organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Dioxo-1-(prop-2-yn­yl)-1,2,3,4-tetra­hydro­pyrimidine-5-carbaldehyde

aSchool of Chemistry and Environmental Science, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
*Correspondence e-mail: xyzh518@sohu.com

(Received 3 August 2011; accepted 9 August 2011; online 17 August 2011)

In the crystal structure of the title compound, C8H6N2O3, the mol­ecules are linked by a pairs of inter­molecular N—H⋯O hydrogen bonds, forming inversion dimers. The aldehyde group is in the same plane as the pyrimidine ring [with a maximum deviation of 0.083 (2) Å for the O atom), and the linear propargyl group [C—C—C = 178.99 (19)°] makes a dihedral angle of 74.36 (13)° with the ring.

Related literature

For applications of acyclic pyrimidine nucleosides, see: De Clercq (2009[De Clercq, E. (2009). Rev. Med. Virol. 19, 287-299.], 2010a[De Clercq, E. (2010a). J. Med. Chem. 53, 1438-1450.],b[De Clercq, E. (2010b). Antiviral Res. 85, 19-24.]); Fan et al. (2011[Fan, X.-S., Wang, Y.-Y., Qu, Y.-Y., Xu, H.-Y., He, Y., Zhang, X.-Y. & Wang, J.-J. (2011). J. Org. Chem. 76, 982-985.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6N2O3

  • Mr = 178.15

  • Monoclinic, P 21 /n

  • a = 5.1756 (7) Å

  • b = 8.4877 (12) Å

  • c = 18.565 (3) Å

  • β = 90.611 (2)°

  • V = 815.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.41 × 0.37 × 0.25 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.955, Tmax = 0.972

  • 5826 measured reflections

  • 1520 independent reflections

  • 1261 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.123

  • S = 1.08

  • 1520 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.86 1.98 2.8329 (18) 174
Symmetry code: (i) -x+2, -y+2, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Acyclic pyrimidine nucleosides have drawn much attention because of their insteresting structures and broad utilizations as effective drugs for the treatment of diseases caused by herpes simplex virus (HSV) and varizella zoster (VZV) (De Clercq, 2009, 2010a,b). The title compound can be used as a powerful synthon for the preparation of acyclic pyrimidine nucleoside derivatives with potential biological activities due to the rich and extensive chemistry of the aldehyde carbonyl (Fan, 2011). Herein, we report the synthesis and crystal structure of the title compound.

In the title compound, C8H6N2O3, all the atoms in the pyrimidine ring, atoms connected directly with the pyrimidine ring and atoms in the aldehyde carbonyl group in the 5-position of the pyrimidine ring are in the same plane, which means there is a big conjugated system in the molecule. The linear structure of the propynyl group is connected with the big plane at an angle of 150.3°. In the crystal structure, the molecules are linked via intermolecular N—H···O hydrogen bond.

Related literature top

For applications of acyclic pyrimidine nucleosides, see: De Clercq (2009, 2010a,b); Fan et al. (2011).

Experimental top

To a solution of K2S2O8 (16.5 mmol) and CuSO4 (3.2 mmol) in 30 ml H2O was added a CH3CN solution (25 ml) of 5-methyl-1-(prop-2-ynyl)pyrimidine-2,4(1H,3H)-dione (8 mmol) and 2,6-lutidine (3.2 ml). The mixture was stirred at 60 °C for 5 h. Upon completion, the mixture was concentrated to half of the initial volume, and the remaining solution was extracted with EtOAc. The organic layer was washed with H2O. The aqueous layers were combined and back-extracted with CHCl3. Then the organic layers were combined, dried over Na2SO4, and then concentrated. The residue was purified through silica gel column chromatography with a mixture of methylene chloride-methanol (60:1, v/v) as eluent to give 1,2,3,4-tetrahydro-2,4-dioxo-1-(prop-2-ynyl)- pyrimidine-5-carbaldehyde. Single crystals of the title compound were obtained by slow evaporation of the solvent from a methylene chloride-methanol (60:1 v/v) solution.

Refinement top

H atoms were positioned geometrically and refined using riding model, with C—H = 0.93 or 0.97 Å, and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound with view along the a axis. Intermolecular N—H···O hydrogen bonds are shown as dashed lines.
2,4-Dioxo-1-(prop-2-ynyl)-1,2,3,4-tetrahydropyrimidine-5-carbaldehyde top
Crystal data top
C8H6N2O3F(000) = 368
Mr = 178.15Dx = 1.451 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2188 reflections
a = 5.1756 (7) Åθ = 2.6–26.7°
b = 8.4877 (12) ŵ = 0.11 mm1
c = 18.565 (3) ÅT = 296 K
β = 90.611 (2)°Block, colourless
V = 815.5 (2) Å30.41 × 0.37 × 0.25 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1520 independent reflections
Radiation source: fine-focus sealed tube1261 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
phi and ω scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 66
Tmin = 0.955, Tmax = 0.972k = 1010
5826 measured reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0694P)2 + 0.1695P]
where P = (Fo2 + 2Fc2)/3
1520 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C8H6N2O3V = 815.5 (2) Å3
Mr = 178.15Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.1756 (7) ŵ = 0.11 mm1
b = 8.4877 (12) ÅT = 296 K
c = 18.565 (3) Å0.41 × 0.37 × 0.25 mm
β = 90.611 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1520 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1261 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.972Rint = 0.020
5826 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.08Δρmax = 0.14 e Å3
1520 reflectionsΔρmin = 0.23 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7042 (3)0.8893 (2)0.44458 (8)0.0374 (4)
C20.5046 (3)0.8128 (2)0.40196 (8)0.0376 (4)
C30.4934 (3)0.84333 (19)0.33033 (8)0.0372 (4)
H30.36310.79590.30310.045*
C40.8652 (3)1.01190 (19)0.33360 (8)0.0368 (4)
C50.3180 (4)0.7061 (2)0.43522 (10)0.0510 (5)
H50.34350.67870.48330.061*
C60.6377 (3)0.9724 (2)0.21870 (8)0.0432 (4)
H6A0.46850.93900.20170.052*
H6B0.65121.08510.21100.052*
C70.8363 (4)0.8923 (2)0.17686 (9)0.0464 (5)
C80.9931 (4)0.8282 (3)0.14242 (11)0.0612 (6)
H81.11750.77730.11510.073*
N10.6616 (2)0.93903 (17)0.29646 (7)0.0370 (4)
N20.8664 (3)0.98582 (16)0.40649 (7)0.0398 (4)
H20.98181.03560.43120.048*
O10.7344 (2)0.87340 (16)0.51012 (6)0.0490 (4)
O21.0262 (2)1.09061 (15)0.30334 (6)0.0472 (4)
O30.1324 (3)0.65141 (19)0.40376 (8)0.0685 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0360 (8)0.0454 (9)0.0308 (8)0.0027 (7)0.0031 (6)0.0023 (7)
C20.0353 (8)0.0442 (9)0.0333 (8)0.0011 (7)0.0018 (6)0.0066 (7)
C30.0326 (8)0.0439 (9)0.0350 (8)0.0021 (7)0.0041 (6)0.0089 (7)
C40.0365 (8)0.0414 (9)0.0323 (8)0.0027 (7)0.0036 (7)0.0023 (7)
C50.0503 (10)0.0600 (11)0.0427 (10)0.0103 (9)0.0011 (8)0.0042 (8)
C60.0451 (10)0.0551 (10)0.0294 (8)0.0008 (8)0.0085 (7)0.0013 (7)
C70.0533 (11)0.0548 (11)0.0311 (8)0.0078 (9)0.0027 (8)0.0019 (8)
C80.0625 (13)0.0738 (14)0.0474 (11)0.0033 (11)0.0076 (10)0.0125 (10)
N10.0366 (7)0.0471 (8)0.0272 (7)0.0016 (6)0.0044 (5)0.0029 (6)
N20.0402 (8)0.0494 (8)0.0297 (7)0.0079 (6)0.0084 (5)0.0014 (6)
O10.0500 (7)0.0683 (8)0.0285 (6)0.0120 (6)0.0057 (5)0.0017 (5)
O20.0470 (7)0.0566 (8)0.0378 (7)0.0094 (6)0.0019 (5)0.0039 (5)
O30.0592 (9)0.0805 (11)0.0658 (10)0.0216 (7)0.0004 (7)0.0139 (8)
Geometric parameters (Å, º) top
C1—O11.2325 (19)C5—O31.211 (2)
C1—N21.374 (2)C5—H50.9300
C1—C21.449 (2)C6—C71.462 (3)
C2—C31.356 (2)C6—N11.475 (2)
C2—C51.465 (3)C6—H6A0.9700
C3—N11.351 (2)C6—H6B0.9700
C3—H30.9300C7—C81.173 (3)
C4—O21.211 (2)C8—H80.9300
C4—N21.371 (2)N2—H20.8600
C4—N11.397 (2)
O1—C1—N2120.11 (14)C7—C6—N1112.24 (14)
O1—C1—C2124.91 (15)C7—C6—H6A109.2
N2—C1—C2114.98 (13)N1—C6—H6A109.2
C3—C2—C1118.22 (15)C7—C6—H6B109.2
C3—C2—C5120.68 (15)N1—C6—H6B109.2
C1—C2—C5121.10 (15)H6A—C6—H6B107.9
N1—C3—C2123.42 (14)C8—C7—C6178.99 (19)
N1—C3—H3118.3C7—C8—H8180.0
C2—C3—H3118.3C3—N1—C4121.52 (13)
O2—C4—N2123.44 (14)C3—N1—C6121.56 (13)
O2—C4—N1122.30 (14)C4—N1—C6116.91 (14)
N2—C4—N1114.26 (14)C4—N2—C1127.43 (13)
O3—C5—C2123.80 (18)C4—N2—H2116.3
O3—C5—H5118.1C1—N2—H2116.3
C2—C5—H5118.1
O1—C1—C2—C3179.16 (16)O2—C4—N1—C3175.63 (15)
N2—C1—C2—C30.7 (2)N2—C4—N1—C34.1 (2)
O1—C1—C2—C50.4 (3)O2—C4—N1—C64.8 (2)
N2—C1—C2—C5179.81 (15)N2—C4—N1—C6175.44 (14)
C1—C2—C3—N11.3 (2)C7—C6—N1—C3106.92 (18)
C5—C2—C3—N1179.19 (15)C7—C6—N1—C473.53 (19)
C3—C2—C5—O37.1 (3)O2—C4—N2—C1174.72 (16)
C1—C2—C5—O3172.38 (18)N1—C4—N2—C15.0 (2)
C2—C3—N1—C41.3 (2)O1—C1—N2—C4177.47 (15)
C2—C3—N1—C6178.27 (15)C2—C1—N2—C42.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.861.982.8329 (18)174
Symmetry code: (i) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC8H6N2O3
Mr178.15
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)5.1756 (7), 8.4877 (12), 18.565 (3)
β (°) 90.611 (2)
V3)815.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.41 × 0.37 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.955, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
5826, 1520, 1261
Rint0.020
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.123, 1.08
No. of reflections1520
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.23

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.861.982.8329 (18)173.6
Symmetry code: (i) x+2, y+2, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 20972042) and the Natural Science Foundation of Department of Education of Henan Province (No. 2008 A150013).

References

First citationBruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe Clercq, E. (2009). Rev. Med. Virol. 19, 287–299.  Google Scholar
First citationDe Clercq, E. (2010a). J. Med. Chem. 53, 1438–1450.  Google Scholar
First citationDe Clercq, E. (2010b). Antiviral Res. 85, 19–24.  Google Scholar
First citationFan, X.-S., Wang, Y.-Y., Qu, Y.-Y., Xu, H.-Y., He, Y., Zhang, X.-Y. & Wang, J.-J. (2011). J. Org. Chem. 76, 982–985.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds