör & Odabasoglu (2002[Büyükgüngör, O. & Odabas˛ogˇlu, M. (2002). Acta Cryst. C58, o691-o692.]); Flensburg et al. (1995[Flensburg, C., Larsen, S. & Stewart, R. F. (1995). J. Phys. Chem. pp. 10130-10141.]); Kuipers et al. (1997[Kuipers, W., Kruse, C. G., van Wijngaarden, I., Standaar, P. J., Tulp, M. T. M., Veldman, N., Spek, A. L. & Ijzerman, A. P. (1997). J. Med. Chem. pp. 300-312.]); Li et al. (2003[Li, S.-L., Usman, A., Razak, I. A., Rahman, A. A., Fun, H.-K., Wu, J.-Y., Tian, Y.-P., Jiang, M.-H. & Chen, Z.-Y. (2003). Acta Cryst. E59, m199-m201.]); MacDonald et al. (2001[MacDonald, J. C., Dorrestein, P. C. & Pilley, M. M. (2001). Cryst. Growth Des. pp. 29-35.]); Prasad & Vijayan (1990[Prasad, G. S. & Vijayan, M. (1990). Int. J. Pept. Protein Res. pp. 357-364.]); Reitz et al. (1998[Reitz, A. B., Baxter, E. W., Codd, E. E., Davis, C. B., Jordan, A. D., Maryanoff, B. E., Maryanoff, C. A., McDonnell, M. E., Powell, E. T., Renzi, M. J., Schott, M. R., Scott, M. K., Shank, R. P. & Vaught, J. L. (1998). J. Med. Chem. pp. 1997-2009.]); Urbanczyk-Lipkowska (2000[Urbanczyk-Lipkowska, Z. (2000). Cryst. Eng. pp. 227-236.]).

[Scheme 1]

Experimental

Crystal data
  • 2C2H8NO+·C4H4O42−·C4H6O4

  • Mr = 358.35

  • Triclinic, [P \overline 1]

  • a = 5.821 (5) Å

  • b = 8.428 (7) Å

  • c = 9.077 (7) Å

  • α = 87.74 (1)°

  • β = 73.628 (11)°

  • γ = 80.380 (12)°

  • V = 421.2 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.42 × 0.34 × 0.30 mm

Data collection
  • Bruker APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.855, Tmax = 0.898

  • 2330 measured reflections

  • 1628 independent reflections

  • 1517 reflections with I > 2σ(I)

  • Rint = 0.011

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.106

  • S = 1.07

  • 1628 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.89 2.09 2.976 (2) 171
N1—H1B⋯O3ii 0.89 1.93 2.810 (2) 167
N1—H1C⋯O5 0.89 2.55 2.868 (3) 102
N1—H1C⋯O5iii 0.89 2.31 2.913 (3) 125
O2—H2⋯O4 0.82 1.66 2.466 (2) 166
O5—H5⋯O4 0.82 2.01 2.697 (2) 142
Symmetry codes: (i) x-1, y, z+1; (ii) x-1, y, z; (iii) -x, -y+2, -z+2.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

There exist three forms of succinic acid in molecular complex, namely, succinate (Kuipers et al., 1997; Urbanczyk-Lipkowska, 2000), succinic acid (Aakeroy et al., 1998; Batchelor et al., 2001), hydrogen succinate (Flensburg et al., 1995; MacDonald et al., 2001). Interestingly, some mixed forms are also available (Prasad & Vijayan, 1990; Reitz et al., 1998; Büyükgüngör & Odabasoglu, 2002; Braga et al., 2003; Bruno et al., 2004). However, no convincing explanation for the formation of any of the complex. Recently, the title complex, (I) (Table 1 & Fig. 1), is synthesized, and the structure is studied hereafter.

As shown in Fig. 1, the asymmetric unit is composed of one ethanolaminium cation, half a succinate anion, and half a succinic acid molecule. The succinate anion and succinic acid molecule are linked by an O2—H2···O4 hydrogen bond (Table 1), then are associated with ethanolaminium cation by an O5—H5···O4 hydrogen bond. The distances of [C1—O1 1.2187 (18) Å and C1—O2 1.3009 (18) Å] indicate a carboxylic group, where C1—O1 stands for the carbonyl C=O bond. The distances of [C3—O3 1.2310 (18) Å and C3—O4 1.2831 (17) Å] indicate a carboxylate anion, where the C—O and C=O bonds are equalized, and no distinct carbonyl C=O bond is observed (Borthwick, 1980). This is mixed mode of succinate and succinic acid, and is similar to those observed in other cases (Prasad & Vijayan, 1990; Li et al., 2003; Bruno et al., 2004).

The succinate anion and the succinic acid molecule are arranged almost in the same layers (Fig. 2), and the ethanolaminium cation are sandwiched between the layers by O—H···O and N—H···O hydrogen bonds (Table 1).

Related literature top

For related structures of co-crystals and salts of succinic acid, see: Aakeroy et al. (1998); Batchelor et al. (2001); Borthwick (1980); Braga et al. (2003); Bruno et al. (2004); Büyükgüngör & Odabasoglu (2002); Flensburg et al. (1995); Kuipers et al. (1997); Li et al. (2003); MacDonald et al. (2001); Prasad & Vijayan (1990); Reitz et al. (1998); Urbanczyk-Lipkowska (2000).

Experimental top

Succinic acid (5.1 g) and ethanolamine (2.4 g), in a molar ratio of 1:1, were mixed and dissolved in sufficient ethanol by heating to 373 K, at which point a clear solution resulted. The system was then cooled slowly to room temperature. Crystals of (I) (4.3 g) were formed, collected and washed with ethanol.

Refinement top

All H atoms were placed in calculated positions and allowed to ride on their parent atoms with distances of 0.89 Å for the amido, 0.97 Å for the methylene and 0.82 Å for the hydroxyl group, and with isotropic displacement parameters 1.2–1.5 times Ueq of the parent atoms.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Hydrogen bonds are illustrated as dashed lines.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the c axis. Hydrogen bonds are drawn as dashed lines.
Bis(ethanolaminium) succinate–succinic acid (1/1) top
Crystal data top
2C2H8NO+·C4H4O42·C4H6O4Z = 1
Mr = 358.35F(000) = 192.0
Triclinic, P1Dx = 1.413 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.821 (5) ÅCell parameters from 1360 reflections
b = 8.428 (7) Åθ = 2.1–17.8°
c = 9.077 (7) ŵ = 0.12 mm1
α = 87.74 (1)°T = 293 K
β = 73.628 (11)°Prism, colorless
γ = 80.380 (12)°0.42 × 0.34 × 0.30 mm
V = 421.2 (6) Å3
Data collection top
Bruker APEX area-detector
diffractometer
1628 independent reflections
Radiation source: fine-focus sealed tube1517 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
ϕ and ω scanθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 47
Tmin = 0.855, Tmax = 0.898k = 910
2330 measured reflectionsl = 1110
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0582P)2 + 0.1261P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1628 reflectionsΔρmax = 0.37 e Å3
110 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.160 (15)
Crystal data top
2C2H8NO+·C4H4O42·C4H6O4γ = 80.380 (12)°
Mr = 358.35V = 421.2 (6) Å3
Triclinic, P1Z = 1
a = 5.821 (5) ÅMo Kα radiation
b = 8.428 (7) ŵ = 0.12 mm1
c = 9.077 (7) ÅT = 293 K
α = 87.74 (1)°0.42 × 0.34 × 0.30 mm
β = 73.628 (11)°
Data collection top
Bruker APEX area-detector
diffractometer
1628 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1517 reflections with I > 2σ(I)
Tmin = 0.855, Tmax = 0.898Rint = 0.011
2330 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.07Δρmax = 0.37 e Å3
1628 reflectionsΔρmin = 0.32 e Å3
110 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27229 (18)0.92694 (13)0.23761 (10)0.0366 (3)
O20.49374 (19)0.79510 (15)0.37464 (11)0.0455 (3)
H20.48750.78080.46550.068*
O30.7920 (2)0.61078 (13)0.76185 (11)0.0410 (3)
O40.54895 (19)0.74043 (13)0.63248 (11)0.0401 (3)
O50.24811 (17)0.85165 (11)0.90544 (11)0.0341 (3)
H50.38250.83240.84340.051*
N10.25612 (19)0.82179 (14)1.00467 (12)0.0293 (3)
H1A0.40020.84281.07400.044*
H1B0.26500.75700.93210.044*
H1C0.21310.91330.96240.044*
C10.2989 (2)0.89023 (16)0.36369 (14)0.0263 (3)
C20.1142 (2)0.95017 (16)0.51200 (14)0.0275 (3)
H2A0.18711.01470.56680.033*
H2B0.07090.85860.57560.033*
C30.7343 (2)0.63837 (16)0.64176 (14)0.0275 (3)
C40.8844 (2)0.55193 (17)0.49388 (15)0.0328 (3)
H4A0.78650.48500.46190.039*
H4B0.92500.63140.41460.039*
C50.1738 (2)0.70523 (16)0.96716 (17)0.0336 (3)
H5A0.28950.64861.01770.040*
H5B0.16720.63700.88540.040*
C60.0726 (2)0.74220 (17)1.08064 (15)0.0301 (3)
H6A0.12070.64311.12780.036*
H6B0.06530.81201.16100.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0321 (5)0.0531 (7)0.0204 (5)0.0042 (4)0.0067 (4)0.0002 (4)
O20.0322 (6)0.0685 (8)0.0230 (5)0.0212 (5)0.0038 (4)0.0017 (5)
O30.0455 (6)0.0490 (6)0.0238 (5)0.0142 (5)0.0135 (4)0.0085 (4)
O40.0341 (6)0.0510 (6)0.0240 (5)0.0185 (5)0.0041 (4)0.0040 (4)
O50.0315 (5)0.0336 (5)0.0291 (5)0.0030 (4)0.0042 (4)0.0051 (4)
N10.0265 (6)0.0322 (6)0.0259 (6)0.0004 (4)0.0040 (4)0.0022 (4)
C10.0226 (6)0.0327 (7)0.0218 (6)0.0008 (5)0.0052 (5)0.0003 (5)
C20.0227 (7)0.0359 (7)0.0204 (6)0.0027 (5)0.0047 (5)0.0002 (5)
C30.0268 (6)0.0303 (7)0.0221 (6)0.0030 (5)0.0057 (5)0.0021 (5)
C40.0305 (7)0.0401 (8)0.0240 (7)0.0103 (6)0.0096 (6)0.0077 (6)
C50.0284 (7)0.0299 (7)0.0387 (8)0.0014 (5)0.0066 (6)0.0008 (6)
C60.0296 (7)0.0349 (7)0.0250 (6)0.0038 (5)0.0075 (5)0.0030 (5)
Geometric parameters (Å, º) top
O1—C11.2187 (18)C2—C2i1.516 (2)
O2—C11.3009 (18)C2—H2A0.9700
O2—H20.8200C2—H2B0.9700
O3—C31.2310 (18)C3—C41.5162 (19)
O4—C31.2831 (17)C4—C4ii1.508 (3)
O5—C51.4181 (19)C4—H4A0.9700
O5—H50.8200C4—H4B0.9700
N1—C61.4851 (18)C5—C61.503 (2)
N1—H1A0.8900C5—H5A0.9700
N1—H1B0.8900C5—H5B0.9700
N1—H1C0.8900C6—H6A0.9700
C1—C21.5097 (19)C6—H6B0.9700
C1—O2—H2109.5O4—C3—C4116.06 (11)
C5—O5—H5109.5C4ii—C4—C3114.11 (14)
C6—N1—H1A109.5C4ii—C4—H4A108.7
C6—N1—H1B109.5C3—C4—H4A108.7
H1A—N1—H1B109.5C4ii—C4—H4B108.7
C6—N1—H1C109.5C3—C4—H4B108.7
H1A—N1—H1C109.5H4A—C4—H4B107.6
H1B—N1—H1C109.5O5—C5—C6108.92 (11)
O1—C1—O2119.92 (12)O5—C5—H5A109.9
O1—C1—C2123.11 (12)C6—C5—H5A109.9
O2—C1—C2116.97 (11)O5—C5—H5B109.9
C1—C2—C2i113.14 (13)C6—C5—H5B109.9
C1—C2—H2A109.0H5A—C5—H5B108.3
C2i—C2—H2A109.0N1—C6—C5111.06 (12)
C1—C2—H2B109.0N1—C6—H6A109.4
C2i—C2—H2B109.0C5—C6—H6A109.4
H2A—C2—H2B107.8N1—C6—H6B109.4
O3—C3—O4123.24 (12)C5—C6—H6B109.4
O3—C3—C4120.70 (12)H6A—C6—H6B108.0
Symmetry codes: (i) x, y+2, z+1; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1iii0.892.092.976 (2)171
N1—H1B···O3iv0.891.932.810 (2)167
N1—H1C···O50.892.552.868 (3)102
N1—H1C···O5v0.892.312.913 (3)125
O2—H2···O40.821.662.466 (2)166
O5—H5···O40.822.012.697 (2)142
Symmetry codes: (iii) x1, y, z+1; (iv) x1, y, z; (v) x, y+2, z+2.

Experimental details

Crystal data
Chemical formula2C2H8NO+·C4H4O42·C4H6O4
Mr358.35
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.821 (5), 8.428 (7), 9.077 (7)
α, β, γ (°)87.74 (1), 73.628 (11), 80.380 (12)
V3)421.2 (6)
Z1
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.42 × 0.34 × 0.30
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.855, 0.898
No. of measured, independent and
observed [I > 2σ(I)] reflections
2330, 1628, 1517
Rint0.011
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.106, 1.07
No. of reflections1628
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.32

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.892.092.976 (2)171
N1—H1B···O3ii0.891.932.810 (2)167
N1—H1C···O50.892.552.868 (3)102
N1—H1C···O5iii0.892.312.913 (3)125
O2—H2···O40.821.662.466 (2)166
O5—H5···O40.822.012.697 (2)142
Symmetry codes: (i) x1, y, z+1; (ii) x1, y, z; (iii) x, y+2, z+2.
 

References

First citationA. M. & Zou, M. (1998). Cryst. Eng. pp. 225–241.  Google Scholar
First citationBatchelor, E., Klinowski, J. & Jones, W. (2001). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A, pp. 263–272.  CrossRef Google Scholar
First citationBorthwick, P. W. (1980). Acta Cryst. B36, 628–632.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBraga, D., Maini, L., Sanctis, G. D., Rubini, K., Grepioni, F., Chierotti, M. R. & Gobetto, R. (2003). Chem. Eur. J. pp. 5528–5537.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, G., Rotondo, A., De Luca, L., Sammartano, S. & Nicoló, F. (2004). Acta Cryst. C60, o287–o289.  Web of Science CSD CAS Google Scholar
First citationBüyükgüngör, O. & Odabas˛ogˇlu, M. (2002). Acta Cryst. C58, o691–o692.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlensburg, C., Larsen, S. & Stewart, R. F. (1995). J. Phys. Chem. pp. 10130–10141.  CrossRef Google Scholar
First citationKuipers, W., Kruse, C. G., van Wijngaarden, I., Standaar, P. J., Tulp, M. T. M., Veldman, N., Spek, A. L. & Ijzerman, A. P. (1997). J. Med. Chem. pp. 300–312.  CrossRef Google Scholar
First citationLi, S.-L., Usman, A., Razak, I. A., Rahman, A. A., Fun, H.-K., Wu, J.-Y., Tian, Y.-P., Jiang, M.-H. & Chen, Z.-Y. (2003). Acta Cryst. E59, m199–m201.  Web of Science CSD Google Scholar
First citationMacDonald, J. C., Dorrestein, P. C. & Pilley, M. M. (2001). Cryst. Growth Des. pp. 29–35.  CrossRef Google Scholar
First citationPrasad, G. S. & Vijayan, M. (1990). Int. J. Pept. Protein Res. pp. 357–364.  Google Scholar
First citationReitz, A. B., Baxter, E. W., Codd, E. E., Davis, C. B., Jordan, A. D., Maryanoff, B. E., Maryanoff, C. A., McDonnell, M. E., Powell, E. T., Renzi, M. J., Schott, M. R., Scott, M. K., Shank, R. P. & Vaught, J. L. (1998). J. Med. Chem. pp. 1997–2009.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUrbanczyk-Lipkowska, Z. (2000). Cryst. Eng. pp. 227–236.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds