organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Methyl­phen­yl)-1-phenyl­sulfonyl-3-nitro-1,2-di­hydro­quinoline

aDepartment of Physics, Velammal Institute of Technology, Panchetty, Chennai 601 204, India, bDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, cDepartment of Organic Chemistry, University of Madras, Guindy campus, Chennai 600 025, India, and dDepartment of Research and Development, PRIST University, Vallam, Thanjavur - 613 403, Tamil Nadu, India
*Correspondence e-mail: crystallography2010@gmail.com, phdguna@gmail.com

(Received 25 July 2011; accepted 28 July 2011; online 2 August 2011)

In the title compound, C22H18N2O4S, the dihedral angle between the phenyl­sulfonyl ring and the methyl­phenyl ring is 67.78 (7)°. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯O inter­actions into a zigzag chain along the [101] direction.

Related literature

For the biological activity of quinoline derivatives, see: Franck et al. (2004[Franck, X., Fournet, A., Prina, E., Mahieux, R., Hocquemiller, R. & Figadere, B. (2004). Bioorg. Med. Chem. Lett. 14, 3635-3638.]); Zouhiri et al. (2005[Zouhiri, F., Danet, M., Benard, C., Normand-Bayle, M., Mouscadet, J. F., Leh, H., Thomas, C. M., Mbemba, G., D'Angelo, J. & Desmaele, D. (2005). Tetrahedron Lett. 46, 2201-2205.]); Paul et al. (1969[Paul, J. S., Reynolds, R. C. & Montgomery, P. O'B. (1969). Cancer Res. 29, 558-570.]). For a related structure, see: Xu et al. (2011[Xu, L., Xu, B.-L., Lu, S.-J., Wang, B. & Kang, T.-G. (2011). Acta Cryst. E67, o957.]).

[Scheme 1]

Experimental

Crystal data
  • C22H18N2O4S

  • Mr = 406.44

  • Monoclinic, P 21 /n

  • a = 9.7349 (5) Å

  • b = 17.0241 (9) Å

  • c = 12.1068 (6) Å

  • β = 90.240 (2)°

  • V = 2006.42 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 295 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.945, Tmax = 0.955

  • 26473 measured reflections

  • 5485 independent reflections

  • 3224 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.151

  • S = 1.03

  • 5485 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O4i 0.93 2.60 3.418 (4) 148
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The quinoline and its derivatives have received much scientific attention during recent years, because of their wide spectrum of pharmacological activities (Franck et al., 2004; Zouhiri et al., 2005). In addition, the nitroquinoline derivatives possess a potent mutagenic, carcinogenic and carcinostatic agent (Paul et al., 1969).

The geometric parameters of the title molecule (Fig. 1) agree well with a reported similar structure (Xu et al., 2011). The phenylsulfonly ring and the methylphenyl ring are oriented at an angle of 67.78 (7)°. The sum of bond angles around N1 [352.34 (13)°] and N2 [359.95 (2)°] indicates the sp2 hybridization state of atoms N1 and N2 in the molecule. The crystal packing is controlled by a weak intermolecular C—H···O interaction.

Related literature top

For the biological activity of quinoline derivatives, see: Franck et al. (2004); Zouhiri et al. (2005); Paul et al. (1969). For a related structure, see: Xu et al. (2011).

Experimental top

To a solution of N-(2-formylphenyl) benzenesulfonamide (0.50 g, 1.91 mmol) in dry benzene (20 ml), DABACO (0.10 g, 0.95 mmol) and 1-methyl-4-(2-nitrovinyl)benzene (0.41 g, 2.29 mmol) were added. The reaction mixture was stirred at reflux condition for 24 hrs under N2 atmosphere. The reaction mass was quenched with ice water (50 ml), extracted with chloroform (3 × 10 ml) and dried (Na2SO4). The solvent was removed under reduced pressure. Then the column chromatographic purification of crude product afforded pure dihydro nitroquinoline 18 as pale yellow solid with a yield of 82% and a melting point of 451 K.

Refinement top

H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H, C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C) for C—H, C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3.

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of the title compound, viewed down the a axis. The C—H···O hydrogen bonds are shown as dashed lines.
2-(4-Methylphenyl)-1-phenylsulfonyl-3-nitro-1,2-dihydroquinoline top
Crystal data top
C22H18N2O4SF(000) = 848
Mr = 406.44Dx = 1.346 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5485 reflections
a = 9.7349 (5) Åθ = 2.1–29.4°
b = 17.0241 (9) ŵ = 0.19 mm1
c = 12.1068 (6) ÅT = 295 K
β = 90.240 (2)°Block, pale yellow
V = 2006.42 (18) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5485 independent reflections
Radiation source: fine-focus sealed tube3224 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 0 pixels mm-1θmax = 29.3°, θmin = 2.1°
ω and ϕ scansh = 137
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2323
Tmin = 0.945, Tmax = 0.955l = 1416
26473 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.066P)2 + 0.3469P]
where P = (Fo2 + 2Fc2)/3
5485 reflections(Δ/σ)max < 0.001
263 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C22H18N2O4SV = 2006.42 (18) Å3
Mr = 406.44Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.7349 (5) ŵ = 0.19 mm1
b = 17.0241 (9) ÅT = 295 K
c = 12.1068 (6) Å0.35 × 0.30 × 0.25 mm
β = 90.240 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5485 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3224 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.955Rint = 0.028
26473 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.03Δρmax = 0.21 e Å3
5485 reflectionsΔρmin = 0.23 e Å3
263 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.19131 (16)0.20602 (10)0.83358 (16)0.0572 (4)
C20.1021 (2)0.14330 (13)0.8465 (2)0.0782 (6)
H20.07470.12780.91680.094*
C30.0545 (2)0.10423 (15)0.7552 (3)0.0984 (9)
H30.00590.06240.76400.118*
C40.0945 (3)0.12577 (17)0.6509 (3)0.1007 (9)
H40.06220.09810.58980.121*
C50.1819 (2)0.18787 (15)0.6368 (2)0.0822 (6)
H50.20780.20280.56600.099*
C60.23211 (18)0.22870 (11)0.72767 (15)0.0580 (4)
C70.32475 (19)0.29435 (10)0.71606 (15)0.0583 (5)
H70.33520.31880.64790.070*
C80.39412 (17)0.31926 (10)0.80240 (15)0.0551 (4)
C90.38459 (17)0.27927 (10)0.91304 (14)0.0534 (4)
H90.40060.31860.97070.064*
C100.48831 (16)0.21338 (10)0.92830 (13)0.0483 (4)
C110.59619 (17)0.20168 (11)0.85758 (14)0.0562 (4)
H110.60540.23370.79580.067*
C120.69139 (18)0.14296 (12)0.87689 (16)0.0639 (5)
H120.76460.13680.82850.077*
C130.68006 (18)0.09341 (11)0.96638 (15)0.0588 (4)
C140.5720 (2)0.10586 (12)1.03651 (17)0.0709 (5)
H140.56210.07341.09770.085*
C150.4780 (2)0.16477 (12)1.01928 (16)0.0671 (5)
H150.40680.17201.06930.080*
C160.06971 (19)0.37453 (12)0.92595 (15)0.0646 (5)
C170.1392 (2)0.44441 (15)0.9176 (2)0.0860 (7)
H170.22260.45150.95400.103*
C180.0829 (4)0.50453 (16)0.8536 (3)0.1066 (9)
H180.12910.55210.84650.128*
C190.0370 (4)0.4936 (2)0.8029 (3)0.1156 (11)
H190.07370.53440.76100.139*
C200.1077 (3)0.4253 (2)0.8102 (2)0.1116 (10)
H200.19190.41950.77460.134*
C210.0529 (2)0.36413 (16)0.8715 (2)0.0861 (7)
H210.09880.31630.87570.103*
C220.7804 (2)0.02762 (14)0.9861 (2)0.0873 (7)
H22A0.86840.04911.00560.131*
H22B0.78890.00320.92010.131*
H22C0.74800.00501.04510.131*
N10.24454 (14)0.24821 (9)0.92602 (12)0.0584 (4)
N20.48784 (19)0.38510 (10)0.79296 (19)0.0773 (5)
O10.02787 (19)0.24655 (12)1.03159 (17)0.1265 (8)
O20.2199 (2)0.33166 (15)1.09148 (12)0.1231 (8)
O30.5112 (2)0.41204 (10)0.70211 (16)0.1096 (6)
O40.5403 (2)0.41024 (12)0.8764 (2)0.1219 (7)
S10.13716 (6)0.29822 (4)1.00593 (4)0.0809 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0441 (8)0.0530 (10)0.0747 (12)0.0120 (7)0.0062 (8)0.0164 (9)
C20.0526 (10)0.0659 (13)0.1161 (18)0.0055 (9)0.0055 (11)0.0266 (13)
C30.0614 (13)0.0625 (14)0.171 (3)0.0024 (11)0.0212 (17)0.0103 (18)
C40.0879 (17)0.0826 (18)0.131 (3)0.0143 (14)0.0380 (17)0.0154 (17)
C50.0858 (15)0.0804 (16)0.0801 (15)0.0196 (13)0.0177 (12)0.0004 (12)
C60.0548 (9)0.0569 (10)0.0622 (11)0.0153 (8)0.0004 (8)0.0097 (9)
C70.0646 (10)0.0564 (10)0.0541 (10)0.0179 (8)0.0164 (8)0.0176 (8)
C80.0548 (9)0.0469 (9)0.0638 (11)0.0081 (7)0.0159 (8)0.0115 (8)
C90.0556 (9)0.0530 (10)0.0517 (9)0.0065 (7)0.0101 (7)0.0039 (7)
C100.0486 (8)0.0493 (9)0.0469 (9)0.0009 (7)0.0006 (7)0.0010 (7)
C110.0541 (9)0.0612 (11)0.0534 (10)0.0070 (8)0.0056 (7)0.0073 (8)
C120.0552 (9)0.0707 (12)0.0658 (11)0.0123 (9)0.0033 (8)0.0006 (10)
C130.0575 (10)0.0541 (10)0.0645 (11)0.0066 (8)0.0135 (8)0.0024 (9)
C140.0784 (12)0.0683 (13)0.0661 (12)0.0075 (10)0.0006 (10)0.0229 (10)
C150.0688 (11)0.0702 (12)0.0623 (11)0.0096 (9)0.0140 (9)0.0164 (9)
C160.0582 (10)0.0726 (13)0.0632 (11)0.0162 (9)0.0233 (9)0.0002 (9)
C170.0782 (13)0.0806 (16)0.0993 (17)0.0089 (12)0.0215 (12)0.0109 (13)
C180.128 (2)0.0684 (16)0.124 (2)0.0191 (17)0.041 (2)0.0056 (16)
C190.134 (3)0.112 (3)0.100 (2)0.055 (2)0.030 (2)0.0151 (19)
C200.0854 (17)0.151 (3)0.099 (2)0.042 (2)0.0056 (15)0.000 (2)
C210.0668 (13)0.0997 (18)0.0919 (16)0.0098 (12)0.0120 (12)0.0023 (14)
C220.0885 (15)0.0745 (15)0.0986 (16)0.0267 (12)0.0167 (13)0.0054 (12)
N10.0523 (7)0.0649 (10)0.0581 (9)0.0116 (7)0.0170 (6)0.0135 (7)
N20.0770 (11)0.0546 (10)0.1004 (14)0.0011 (8)0.0181 (10)0.0176 (10)
O10.1073 (12)0.1217 (14)0.1512 (17)0.0298 (11)0.0902 (12)0.0615 (13)
O20.1292 (15)0.192 (2)0.0477 (8)0.0691 (15)0.0026 (9)0.0158 (11)
O30.1342 (15)0.0769 (11)0.1182 (14)0.0176 (10)0.0390 (11)0.0365 (10)
O40.1345 (16)0.1048 (15)0.1263 (16)0.0521 (13)0.0165 (13)0.0139 (13)
S10.0799 (3)0.1018 (5)0.0615 (3)0.0312 (3)0.0356 (3)0.0208 (3)
Geometric parameters (Å, º) top
C1—C21.386 (3)C13—C141.371 (3)
C1—C61.398 (2)C13—C221.505 (3)
C1—N11.425 (2)C14—C151.373 (3)
C2—C31.369 (4)C14—H140.9300
C2—H20.9300C15—H150.9300
C3—C41.373 (4)C16—C171.373 (3)
C3—H30.9300C16—C211.373 (3)
C4—C51.368 (4)C16—S11.747 (2)
C4—H40.9300C17—C181.394 (4)
C5—C61.389 (3)C17—H170.9300
C5—H50.9300C18—C191.330 (5)
C6—C71.443 (3)C18—H180.9300
C7—C81.312 (3)C19—C201.355 (5)
C7—H70.9300C19—H190.9300
C8—N21.450 (3)C20—C211.384 (4)
C8—C91.506 (2)C20—H200.9300
C9—N11.471 (2)C21—H210.9300
C9—C101.520 (2)C22—H22A0.9600
C9—H90.9800C22—H22B0.9600
C10—C111.372 (2)C22—H22C0.9600
C10—C151.382 (2)N1—S11.6620 (14)
C11—C121.382 (2)N2—O41.208 (2)
C11—H110.9300N2—O31.214 (2)
C12—C131.378 (3)O1—S11.4159 (19)
C12—H120.9300O2—S11.428 (2)
C2—C1—C6119.8 (2)C13—C14—C15122.10 (18)
C2—C1—N1121.69 (19)C13—C14—H14119.0
C6—C1—N1118.49 (16)C15—C14—H14119.0
C3—C2—C1119.5 (2)C14—C15—C10120.53 (17)
C3—C2—H2120.2C14—C15—H15119.7
C1—C2—H2120.2C10—C15—H15119.7
C2—C3—C4121.1 (2)C17—C16—C21120.3 (2)
C2—C3—H3119.4C17—C16—S1120.10 (18)
C4—C3—H3119.4C21—C16—S1119.64 (18)
C5—C4—C3120.0 (3)C16—C17—C18119.0 (3)
C5—C4—H4120.0C16—C17—H17120.5
C3—C4—H4120.0C18—C17—H17120.5
C4—C5—C6120.3 (3)C19—C18—C17119.8 (3)
C4—C5—H5119.8C19—C18—H18120.1
C6—C5—H5119.8C17—C18—H18120.1
C5—C6—C1119.2 (2)C18—C19—C20122.3 (3)
C5—C6—C7121.89 (19)C18—C19—H19118.8
C1—C6—C7118.89 (18)C20—C19—H19118.8
C8—C7—C6119.48 (16)C19—C20—C21119.1 (3)
C8—C7—H7120.3C19—C20—H20120.5
C6—C7—H7120.3C21—C20—H20120.5
C7—C8—N2120.58 (17)C16—C21—C20119.5 (3)
C7—C8—C9121.95 (16)C16—C21—H21120.2
N2—C8—C9117.43 (18)C20—C21—H21120.2
N1—C9—C8108.54 (14)C13—C22—H22A109.5
N1—C9—C10109.71 (13)C13—C22—H22B109.5
C8—C9—C10113.48 (13)H22A—C22—H22B109.5
N1—C9—H9108.3C13—C22—H22C109.5
C8—C9—H9108.3H22A—C22—H22C109.5
C10—C9—H9108.3H22B—C22—H22C109.5
C11—C10—C15117.95 (16)C1—N1—C9115.55 (13)
C11—C10—C9122.75 (15)C1—N1—S1119.18 (11)
C15—C10—C9119.24 (15)C9—N1—S1117.61 (13)
C10—C11—C12120.91 (17)O4—N2—O3122.9 (2)
C10—C11—H11119.5O4—N2—C8118.15 (19)
C12—C11—H11119.5O3—N2—C8118.9 (2)
C13—C12—C11121.32 (17)O1—S1—O2120.72 (13)
C13—C12—H12119.3O1—S1—N1106.53 (10)
C11—C12—H12119.3O2—S1—N1105.78 (9)
C14—C13—C12117.16 (17)O1—S1—C16107.62 (11)
C14—C13—C22121.08 (19)O2—S1—C16108.37 (12)
C12—C13—C22121.75 (19)N1—S1—C16107.11 (8)
C6—C1—C2—C30.1 (3)C21—C16—C17—C180.4 (3)
N1—C1—C2—C3179.51 (17)S1—C16—C17—C18179.70 (17)
C1—C2—C3—C40.5 (3)C16—C17—C18—C190.6 (4)
C2—C3—C4—C50.9 (4)C17—C18—C19—C200.4 (4)
C3—C4—C5—C60.9 (3)C18—C19—C20—C210.8 (5)
C4—C5—C6—C10.6 (3)C17—C16—C21—C201.6 (3)
C4—C5—C6—C7179.81 (19)S1—C16—C21—C20178.51 (18)
C2—C1—C6—C50.2 (3)C19—C20—C21—C161.8 (4)
N1—C1—C6—C5179.58 (15)C2—C1—N1—C9147.01 (16)
C2—C1—C6—C7179.81 (15)C6—C1—N1—C932.4 (2)
N1—C1—C6—C70.8 (2)C2—C1—N1—S164.2 (2)
C5—C6—C7—C8164.16 (17)C6—C1—N1—S1116.43 (15)
C1—C6—C7—C816.2 (2)C8—C9—N1—C146.92 (18)
C6—C7—C8—N2179.99 (15)C10—C9—N1—C177.58 (17)
C6—C7—C8—C92.5 (2)C8—C9—N1—S1102.38 (15)
C7—C8—C9—N133.2 (2)C10—C9—N1—S1133.12 (12)
N2—C8—C9—N1149.26 (15)C7—C8—N2—O4173.7 (2)
C7—C8—C9—C1089.0 (2)C9—C8—N2—O48.7 (3)
N2—C8—C9—C1088.50 (19)C7—C8—N2—O37.0 (3)
N1—C9—C10—C11133.39 (17)C9—C8—N2—O3170.59 (17)
C8—C9—C10—C1111.8 (2)C1—N1—S1—O148.87 (16)
N1—C9—C10—C1549.3 (2)C9—N1—S1—O1162.97 (14)
C8—C9—C10—C15170.91 (17)C1—N1—S1—O2178.48 (15)
C15—C10—C11—C120.1 (3)C9—N1—S1—O233.35 (16)
C9—C10—C11—C12177.40 (17)C1—N1—S1—C1666.07 (15)
C10—C11—C12—C131.2 (3)C9—N1—S1—C1682.10 (14)
C11—C12—C13—C141.3 (3)C17—C16—S1—O1159.82 (17)
C11—C12—C13—C22177.92 (18)C21—C16—S1—O120.30 (19)
C12—C13—C14—C150.2 (3)C17—C16—S1—O227.73 (18)
C22—C13—C14—C15179.0 (2)C21—C16—S1—O2152.39 (16)
C13—C14—C15—C101.0 (3)C17—C16—S1—N185.98 (17)
C11—C10—C15—C141.1 (3)C21—C16—S1—N193.90 (16)
C9—C10—C15—C14178.56 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O4i0.932.603.418 (4)148
Symmetry code: (i) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC22H18N2O4S
Mr406.44
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)9.7349 (5), 17.0241 (9), 12.1068 (6)
β (°) 90.240 (2)
V3)2006.42 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.945, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
26473, 5485, 3224
Rint0.028
(sin θ/λ)max1)0.689
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.151, 1.03
No. of reflections5485
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.23

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O4i0.932.603.418 (4)148
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

References

First citationBruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFranck, X., Fournet, A., Prina, E., Mahieux, R., Hocquemiller, R. & Figadere, B. (2004). Bioorg. Med. Chem. Lett. 14, 3635–3638.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPaul, J. S., Reynolds, R. C. & Montgomery, P. O'B. (1969). Cancer Res. 29, 558–570.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, L., Xu, B.-L., Lu, S.-J., Wang, B. & Kang, T.-G. (2011). Acta Cryst. E67, o957.  CrossRef IUCr Journals Google Scholar
First citationZouhiri, F., Danet, M., Benard, C., Normand-Bayle, M., Mouscadet, J. F., Leh, H., Thomas, C. M., Mbemba, G., D'Angelo, J. & Desmaele, D. (2005). Tetrahedron Lett. 46, 2201–2205.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds