organic compounds
Bis(ethanolaminium) succinate–succinic acid (1/1)
aCollege of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and bCollege of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: fzt713@163.com
The 2H8NO+·C4H4O42−·C4H6O4, consists of half a succinate anion, half a succinic acid molecule and one ethanolaminium cation. The succinate anion and succinic acid molecule, both of which are located on inversion centres, are linked by O—H⋯O hydrogen bonds, forming a chain along the [20] direction. The chain and the ethanolaminium cation are further connected by O—H⋯O and N—H⋯O hydrogen bonds.
of the title compound, 2CRelated literature
For related structures of co-crystals and salts of succinic acid, see: Aakeroy et al. (1998); Batchelor et al. (2001); Borthwick (1980); Braga et al. (2003); Bruno et al. (2004); Büyükgüngör & Odabasoglu (2002); Flensburg et al. (1995); Kuipers et al. (1997); Li et al. (2003); MacDonald et al. (2001); Prasad & Vijayan (1990); Reitz et al. (1998); Urbanczyk-Lipkowska (2000).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811034428/is2756sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811034428/is2756Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811034428/is2756Isup3.cml
Succinic acid (5.1 g) and ethanolamine (2.4 g), in a molar ratio of 1:1, were mixed and dissolved in sufficient ethanol by heating to 373 K, at which point a clear solution resulted. The system was then cooled slowly to room temperature. Crystals of (I) (4.3 g) were formed, collected and washed with ethanol.
All H atoms were placed in calculated positions and allowed to ride on their parent atoms with distances of 0.89 Å for the amido, 0.97 Å for the methylene and 0.82 Å for the hydroxyl group, and with isotropic displacement parameters 1.2–1.5 times Ueq of the parent atoms.
Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound. Hydrogen bonds are illustrated as dashed lines. | |
Fig. 2. The crystal packing of the title compound, viewed down the c axis. Hydrogen bonds are drawn as dashed lines. |
2C2H8NO+·C4H4O42−·C4H6O4 | Z = 1 |
Mr = 358.35 | F(000) = 192.0 |
Triclinic, P1 | Dx = 1.413 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.821 (5) Å | Cell parameters from 1360 reflections |
b = 8.428 (7) Å | θ = 2.1–17.8° |
c = 9.077 (7) Å | µ = 0.12 mm−1 |
α = 87.74 (1)° | T = 293 K |
β = 73.628 (11)° | Prism, colorless |
γ = 80.380 (12)° | 0.42 × 0.34 × 0.30 mm |
V = 421.2 (6) Å3 |
Bruker APEX area-detector diffractometer | 1628 independent reflections |
Radiation source: fine-focus sealed tube | 1517 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.011 |
ϕ and ω scan | θmax = 26.0°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −4→7 |
Tmin = 0.855, Tmax = 0.898 | k = −9→10 |
2330 measured reflections | l = −11→10 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.106 | w = 1/[σ2(Fo2) + (0.0582P)2 + 0.1261P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
1628 reflections | Δρmax = 0.37 e Å−3 |
110 parameters | Δρmin = −0.32 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.160 (15) |
2C2H8NO+·C4H4O42−·C4H6O4 | γ = 80.380 (12)° |
Mr = 358.35 | V = 421.2 (6) Å3 |
Triclinic, P1 | Z = 1 |
a = 5.821 (5) Å | Mo Kα radiation |
b = 8.428 (7) Å | µ = 0.12 mm−1 |
c = 9.077 (7) Å | T = 293 K |
α = 87.74 (1)° | 0.42 × 0.34 × 0.30 mm |
β = 73.628 (11)° |
Bruker APEX area-detector diffractometer | 1628 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 1517 reflections with I > 2σ(I) |
Tmin = 0.855, Tmax = 0.898 | Rint = 0.011 |
2330 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.37 e Å−3 |
1628 reflections | Δρmin = −0.32 e Å−3 |
110 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.27229 (18) | 0.92694 (13) | 0.23761 (10) | 0.0366 (3) | |
O2 | 0.49374 (19) | 0.79510 (15) | 0.37464 (11) | 0.0455 (3) | |
H2 | 0.4875 | 0.7808 | 0.4655 | 0.068* | |
O3 | 0.7920 (2) | 0.61078 (13) | 0.76185 (11) | 0.0410 (3) | |
O4 | 0.54895 (19) | 0.74043 (13) | 0.63248 (11) | 0.0401 (3) | |
O5 | 0.24811 (17) | 0.85165 (11) | 0.90544 (11) | 0.0341 (3) | |
H5 | 0.3825 | 0.8324 | 0.8434 | 0.051* | |
N1 | −0.25612 (19) | 0.82179 (14) | 1.00467 (12) | 0.0293 (3) | |
H1A | −0.4002 | 0.8428 | 1.0740 | 0.044* | |
H1B | −0.2650 | 0.7570 | 0.9321 | 0.044* | |
H1C | −0.2131 | 0.9133 | 0.9624 | 0.044* | |
C1 | 0.2989 (2) | 0.89023 (16) | 0.36369 (14) | 0.0263 (3) | |
C2 | 0.1142 (2) | 0.95017 (16) | 0.51200 (14) | 0.0275 (3) | |
H2A | 0.1871 | 1.0147 | 0.5668 | 0.033* | |
H2B | 0.0709 | 0.8586 | 0.5756 | 0.033* | |
C3 | 0.7343 (2) | 0.63837 (16) | 0.64176 (14) | 0.0275 (3) | |
C4 | 0.8844 (2) | 0.55193 (17) | 0.49388 (15) | 0.0328 (3) | |
H4A | 0.7865 | 0.4850 | 0.4619 | 0.039* | |
H4B | 0.9250 | 0.6314 | 0.4146 | 0.039* | |
C5 | 0.1738 (2) | 0.70523 (16) | 0.96716 (17) | 0.0336 (3) | |
H5A | 0.2895 | 0.6486 | 1.0177 | 0.040* | |
H5B | 0.1672 | 0.6370 | 0.8854 | 0.040* | |
C6 | −0.0726 (2) | 0.74220 (17) | 1.08064 (15) | 0.0301 (3) | |
H6A | −0.1207 | 0.6431 | 1.1278 | 0.036* | |
H6B | −0.0653 | 0.8120 | 1.1610 | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0321 (5) | 0.0531 (7) | 0.0204 (5) | 0.0042 (4) | −0.0067 (4) | 0.0002 (4) |
O2 | 0.0322 (6) | 0.0685 (8) | 0.0230 (5) | 0.0212 (5) | −0.0038 (4) | −0.0017 (5) |
O3 | 0.0455 (6) | 0.0490 (6) | 0.0238 (5) | 0.0142 (5) | −0.0135 (4) | −0.0085 (4) |
O4 | 0.0341 (6) | 0.0510 (6) | 0.0240 (5) | 0.0185 (5) | −0.0041 (4) | −0.0040 (4) |
O5 | 0.0315 (5) | 0.0336 (5) | 0.0291 (5) | −0.0030 (4) | 0.0042 (4) | −0.0051 (4) |
N1 | 0.0265 (6) | 0.0322 (6) | 0.0259 (6) | −0.0004 (4) | −0.0040 (4) | −0.0022 (4) |
C1 | 0.0226 (6) | 0.0327 (7) | 0.0218 (6) | −0.0008 (5) | −0.0052 (5) | −0.0003 (5) |
C2 | 0.0227 (7) | 0.0359 (7) | 0.0204 (6) | 0.0027 (5) | −0.0047 (5) | 0.0002 (5) |
C3 | 0.0268 (6) | 0.0303 (7) | 0.0221 (6) | 0.0030 (5) | −0.0057 (5) | −0.0021 (5) |
C4 | 0.0305 (7) | 0.0401 (8) | 0.0240 (7) | 0.0103 (6) | −0.0096 (6) | −0.0077 (6) |
C5 | 0.0284 (7) | 0.0299 (7) | 0.0387 (8) | 0.0014 (5) | −0.0066 (6) | −0.0008 (6) |
C6 | 0.0296 (7) | 0.0349 (7) | 0.0250 (6) | −0.0038 (5) | −0.0075 (5) | 0.0030 (5) |
O1—C1 | 1.2187 (18) | C2—C2i | 1.516 (2) |
O2—C1 | 1.3009 (18) | C2—H2A | 0.9700 |
O2—H2 | 0.8200 | C2—H2B | 0.9700 |
O3—C3 | 1.2310 (18) | C3—C4 | 1.5162 (19) |
O4—C3 | 1.2831 (17) | C4—C4ii | 1.508 (3) |
O5—C5 | 1.4181 (19) | C4—H4A | 0.9700 |
O5—H5 | 0.8200 | C4—H4B | 0.9700 |
N1—C6 | 1.4851 (18) | C5—C6 | 1.503 (2) |
N1—H1A | 0.8900 | C5—H5A | 0.9700 |
N1—H1B | 0.8900 | C5—H5B | 0.9700 |
N1—H1C | 0.8900 | C6—H6A | 0.9700 |
C1—C2 | 1.5097 (19) | C6—H6B | 0.9700 |
C1—O2—H2 | 109.5 | O4—C3—C4 | 116.06 (11) |
C5—O5—H5 | 109.5 | C4ii—C4—C3 | 114.11 (14) |
C6—N1—H1A | 109.5 | C4ii—C4—H4A | 108.7 |
C6—N1—H1B | 109.5 | C3—C4—H4A | 108.7 |
H1A—N1—H1B | 109.5 | C4ii—C4—H4B | 108.7 |
C6—N1—H1C | 109.5 | C3—C4—H4B | 108.7 |
H1A—N1—H1C | 109.5 | H4A—C4—H4B | 107.6 |
H1B—N1—H1C | 109.5 | O5—C5—C6 | 108.92 (11) |
O1—C1—O2 | 119.92 (12) | O5—C5—H5A | 109.9 |
O1—C1—C2 | 123.11 (12) | C6—C5—H5A | 109.9 |
O2—C1—C2 | 116.97 (11) | O5—C5—H5B | 109.9 |
C1—C2—C2i | 113.14 (13) | C6—C5—H5B | 109.9 |
C1—C2—H2A | 109.0 | H5A—C5—H5B | 108.3 |
C2i—C2—H2A | 109.0 | N1—C6—C5 | 111.06 (12) |
C1—C2—H2B | 109.0 | N1—C6—H6A | 109.4 |
C2i—C2—H2B | 109.0 | C5—C6—H6A | 109.4 |
H2A—C2—H2B | 107.8 | N1—C6—H6B | 109.4 |
O3—C3—O4 | 123.24 (12) | C5—C6—H6B | 109.4 |
O3—C3—C4 | 120.70 (12) | H6A—C6—H6B | 108.0 |
Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1iii | 0.89 | 2.09 | 2.976 (2) | 171 |
N1—H1B···O3iv | 0.89 | 1.93 | 2.810 (2) | 167 |
N1—H1C···O5 | 0.89 | 2.55 | 2.868 (3) | 102 |
N1—H1C···O5v | 0.89 | 2.31 | 2.913 (3) | 125 |
O2—H2···O4 | 0.82 | 1.66 | 2.466 (2) | 166 |
O5—H5···O4 | 0.82 | 2.01 | 2.697 (2) | 142 |
Symmetry codes: (iii) x−1, y, z+1; (iv) x−1, y, z; (v) −x, −y+2, −z+2. |
Experimental details
Crystal data | |
Chemical formula | 2C2H8NO+·C4H4O42−·C4H6O4 |
Mr | 358.35 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 5.821 (5), 8.428 (7), 9.077 (7) |
α, β, γ (°) | 87.74 (1), 73.628 (11), 80.380 (12) |
V (Å3) | 421.2 (6) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.42 × 0.34 × 0.30 |
Data collection | |
Diffractometer | Bruker APEX area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.855, 0.898 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2330, 1628, 1517 |
Rint | 0.011 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.106, 1.07 |
No. of reflections | 1628 |
No. of parameters | 110 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.37, −0.32 |
Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.89 | 2.09 | 2.976 (2) | 171 |
N1—H1B···O3ii | 0.89 | 1.93 | 2.810 (2) | 167 |
N1—H1C···O5 | 0.89 | 2.55 | 2.868 (3) | 102 |
N1—H1C···O5iii | 0.89 | 2.31 | 2.913 (3) | 125 |
O2—H2···O4 | 0.82 | 1.66 | 2.466 (2) | 166 |
O5—H5···O4 | 0.82 | 2.01 | 2.697 (2) | 142 |
Symmetry codes: (i) x−1, y, z+1; (ii) x−1, y, z; (iii) −x, −y+2, −z+2. |
References
A. M. & Zou, M. (1998). Cryst. Eng. pp. 225–241. Google Scholar
Batchelor, E., Klinowski, J. & Jones, W. (2001). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A, pp. 263–272. CrossRef Google Scholar
Borthwick, P. W. (1980). Acta Cryst. B36, 628–632. CrossRef CAS IUCr Journals Web of Science Google Scholar
Braga, D., Maini, L., Sanctis, G. D., Rubini, K., Grepioni, F., Chierotti, M. R. & Gobetto, R. (2003). Chem. Eur. J. pp. 5528–5537. Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruno, G., Rotondo, A., De Luca, L., Sammartano, S. & Nicoló, F. (2004). Acta Cryst. C60, o287–o289. Web of Science CSD CAS Google Scholar
Büyükgüngör, O. & Odabas˛ogˇlu, M. (2002). Acta Cryst. C58, o691–o692. Web of Science CSD CrossRef IUCr Journals Google Scholar
Flensburg, C., Larsen, S. & Stewart, R. F. (1995). J. Phys. Chem. pp. 10130–10141. CrossRef Google Scholar
Kuipers, W., Kruse, C. G., van Wijngaarden, I., Standaar, P. J., Tulp, M. T. M., Veldman, N., Spek, A. L. & Ijzerman, A. P. (1997). J. Med. Chem. pp. 300–312. CrossRef Google Scholar
Li, S.-L., Usman, A., Razak, I. A., Rahman, A. A., Fun, H.-K., Wu, J.-Y., Tian, Y.-P., Jiang, M.-H. & Chen, Z.-Y. (2003). Acta Cryst. E59, m199–m201. Web of Science CSD Google Scholar
MacDonald, J. C., Dorrestein, P. C. & Pilley, M. M. (2001). Cryst. Growth Des. pp. 29–35. CrossRef Google Scholar
Prasad, G. S. & Vijayan, M. (1990). Int. J. Pept. Protein Res. pp. 357–364. Google Scholar
Reitz, A. B., Baxter, E. W., Codd, E. E., Davis, C. B., Jordan, A. D., Maryanoff, B. E., Maryanoff, C. A., McDonnell, M. E., Powell, E. T., Renzi, M. J., Schott, M. R., Scott, M. K., Shank, R. P. & Vaught, J. L. (1998). J. Med. Chem. pp. 1997–2009. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Urbanczyk-Lipkowska, Z. (2000). Cryst. Eng. pp. 227–236. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
There exist three forms of succinic acid in molecular complex, namely, succinate (Kuipers et al., 1997; Urbanczyk-Lipkowska, 2000), succinic acid (Aakeroy et al., 1998; Batchelor et al., 2001), hydrogen succinate (Flensburg et al., 1995; MacDonald et al., 2001). Interestingly, some mixed forms are also available (Prasad & Vijayan, 1990; Reitz et al., 1998; Büyükgüngör & Odabasoglu, 2002; Braga et al., 2003; Bruno et al., 2004). However, no convincing explanation for the formation of any of the complex. Recently, the title complex, (I) (Table 1 & Fig. 1), is synthesized, and the structure is studied hereafter.
As shown in Fig. 1, the asymmetric unit is composed of one ethanolaminium cation, half a succinate anion, and half a succinic acid molecule. The succinate anion and succinic acid molecule are linked by an O2—H2···O4 hydrogen bond (Table 1), then are associated with ethanolaminium cation by an O5—H5···O4 hydrogen bond. The distances of [C1—O1 1.2187 (18) Å and C1—O2 1.3009 (18) Å] indicate a carboxylic group, where C1—O1 stands for the carbonyl C=O bond. The distances of [C3—O3 1.2310 (18) Å and C3—O4 1.2831 (17) Å] indicate a carboxylate anion, where the C—O and C=O bonds are equalized, and no distinct carbonyl C=O bond is observed (Borthwick, 1980). This is mixed mode of succinate and succinic acid, and is similar to those observed in other cases (Prasad & Vijayan, 1990; Li et al., 2003; Bruno et al., 2004).
The succinate anion and the succinic acid molecule are arranged almost in the same layers (Fig. 2), and the ethanolaminium cation are sandwiched between the layers by O—H···O and N—H···O hydrogen bonds (Table 1).