organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2485-o2486

(E)-1-(2-Amino­phen­yl)-3-(3,4,5-trimeth­­oxy­phen­yl)prop-2-en-1-one

aCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, bDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 3 August 2011; accepted 19 August 2011; online 27 August 2011)

In the asymmetric unit of the title chalcone derivative, C18H19NO4, there are three crystallographically independent mol­ecules (mol­ecules A, B and C). In mol­ecule A, the dihedral angle between two benzene rings is 12.22 (10)° and the plane of the central prop-2-en-1-one unit makes dihedral angles of 11.02 (13) and 2.64 (12)° with the two adjacent benzene rings. The corresponding angles in mol­ecule B are 12.35 (10), 18.78 (12) and 7.29 (12)°, respectively, and those in mol­ecule C are 15.40 (10), 15.62 (3) and 3.19 (13)°. In each mol­ecule, an intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal structure, the mol­ecules B are linked by inter­molecular N—H⋯O hydrogen bonds into a zigzag chain along the c axis, while the mol­ecules A and C are linked together via an N—H⋯O hydrogen bond into a dimer. Adjacent dimers are further connected by N—H⋯N hydrogen bonds into a three-dimensional network. Weak C—H⋯O and C—H⋯π inter­actions are also observed.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Fun et al. (2010[Fun, H.-K., Suwunwong, T., Chantrapromma, S. & Karalai, C. (2010). Acta Cryst. E66, o3070-o3071.]); Suwunwong, Chantrapromma & Fun (2009[Suwunwong, T., Chantrapromma, S. & Fun, H.-K. (2009). Acta Cryst. E65, o120.]); Suwunwong, Chantrapromma, Pakdeevanich & Fun (2009[Suwunwong, T., Chantrapromma, S., Pakdeevanich, P. & Fun, H.-K. (2009). Acta Cryst. E65, o1575-o1576.]). For background to and applications of chalcones, see: Batt et al. (1993[Batt, D. G., Goodman, R., Jones, D. G., Kerr, J. S., Mantegna, L. R., McAllister, C., Newton, R. C., Nurnberg, S., Welch, P. K. & Covington, M. (1993). J. Med. Chem. 36, 1434-1442.]); Gacche et al. (2008[Gacche, R. N., Dhole, N. A., Kamble, S. G. & Bandgar, B. P. (2008). J. Enzyme Inhib. Med. Chem. 23, 28-31.]); Isomoto et al. (2005[Isomoto, H., Furusu, H., Ohnita, K., Wen, C. Y., Inoue, K. & Kohno, S. (2005). World J. Gastroenterol. 11, 1629-1633.]); Khatib et al. (2005[Khatib, S., Nerya, O., Musa, R., Shmnel, M., Tamir, S. & Vaya, J. (2005). Bioorg. Med. Chem. 13, 433-441.]); Nowakowska et al. (2001[Nowakowska, Z., Wyrzykiewicz, E. & Kedzia, B. (2001). Il Farmaco, 56, 325-329.]); Rojas et al. (2002[Rojas, J., Dominguez, J. N., Charris, J. E., Lobo, G., Paya, M. & Ferrandiz, M. L. (2002). Eur. J. Med. Chem. 37, 699-705.]); Shibata (1994[Shibata, S. (1994). Stem Cells, 12, 44-52.]); Sivakumar et al. (2007[Sivakumar, P. M., Seenivasan, S. P., Kumar, V. & Doble, M. (2007). Bioorg. Med. Chem. Lett. 17, 1695-1700.]); Tewtrakul et al. (2003[Tewtrakul, S., Subhadhirasakul, S., Puripattanavong, J. & Panphadung, T. (2003). Songklanakarin J. Sci. Technol. 25, 503-508.]); Tomar et al. (2007[Tomar, V., Bhattacharjee, G., Kamaluddin & Kumar, A. (2007). Bioorg. Med. Chem. Lett. 17, 5321-5324.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C18H19NO4

  • Mr = 313.34

  • Monoclinic, P 21 /c

  • a = 14.8537 (3) Å

  • b = 20.5009 (4) Å

  • c = 19.5952 (3) Å

  • β = 127.043 (1)°

  • V = 4762.78 (16) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.40 × 0.20 × 0.14 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.964, Tmax = 0.987

  • 48383 measured reflections

  • 10835 independent reflections

  • 6967 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.124

  • S = 1.02

  • 10835 reflections

  • 631 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg4 are the centroids of the C1A–C6A, C10A–C15A and C10–C15B rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H19⋯O1A 0.92 1.91 2.618 (3) 133
N1A—H20⋯N1Ci 0.89 2.41 3.262 (3) 162
N1B—H21⋯O1B 0.88 1.96 2.634 (3) 132
N1B—H22⋯O4Bii 0.87 2.22 3.022 (3) 153
N1C—H23⋯O1C 0.93 1.93 2.633 (3) 130
N1C—H24⋯O3Aiii 0.84 2.19 2.977 (2) 156
C15B—H15B⋯O1A 0.95 2.55 3.434 (3) 154
C18B—H18D⋯O3Civ 0.98 2.38 3.212 (3) 142
C18B—H18F⋯O1A 0.98 2.53 3.177 (3) 123
C2B—H8⋯Cg1 0.95 2.75 3.342 (2) 121
C2C—H14⋯Cg2v 0.95 2.94 3.674 (2) 135
C16C—H16ICg4vi 0.98 2.80 3.724 (2) 157
Symmetry codes: (i) x-1, y, z; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z-{\script{3\over 2}}]; (vi) x+1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones represent an important group of natural and synthetic compounds and posses a wide variety of pharmacological activities. Earlier research also proved that chalcones have antitubercular (Sivakumar et al., 2007), antioxidant (Gacche et al., 2008), antibacterial (Nowakowska et al., 2001; Isomoto et al., 2005), antifungal (Tomar et al., 2007) and anticancer activities (Shibata, 1994) as well as HIV-1 protease inhibitory (Tewtrakul et al., 2003), tyrosinase inhibitory (Khatib et al., 2005) and nitric oxide inhibitory (Rojas et al., 2002) and interleukin-1 (Batt et al., 1993) properties. As our ongoing research on antibacterial activities and tyrosinase inhibitory proeprties of aryl/heteroaryl chalcones, we have previously reported the crystal structures of (E)-1-(4-bromophenyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (Suwunwong, Chantrapromma & Fun, 2009), (E)-1-(2-thienyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (Suwunwong, Chantrapromma, Pakdeevanich & Fun, 2009) and (E)-1-(2-furyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (Fun et al., 2010). In the course of this work, we have synthesized the title compound (I) in order to compare their antibacterial activities and tysosinase inhibitory properties. However our experiment shows that (I) doesn't exhibit both antibacterial and tyrosinase inhibitory activities. Herein the crystal structure is reported.

There are three crystallographically independent molecules A, B and C in the asymmetric unit of (I) with differences in bond angles (Fig. 1). The molecular structure of (I), C18H19NO4 is twisted with the the dihedral angle between the C1–C6 and C10–C15 benzene rings being 12.22 (10)° in molecule A whereas it is 12.35 (10) and 15.40 (10)° in molecules B and C, respectively. The central prop-2-en-1-one bridge (C7–C9/O1) in molecule A is planar whereas in molecules B and C it is slightly twisted which can be indicated by the torsion angle O1–C7–C8–C9 = 1.4 (3), 7.6 (3) and -3.4 (3)° in molecules A, B and C, respectively. The mean plane through this bridge makes the dihedral angles of 11.02 (13) and 2.64 (12)° with the two adjacent C1–C6 and C10–C15 benzene rings, respectively, in molecule A, whereas the corresponding values are 18.78 (12) and 7.29 (12)° in molecule B, and 15.62 (3) and 3.19 (13)° in molecule C. The three methoxy groups of the 3,4,5-trimethoxyphenyl unit have two different orientations: the two methoxy groups at the meta-positions (at atom C12 and C14 positions) are co-planar with the attached benzene ring with torsion angles C16–O2–C12–C11 = -0.2 (3)° and C18–O4–C14–C13 = -177.75 (19)° whereas the third one at para-position (at atom C13) is out of plane with the torsion angle C17–O3–C13–C12 = 102.8 (2)°; the corresponding values are -8.1 (3), 173.43 (18) and 92.6 (3)° in molecule B; and -0.9 (3), -172.62 (16) and -106.7 (2)° in molecule C. In each molecule, an intramolecular N—H···O hydrogen bond (Table 1) generates an S(6) ring motif (Bernstein et al., 1995). The bond distances agree with the literature values (Allen et al., 1987) and are comparable with the related structures (Fun et al., 2010; Suwunwong, Chantrapromma & Fun, 2009; Suwunwong, Chantrapromma, Pakdeevanich & Fun, 2009).

In the crystal packing (Fig. 2), the molecules B are linked by intermolecular N—H···O hydrogen bonds (Table 1) into a zigzag chain along the c axis, while the molecules A and C are linked together via an N—H···O hydrogen bond into a dimer. Adjacent dimers are further connected by N—H···N hydrogen bonds (Table 1) into a three-dimensional network. The crystal is stabilized by intermolecular N—H···O and N—H···N hydrogen bonds together weak C—H···O and C—H···π interactions (Table 1).

Related literature top

For bond-length data, see: Allen et al. (1987). For related literature on hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Fun et al. (2010); Suwunwong, Chantrapromma & Fun (2009); Suwunwong, Chantrapromma, Pakdeevanich & Fun (2009). For background and applications of chalcones, see: Batt et al. (1993); Gacche et al. (2008); Isomoto et al. (2005); Khatib et al. (2005); Nowakowska et al. (2001); Rojas et al. (2002); Shibata (1994); Sivakumar et al. (2007); Tewtrakul et al. (2003); Tomar et al. (2007). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was synthesized by dissolving the 3,4,5-trimethoxybenzaldehyde 0.5 g (2.55 mmol) in ethanol (20 ml). 2-aminoacetophenone 0.31 ml (2.55 mmol) and 30% NaOH aqueous solution (5 ml) were then added. The mixture was stirred at room temperature for 2 hr. A yellow precipitate was formed and was then filtered, washed with distilled water and dried in vacuum. Yellow block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystalized from ethanol by the slow evaporation of the solvent at room temperature after a week, Mp. 391–393 K.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(N—H) = 0.84–0.93 Å, d(C—H) = 0.95 Å for aromatic and CH, and d(C—H) = 0.98 Å for CH3. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.84 Å from C5A and the deepest hole is located at 1.32 Å from C9C.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. N—H···O hydrogen bonds are shown as dash lines.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed approxinately along the b-axis showing a 3D network. Hydrogen bonds are shown as dashed lines.
(E)-1-(2-Aminophenyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C18H19NO4F(000) = 1992
Mr = 313.34Dx = 1.311 Mg m3
Monoclinic, P21/cMelting point = 391–393 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.8537 (3) ÅCell parameters from 10835 reflections
b = 20.5009 (4) Åθ = 1.6–27.5°
c = 19.5952 (3) ŵ = 0.09 mm1
β = 127.043 (1)°T = 100 K
V = 4762.78 (16) Å3Block, orange
Z = 120.40 × 0.20 × 0.14 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
10835 independent reflections
Radiation source: sealed tube6967 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1619
Tmin = 0.964, Tmax = 0.987k = 2623
48383 measured reflectionsl = 2522
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.045P)2 + 2.0308P]
where P = (Fo2 + 2Fc2)/3
10835 reflections(Δ/σ)max = 0.001
631 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C18H19NO4V = 4762.78 (16) Å3
Mr = 313.34Z = 12
Monoclinic, P21/cMo Kα radiation
a = 14.8537 (3) ŵ = 0.09 mm1
b = 20.5009 (4) ÅT = 100 K
c = 19.5952 (3) Å0.40 × 0.20 × 0.14 mm
β = 127.043 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
10835 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
6967 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.987Rint = 0.048
48383 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.02Δρmax = 0.29 e Å3
10835 reflectionsΔρmin = 0.24 e Å3
631 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.08557 (11)0.59998 (7)0.41896 (8)0.0254 (3)
O2A0.52673 (11)0.57793 (7)0.68570 (9)0.0257 (3)
O3A0.58623 (10)0.54643 (6)0.83977 (8)0.0217 (3)
O4A0.43538 (11)0.53968 (7)0.87214 (8)0.0261 (3)
N1A0.30521 (14)0.59162 (8)0.32895 (10)0.0261 (4)
H190.24340.59200.32920.031*
H200.37470.58570.28190.031*
C1A0.16618 (18)0.58769 (11)0.56039 (13)0.0298 (5)
H10.09300.58650.61350.036*
C2A0.25800 (19)0.58977 (12)0.56076 (15)0.0400 (6)
H20.24840.59140.61320.048*
C3A0.36563 (19)0.58947 (12)0.48320 (15)0.0382 (6)
H30.42970.59020.48300.046*
C4A0.38029 (17)0.58815 (10)0.40738 (14)0.0290 (5)
H40.45450.58710.35520.035*
C5A0.28689 (17)0.58837 (9)0.40534 (13)0.0209 (4)
C6A0.17632 (16)0.58721 (9)0.48412 (12)0.0200 (4)
C7A0.07679 (16)0.58959 (9)0.48529 (12)0.0187 (4)
C8A0.03760 (16)0.58068 (9)0.56635 (12)0.0210 (4)
H50.04620.57170.61760.025*
C9A0.12831 (16)0.58506 (10)0.56832 (12)0.0221 (5)
H60.11440.59510.51540.027*
C10A0.24653 (16)0.57655 (9)0.64106 (12)0.0195 (4)
C11A0.32747 (16)0.58125 (9)0.62651 (13)0.0217 (5)
H11A0.30480.59050.57070.026*
C12A0.44065 (16)0.57256 (9)0.69308 (13)0.0197 (4)
C13A0.47368 (15)0.55830 (9)0.77447 (12)0.0188 (4)
C14A0.39307 (16)0.55402 (9)0.78950 (12)0.0194 (4)
C15A0.28019 (16)0.56340 (9)0.72344 (12)0.0212 (5)
H15A0.22560.56090.73390.025*
C16A0.49555 (19)0.59344 (11)0.60286 (14)0.0324 (5)
H16A0.56370.59850.60620.049*
H16B0.45260.63430.58270.049*
H16C0.44910.55820.56290.049*
C17A0.64119 (18)0.60101 (10)0.89646 (14)0.0310 (5)
H17A0.71970.58970.94240.047*
H17B0.60210.61220.92110.047*
H17C0.63930.63850.86460.047*
C18A0.35598 (18)0.53242 (14)0.88995 (14)0.0434 (7)
H18A0.39620.52450.95120.065*
H18B0.30610.49550.85740.065*
H18C0.31100.57230.87350.065*
O1B0.08702 (11)0.85840 (7)0.53926 (9)0.0263 (3)
O2B0.38583 (13)0.68996 (8)0.39865 (10)0.0442 (4)
O3B0.24409 (14)0.59389 (8)0.30000 (10)0.0420 (4)
O4B0.06198 (13)0.56659 (7)0.29336 (9)0.0312 (4)
N1B0.01004 (16)0.88768 (9)0.62644 (12)0.0355 (5)
H210.06180.89490.61900.043*
H220.00690.91010.66250.043*
C1B0.15505 (16)0.75738 (10)0.46919 (13)0.0235 (5)
H70.15580.73160.42860.028*
C2B0.23981 (17)0.74915 (10)0.47736 (14)0.0282 (5)
H80.29900.71890.44210.034*
C3B0.23785 (17)0.78576 (10)0.53797 (13)0.0275 (5)
H90.29500.77960.54520.033*
C4B0.15435 (17)0.83070 (10)0.58735 (13)0.0257 (5)
H100.15450.85510.62850.031*
C5B0.06833 (16)0.84142 (10)0.57843 (12)0.0218 (5)
C6B0.06701 (16)0.80257 (9)0.51860 (12)0.0194 (4)
C7B0.02390 (16)0.80988 (10)0.50969 (12)0.0199 (4)
C8B0.04421 (16)0.75847 (10)0.46772 (12)0.0212 (5)
H110.00850.72390.43890.025*
C9B0.13545 (17)0.75989 (10)0.46976 (12)0.0228 (5)
H120.18670.79480.50080.027*
C10B0.16565 (16)0.71376 (10)0.42958 (12)0.0221 (5)
C11B0.26417 (17)0.72409 (11)0.43726 (13)0.0283 (5)
H11B0.31240.75940.47080.034*
C12B0.29238 (18)0.68327 (11)0.39632 (13)0.0301 (5)
C13B0.22229 (18)0.63080 (11)0.34738 (13)0.0288 (5)
C14B0.12561 (17)0.61928 (10)0.34194 (13)0.0246 (5)
C15B0.09686 (17)0.66057 (10)0.38183 (12)0.0228 (5)
H15B0.03000.65280.37680.027*
C16B0.4517 (2)0.74717 (15)0.43696 (18)0.0567 (8)
H16D0.50960.74880.42780.085*
H16E0.48790.74660.49850.085*
H16F0.40300.78560.41110.085*
C17B0.3097 (2)0.53913 (13)0.33892 (17)0.0558 (8)
H17D0.33030.52120.30370.084*
H17E0.26720.50640.34540.084*
H17F0.37830.55080.39530.084*
C18B0.0306 (2)0.54963 (11)0.29440 (15)0.0357 (6)
H18D0.06590.50950.26150.054*
H18E0.08610.58500.26880.054*
H18F0.00310.54280.35360.054*
O1C0.61005 (12)0.66222 (7)0.14192 (10)0.0341 (4)
O2C1.10540 (11)0.85256 (7)0.27075 (9)0.0254 (3)
O3C1.10744 (11)0.95187 (7)0.36002 (8)0.0249 (3)
O4C0.94560 (11)0.96655 (6)0.38012 (9)0.0246 (3)
N1C0.45888 (15)0.58972 (9)0.13558 (12)0.0347 (5)
H230.50940.59260.12240.042*
H240.42580.55520.13140.042*
C1C0.46971 (17)0.75639 (10)0.21002 (13)0.0274 (5)
H130.50960.79620.22220.033*
C2C0.38575 (18)0.75371 (11)0.22009 (14)0.0326 (5)
H140.36700.79120.23770.039*
C3C0.32890 (18)0.69528 (11)0.20407 (14)0.0330 (6)
H150.27230.69240.21240.040*
C4C0.35370 (17)0.64185 (11)0.17648 (14)0.0305 (5)
H160.31390.60230.16610.037*
C5C0.43660 (16)0.64397 (10)0.16316 (13)0.0247 (5)
C6C0.49882 (16)0.70271 (10)0.18239 (13)0.0231 (5)
C7C0.59376 (17)0.70559 (10)0.17751 (13)0.0243 (5)
C8C0.67448 (17)0.76082 (10)0.21832 (13)0.0251 (5)
H170.66060.79550.24310.030*
C9C0.76553 (16)0.76249 (10)0.22076 (12)0.0222 (5)
H180.77520.72660.19510.027*
C10C0.85310 (16)0.81274 (9)0.25809 (12)0.0201 (4)
C11C0.93685 (16)0.80714 (10)0.24673 (12)0.0212 (5)
H11C0.93600.77120.21570.025*
C12C1.02123 (16)0.85350 (10)0.28036 (12)0.0201 (4)
C13C1.02328 (16)0.90582 (9)0.32670 (12)0.0193 (4)
C14C0.93758 (16)0.91248 (9)0.33641 (12)0.0190 (4)
C15C0.85315 (16)0.86616 (10)0.30274 (12)0.0205 (4)
H15C0.79560.87050.30980.025*
C16C1.10465 (18)0.79886 (10)0.22338 (14)0.0288 (5)
H16G1.16800.80320.22050.043*
H16H1.03360.79890.16540.043*
H16I1.11180.75780.25190.043*
C17C1.1897 (2)0.94771 (14)0.45019 (14)0.0450 (7)
H17G1.23460.98790.47150.068*
H17H1.23930.91040.46420.068*
H17I1.15200.94200.47710.068*
C18C0.86882 (17)0.97201 (10)0.40105 (14)0.0262 (5)
H18G0.88391.01250.43290.039*
H18H0.87860.93470.43620.039*
H18I0.79130.97260.34840.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0228 (7)0.0336 (9)0.0183 (7)0.0006 (6)0.0115 (7)0.0015 (7)
O2A0.0243 (8)0.0322 (9)0.0282 (8)0.0024 (6)0.0198 (7)0.0040 (7)
O3A0.0157 (7)0.0215 (8)0.0240 (8)0.0003 (6)0.0099 (6)0.0021 (6)
O4A0.0186 (7)0.0402 (9)0.0204 (7)0.0043 (6)0.0122 (6)0.0058 (7)
N1A0.0178 (9)0.0356 (11)0.0172 (9)0.0010 (8)0.0064 (8)0.0008 (8)
C1A0.0239 (11)0.0403 (15)0.0217 (11)0.0081 (10)0.0119 (10)0.0038 (11)
C2A0.0361 (14)0.0633 (18)0.0298 (13)0.0146 (12)0.0248 (12)0.0102 (12)
C3A0.0301 (13)0.0533 (17)0.0401 (14)0.0135 (12)0.0258 (12)0.0116 (13)
C4A0.0183 (11)0.0329 (14)0.0296 (12)0.0082 (10)0.0110 (10)0.0068 (11)
C5A0.0243 (11)0.0125 (11)0.0240 (11)0.0028 (9)0.0136 (10)0.0029 (9)
C6A0.0223 (11)0.0166 (11)0.0204 (11)0.0029 (9)0.0125 (9)0.0025 (9)
C7A0.0238 (11)0.0105 (11)0.0208 (11)0.0019 (8)0.0129 (9)0.0018 (9)
C8A0.0245 (11)0.0191 (12)0.0179 (10)0.0002 (9)0.0120 (9)0.0015 (9)
C9A0.0239 (11)0.0238 (12)0.0187 (10)0.0018 (9)0.0129 (9)0.0017 (9)
C10A0.0210 (10)0.0151 (11)0.0209 (11)0.0012 (8)0.0119 (9)0.0006 (9)
C11A0.0258 (11)0.0214 (12)0.0205 (11)0.0021 (9)0.0154 (10)0.0022 (9)
C12A0.0211 (11)0.0153 (11)0.0270 (11)0.0001 (9)0.0168 (10)0.0014 (9)
C13A0.0174 (10)0.0128 (11)0.0227 (11)0.0007 (8)0.0102 (9)0.0005 (9)
C14A0.0213 (10)0.0175 (11)0.0187 (10)0.0011 (9)0.0117 (9)0.0008 (9)
C15A0.0199 (10)0.0206 (12)0.0259 (11)0.0005 (9)0.0153 (10)0.0012 (9)
C16A0.0343 (13)0.0419 (15)0.0320 (13)0.0026 (11)0.0257 (11)0.0042 (11)
C17A0.0226 (11)0.0274 (13)0.0328 (13)0.0062 (10)0.0112 (10)0.0104 (11)
C18A0.0260 (12)0.081 (2)0.0289 (13)0.0116 (13)0.0196 (11)0.0183 (13)
O1B0.0258 (8)0.0237 (9)0.0293 (8)0.0047 (7)0.0166 (7)0.0044 (7)
O2B0.0310 (9)0.0638 (12)0.0452 (10)0.0059 (9)0.0269 (8)0.0117 (9)
O3B0.0540 (11)0.0458 (11)0.0364 (9)0.0192 (9)0.0327 (9)0.0067 (8)
O4B0.0477 (10)0.0257 (9)0.0322 (9)0.0040 (7)0.0304 (8)0.0053 (7)
N1B0.0460 (12)0.0374 (12)0.0363 (11)0.0174 (10)0.0318 (10)0.0177 (10)
C1B0.0231 (11)0.0168 (12)0.0256 (11)0.0028 (9)0.0120 (10)0.0003 (9)
C2B0.0225 (11)0.0205 (12)0.0348 (13)0.0010 (9)0.0137 (10)0.0010 (10)
C3B0.0258 (12)0.0275 (13)0.0307 (12)0.0040 (10)0.0178 (11)0.0087 (11)
C4B0.0294 (12)0.0285 (13)0.0214 (11)0.0027 (10)0.0165 (10)0.0044 (10)
C5B0.0243 (11)0.0195 (12)0.0179 (10)0.0027 (9)0.0106 (9)0.0051 (9)
C6B0.0219 (10)0.0145 (11)0.0185 (10)0.0032 (9)0.0105 (9)0.0043 (9)
C7B0.0197 (10)0.0177 (12)0.0161 (10)0.0015 (9)0.0075 (9)0.0039 (9)
C8B0.0235 (11)0.0174 (12)0.0200 (11)0.0025 (9)0.0117 (9)0.0001 (9)
C9B0.0240 (11)0.0209 (12)0.0183 (11)0.0028 (9)0.0100 (9)0.0001 (9)
C10B0.0245 (11)0.0238 (12)0.0169 (10)0.0033 (9)0.0119 (9)0.0051 (9)
C11B0.0241 (11)0.0338 (14)0.0227 (11)0.0010 (10)0.0118 (10)0.0010 (10)
C12B0.0254 (12)0.0411 (15)0.0270 (12)0.0058 (11)0.0176 (10)0.0050 (11)
C13B0.0333 (12)0.0341 (14)0.0236 (11)0.0106 (11)0.0195 (11)0.0054 (11)
C14B0.0329 (12)0.0226 (13)0.0182 (11)0.0030 (10)0.0154 (10)0.0035 (10)
C15B0.0265 (11)0.0229 (12)0.0203 (11)0.0028 (9)0.0148 (10)0.0047 (9)
C16B0.0348 (14)0.090 (2)0.0536 (17)0.0210 (15)0.0311 (14)0.0245 (17)
C17B0.0668 (19)0.0480 (18)0.0478 (17)0.0259 (15)0.0320 (16)0.0070 (14)
C18B0.0551 (15)0.0293 (14)0.0389 (14)0.0165 (12)0.0369 (13)0.0114 (11)
O1C0.0397 (9)0.0287 (9)0.0403 (9)0.0107 (7)0.0275 (8)0.0132 (8)
O2C0.0274 (8)0.0291 (9)0.0277 (8)0.0049 (6)0.0209 (7)0.0052 (7)
O3C0.0274 (8)0.0257 (8)0.0228 (8)0.0103 (7)0.0158 (7)0.0026 (6)
O4C0.0302 (8)0.0190 (8)0.0325 (8)0.0048 (6)0.0230 (7)0.0066 (7)
N1C0.0271 (10)0.0202 (11)0.0463 (12)0.0064 (8)0.0166 (10)0.0038 (9)
C1C0.0246 (11)0.0222 (13)0.0304 (12)0.0056 (9)0.0139 (10)0.0011 (10)
C2C0.0299 (12)0.0305 (14)0.0392 (14)0.0020 (11)0.0217 (11)0.0032 (11)
C3C0.0235 (12)0.0404 (15)0.0328 (13)0.0018 (11)0.0157 (11)0.0056 (11)
C4C0.0192 (11)0.0266 (13)0.0318 (13)0.0057 (10)0.0080 (10)0.0064 (11)
C5C0.0174 (10)0.0201 (12)0.0211 (11)0.0005 (9)0.0035 (9)0.0055 (10)
C6C0.0208 (11)0.0197 (12)0.0216 (11)0.0010 (9)0.0089 (9)0.0016 (9)
C7C0.0254 (11)0.0213 (12)0.0213 (11)0.0005 (9)0.0114 (10)0.0019 (10)
C8C0.0272 (11)0.0209 (12)0.0262 (12)0.0044 (9)0.0156 (10)0.0046 (10)
C9C0.0267 (11)0.0213 (12)0.0189 (11)0.0029 (9)0.0139 (10)0.0031 (9)
C10C0.0223 (10)0.0195 (12)0.0153 (10)0.0015 (9)0.0096 (9)0.0016 (9)
C11C0.0260 (11)0.0209 (12)0.0168 (10)0.0006 (9)0.0130 (9)0.0025 (9)
C12C0.0216 (10)0.0241 (12)0.0160 (10)0.0003 (9)0.0121 (9)0.0031 (9)
C13C0.0223 (11)0.0182 (11)0.0163 (10)0.0030 (9)0.0111 (9)0.0027 (9)
C14C0.0243 (11)0.0153 (11)0.0163 (10)0.0002 (9)0.0117 (9)0.0016 (9)
C15C0.0215 (10)0.0218 (12)0.0191 (10)0.0007 (9)0.0128 (9)0.0020 (9)
C16C0.0344 (12)0.0272 (13)0.0325 (12)0.0009 (10)0.0242 (11)0.0022 (10)
C17C0.0392 (14)0.0702 (19)0.0240 (13)0.0283 (13)0.0182 (12)0.0130 (13)
C18C0.0311 (12)0.0221 (12)0.0326 (12)0.0010 (10)0.0230 (11)0.0035 (10)
Geometric parameters (Å, º) top
O1A—C7A1.244 (2)C8B—C9B1.332 (3)
O2A—C12A1.375 (2)C8B—H110.9500
O2A—C16A1.430 (2)C9B—C10B1.463 (3)
O3A—C13A1.384 (2)C9B—H120.9500
O3A—C17A1.435 (2)C10B—C11B1.394 (3)
O4A—C14A1.370 (2)C10B—C15B1.399 (3)
O4A—C18A1.425 (2)C11B—C12B1.387 (3)
N1A—C5A1.352 (2)C11B—H11B0.9500
N1A—H190.9142C12B—C13B1.399 (3)
N1A—H200.8852C13B—C14B1.395 (3)
C1A—C2A1.369 (3)C14B—C15B1.383 (3)
C1A—C6A1.409 (3)C15B—H15B0.9500
C1A—H10.9500C16B—H16D0.9800
C2A—C3A1.392 (3)C16B—H16E0.9800
C2A—H20.9500C16B—H16F0.9800
C3A—C4A1.366 (3)C17B—H17D0.9800
C3A—H30.9500C17B—H17E0.9800
C4A—C5A1.412 (3)C17B—H17F0.9800
C4A—H40.9500C18B—H18D0.9800
C5A—C6A1.424 (3)C18B—H18E0.9800
C6A—C7A1.466 (3)C18B—H18F0.9800
C7A—C8A1.480 (3)O1C—C7C1.241 (2)
C8A—C9A1.328 (3)O2C—C12C1.372 (2)
C8A—H50.9500O2C—C16C1.436 (2)
C9A—C10A1.460 (3)O3C—C13C1.377 (2)
C9A—H60.9500O3C—C17C1.422 (3)
C10A—C11A1.396 (3)O4C—C14C1.361 (2)
C10A—C15A1.399 (3)O4C—C18C1.430 (2)
C11A—C12A1.385 (3)N1C—C5C1.362 (3)
C11A—H11A0.9500N1C—H230.9303
C12A—C13A1.388 (3)N1C—H240.8372
C13A—C14A1.397 (3)C1C—C2C1.376 (3)
C14A—C15A1.382 (3)C1C—C6C1.405 (3)
C15A—H15A0.9500C1C—H130.9500
C16A—H16A0.9800C2C—C3C1.388 (3)
C16A—H16B0.9800C2C—H140.9500
C16A—H16C0.9800C3C—C4C1.367 (3)
C17A—H17A0.9800C3C—H150.9500
C17A—H17B0.9800C4C—C5C1.405 (3)
C17A—H17C0.9800C4C—H160.9500
C18A—H18A0.9800C5C—C6C1.424 (3)
C18A—H18B0.9800C6C—C7C1.471 (3)
C18A—H18C0.9800C7C—C8C1.484 (3)
O1B—C7B1.245 (2)C8C—C9C1.325 (3)
O2B—C12B1.368 (2)C8C—H170.9500
O2B—C16B1.418 (3)C9C—C10C1.464 (3)
O3B—C17B1.377 (3)C9C—H180.9500
O3B—C13B1.379 (2)C10C—C11C1.394 (3)
O4B—C14B1.372 (2)C10C—C15C1.401 (3)
O4B—C18B1.430 (2)C11C—C12C1.383 (3)
N1B—C5B1.349 (3)C11C—H11C0.9500
N1B—H210.8767C12C—C13C1.394 (3)
N1B—H220.8666C13C—C14C1.403 (3)
C1B—C2B1.372 (3)C14C—C15C1.383 (3)
C1B—C6B1.407 (3)C15C—H15C0.9500
C1B—H70.9500C16C—H16G0.9800
C2B—C3B1.390 (3)C16C—H16H0.9800
C2B—H80.9500C16C—H16I0.9800
C3B—C4B1.370 (3)C17C—H17G0.9800
C3B—H90.9500C17C—H17H0.9800
C4B—C5B1.407 (3)C17C—H17I0.9800
C4B—H100.9500C18C—H18G0.9800
C5B—C6B1.427 (3)C18C—H18H0.9800
C6B—C7B1.470 (3)C18C—H18I0.9800
C7B—C8B1.476 (3)
C12A—O2A—C16A116.84 (15)C15B—C10B—C9B121.77 (18)
C13A—O3A—C17A112.68 (14)C12B—C11B—C10B120.6 (2)
C14A—O4A—C18A116.99 (15)C12B—C11B—H11B119.7
C5A—N1A—H19117.5C10B—C11B—H11B119.7
C5A—N1A—H20118.5O2B—C12B—C11B125.0 (2)
H19—N1A—H20123.0O2B—C12B—C13B114.90 (18)
C2A—C1A—C6A122.4 (2)C11B—C12B—C13B120.06 (19)
C2A—C1A—H1118.8O3B—C13B—C14B120.3 (2)
C6A—C1A—H1118.8O3B—C13B—C12B120.25 (19)
C1A—C2A—C3A119.1 (2)C14B—C13B—C12B119.29 (18)
C1A—C2A—H2120.4O4B—C14B—C15B123.78 (18)
C3A—C2A—H2120.4O4B—C14B—C13B115.69 (18)
C4A—C3A—C2A120.9 (2)C15B—C14B—C13B120.5 (2)
C4A—C3A—H3119.6C14B—C15B—C10B120.36 (19)
C2A—C3A—H3119.6C14B—C15B—H15B119.8
C3A—C4A—C5A121.0 (2)C10B—C15B—H15B119.8
C3A—C4A—H4119.5O2B—C16B—H16D109.5
C5A—C4A—H4119.5O2B—C16B—H16E109.5
N1A—C5A—C4A119.06 (18)H16D—C16B—H16E109.5
N1A—C5A—C6A122.18 (17)O2B—C16B—H16F109.5
C4A—C5A—C6A118.73 (18)H16D—C16B—H16F109.5
C1A—C6A—C5A117.81 (17)H16E—C16B—H16F109.5
C1A—C6A—C7A121.40 (17)O3B—C17B—H17D109.5
C5A—C6A—C7A120.68 (17)O3B—C17B—H17E109.5
O1A—C7A—C6A121.31 (17)H17D—C17B—H17E109.5
O1A—C7A—C8A118.18 (17)O3B—C17B—H17F109.5
C6A—C7A—C8A120.50 (17)H17D—C17B—H17F109.5
C9A—C8A—C7A120.76 (18)H17E—C17B—H17F109.5
C9A—C8A—H5119.6O4B—C18B—H18D109.5
C7A—C8A—H5119.6O4B—C18B—H18E109.5
C8A—C9A—C10A128.55 (18)H18D—C18B—H18E109.5
C8A—C9A—H6115.7O4B—C18B—H18F109.5
C10A—C9A—H6115.7H18D—C18B—H18F109.5
C11A—C10A—C15A119.74 (17)H18E—C18B—H18F109.5
C11A—C10A—C9A118.01 (17)C12C—O2C—C16C116.54 (15)
C15A—C10A—C9A122.24 (17)C13C—O3C—C17C113.79 (15)
C12A—C11A—C10A120.32 (18)C14C—O4C—C18C117.49 (15)
C12A—C11A—H11A119.8C5C—N1C—H23119.1
C10A—C11A—H11A119.8C5C—N1C—H24117.5
O2A—C12A—C11A124.66 (17)H23—N1C—H24123.4
O2A—C12A—C13A115.49 (16)C2C—C1C—C6C122.7 (2)
C11A—C12A—C13A119.85 (17)C2C—C1C—H13118.7
O3A—C13A—C12A119.56 (16)C6C—C1C—H13118.7
O3A—C13A—C14A120.36 (17)C1C—C2C—C3C118.8 (2)
C12A—C13A—C14A120.05 (17)C1C—C2C—H14120.6
O4A—C14A—C15A124.81 (17)C3C—C2C—H14120.6
O4A—C14A—C13A114.92 (16)C4C—C3C—C2C120.6 (2)
C15A—C14A—C13A120.27 (17)C4C—C3C—H15119.7
C14A—C15A—C10A119.76 (17)C2C—C3C—H15119.7
C14A—C15A—H15A120.1C3C—C4C—C5C121.6 (2)
C10A—C15A—H15A120.1C3C—C4C—H16119.2
O2A—C16A—H16A109.5C5C—C4C—H16119.2
O2A—C16A—H16B109.5N1C—C5C—C4C119.88 (19)
H16A—C16A—H16B109.5N1C—C5C—C6C121.45 (18)
O2A—C16A—H16C109.5C4C—C5C—C6C118.62 (19)
H16A—C16A—H16C109.5C1C—C6C—C5C117.59 (18)
H16B—C16A—H16C109.5C1C—C6C—C7C121.55 (18)
O3A—C17A—H17A109.5C5C—C6C—C7C120.78 (18)
O3A—C17A—H17B109.5O1C—C7C—C6C121.81 (18)
H17A—C17A—H17B109.5O1C—C7C—C8C118.80 (18)
O3A—C17A—H17C109.5C6C—C7C—C8C119.37 (18)
H17A—C17A—H17C109.5C9C—C8C—C7C120.99 (19)
H17B—C17A—H17C109.5C9C—C8C—H17119.5
O4A—C18A—H18A109.5C7C—C8C—H17119.5
O4A—C18A—H18B109.5C8C—C9C—C10C128.09 (19)
H18A—C18A—H18B109.5C8C—C9C—H18116.0
O4A—C18A—H18C109.5C10C—C9C—H18116.0
H18A—C18A—H18C109.5C11C—C10C—C15C119.94 (17)
H18B—C18A—H18C109.5C11C—C10C—C9C118.16 (17)
C12B—O2B—C16B117.57 (18)C15C—C10C—C9C121.89 (17)
C17B—O3B—C13B116.71 (18)C12C—C11C—C10C120.45 (18)
C14B—O4B—C18B116.60 (15)C12C—C11C—H11C119.8
C5B—N1B—H21118.5C10C—C11C—H11C119.8
C5B—N1B—H22119.6O2C—C12C—C11C124.33 (17)
H21—N1B—H22121.9O2C—C12C—C13C115.86 (16)
C2B—C1B—C6B122.59 (19)C11C—C12C—C13C119.81 (17)
C2B—C1B—H7118.7O3C—C13C—C12C119.59 (16)
C6B—C1B—H7118.7O3C—C13C—C14C120.51 (17)
C1B—C2B—C3B119.0 (2)C12C—C13C—C14C119.86 (17)
C1B—C2B—H8120.5O4C—C14C—C15C124.73 (17)
C3B—C2B—H8120.5O4C—C14C—C13C114.97 (16)
C4B—C3B—C2B120.69 (19)C15C—C14C—C13C120.31 (17)
C4B—C3B—H9119.7C14C—C15C—C10C119.58 (17)
C2B—C3B—H9119.7C14C—C15C—H15C120.2
C3B—C4B—C5B121.38 (19)C10C—C15C—H15C120.2
C3B—C4B—H10119.3O2C—C16C—H16G109.5
C5B—C4B—H10119.3O2C—C16C—H16H109.5
N1B—C5B—C4B119.33 (18)H16G—C16C—H16H109.5
N1B—C5B—C6B122.14 (18)O2C—C16C—H16I109.5
C4B—C5B—C6B118.53 (18)H16G—C16C—H16I109.5
C1B—C6B—C5B117.74 (17)H16H—C16C—H16I109.5
C1B—C6B—C7B121.67 (18)O3C—C17C—H17G109.5
C5B—C6B—C7B120.59 (17)O3C—C17C—H17H109.5
O1B—C7B—C6B120.96 (17)H17G—C17C—H17H109.5
O1B—C7B—C8B118.73 (17)O3C—C17C—H17I109.5
C6B—C7B—C8B120.28 (17)H17G—C17C—H17I109.5
C9B—C8B—C7B120.91 (19)H17H—C17C—H17I109.5
C9B—C8B—H11119.5O4C—C18C—H18G109.5
C7B—C8B—H11119.5O4C—C18C—H18H109.5
C8B—C9B—C10B127.30 (19)H18G—C18C—H18H109.5
C8B—C9B—H12116.3O4C—C18C—H18I109.5
C10B—C9B—H12116.3H18G—C18C—H18I109.5
C11B—C10B—C15B119.14 (18)H18H—C18C—H18I109.5
C11B—C10B—C9B119.07 (19)
C6A—C1A—C2A—C3A1.9 (4)C9B—C10B—C11B—C12B176.66 (19)
C1A—C2A—C3A—C4A1.0 (4)C16B—O2B—C12B—C11B8.1 (3)
C2A—C3A—C4A—C5A1.3 (4)C16B—O2B—C12B—C13B171.3 (2)
C3A—C4A—C5A—N1A175.4 (2)C10B—C11B—C12B—O2B178.81 (19)
C3A—C4A—C5A—C6A2.6 (3)C10B—C11B—C12B—C13B0.6 (3)
C2A—C1A—C6A—C5A0.6 (3)C17B—O3B—C13B—C14B92.2 (3)
C2A—C1A—C6A—C7A175.7 (2)C17B—O3B—C13B—C12B92.6 (3)
N1A—C5A—C6A—C1A176.31 (19)O2B—C12B—C13B—O3B5.7 (3)
C4A—C5A—C6A—C1A1.7 (3)C11B—C12B—C13B—O3B173.78 (19)
N1A—C5A—C6A—C7A0.1 (3)O2B—C12B—C13B—C14B179.11 (18)
C4A—C5A—C6A—C7A177.94 (18)C11B—C12B—C13B—C14B1.4 (3)
C1A—C6A—C7A—O1A167.99 (19)C18B—O4B—C14B—C15B8.4 (3)
C5A—C6A—C7A—O1A8.1 (3)C18B—O4B—C14B—C13B173.43 (18)
C1A—C6A—C7A—C8A11.0 (3)O3B—C13B—C14B—O4B5.3 (3)
C5A—C6A—C7A—C8A172.87 (18)C12B—C13B—C14B—O4B179.45 (18)
O1A—C7A—C8A—C9A1.4 (3)O3B—C13B—C14B—C15B172.86 (18)
C6A—C7A—C8A—C9A177.63 (18)C12B—C13B—C14B—C15B2.4 (3)
C7A—C8A—C9A—C10A178.66 (19)O4B—C14B—C15B—C10B179.30 (18)
C8A—C9A—C10A—C11A177.7 (2)C13B—C14B—C15B—C10B1.3 (3)
C8A—C9A—C10A—C15A1.7 (3)C11B—C10B—C15B—C14B0.8 (3)
C15A—C10A—C11A—C12A0.4 (3)C9B—C10B—C15B—C14B177.52 (18)
C9A—C10A—C11A—C12A178.99 (18)C6C—C1C—C2C—C3C1.4 (3)
C16A—O2A—C12A—C11A0.2 (3)C1C—C2C—C3C—C4C1.8 (3)
C16A—O2A—C12A—C13A179.21 (17)C2C—C3C—C4C—C5C0.2 (3)
C10A—C11A—C12A—O2A178.18 (18)C3C—C4C—C5C—N1C180.0 (2)
C10A—C11A—C12A—C13A0.8 (3)C3C—C4C—C5C—C6C2.6 (3)
C17A—O3A—C13A—C12A102.8 (2)C2C—C1C—C6C—C5C1.0 (3)
C17A—O3A—C13A—C14A79.2 (2)C2C—C1C—C6C—C7C176.0 (2)
O2A—C12A—C13A—O3A4.2 (3)N1C—C5C—C6C—C1C179.67 (18)
C11A—C12A—C13A—O3A176.75 (17)C4C—C5C—C6C—C1C2.9 (3)
O2A—C12A—C13A—C14A177.80 (17)N1C—C5C—C6C—C7C3.4 (3)
C11A—C12A—C13A—C14A1.3 (3)C4C—C5C—C6C—C7C174.08 (18)
C18A—O4A—C14A—C15A1.7 (3)C1C—C6C—C7C—O1C169.5 (2)
C18A—O4A—C14A—C13A177.75 (19)C5C—C6C—C7C—O1C13.7 (3)
O3A—C13A—C14A—O4A2.0 (3)C1C—C6C—C7C—C8C12.3 (3)
C12A—C13A—C14A—O4A179.98 (17)C5C—C6C—C7C—C8C164.54 (18)
O3A—C13A—C14A—C15A177.48 (17)O1C—C7C—C8C—C9C3.4 (3)
C12A—C13A—C14A—C15A0.5 (3)C6C—C7C—C8C—C9C174.90 (19)
O4A—C14A—C15A—C10A178.72 (18)C7C—C8C—C9C—C10C180.00 (18)
C13A—C14A—C15A—C10A0.7 (3)C8C—C9C—C10C—C11C174.5 (2)
C11A—C10A—C15A—C14A1.1 (3)C8C—C9C—C10C—C15C4.2 (3)
C9A—C10A—C15A—C14A178.22 (18)C15C—C10C—C11C—C12C1.0 (3)
C6B—C1B—C2B—C3B1.4 (3)C9C—C10C—C11C—C12C179.69 (18)
C1B—C2B—C3B—C4B1.7 (3)C16C—O2C—C12C—C11C0.9 (3)
C2B—C3B—C4B—C5B0.1 (3)C16C—O2C—C12C—C13C179.83 (17)
C3B—C4B—C5B—N1B177.82 (19)C10C—C11C—C12C—O2C178.58 (17)
C3B—C4B—C5B—C6B2.3 (3)C10C—C11C—C12C—C13C0.7 (3)
C2B—C1B—C6B—C5B0.8 (3)C17C—O3C—C13C—C12C106.7 (2)
C2B—C1B—C6B—C7B179.06 (19)C17C—O3C—C13C—C14C75.6 (2)
N1B—C5B—C6B—C1B177.55 (19)O2C—C12C—C13C—O3C0.7 (3)
C4B—C5B—C6B—C1B2.6 (3)C11C—C12C—C13C—O3C179.97 (17)
N1B—C5B—C6B—C7B2.6 (3)O2C—C12C—C13C—C14C177.04 (16)
C4B—C5B—C6B—C7B177.27 (17)C11C—C12C—C13C—C14C2.3 (3)
C1B—C6B—C7B—O1B164.52 (18)C18C—O4C—C14C—C15C7.4 (3)
C5B—C6B—C7B—O1B15.6 (3)C18C—O4C—C14C—C13C172.62 (16)
C1B—C6B—C7B—C8B17.5 (3)O3C—C13C—C14C—O4C0.0 (3)
C5B—C6B—C7B—C8B162.37 (17)C12C—C13C—C14C—O4C177.71 (16)
O1B—C7B—C8B—C9B7.6 (3)O3C—C13C—C14C—C15C179.92 (17)
C6B—C7B—C8B—C9B170.46 (18)C12C—C13C—C14C—C15C2.2 (3)
C7B—C8B—C9B—C10B178.27 (18)O4C—C14C—C15C—C10C179.35 (17)
C8B—C9B—C10B—C11B178.6 (2)C13C—C14C—C15C—C10C0.6 (3)
C8B—C9B—C10B—C15B0.3 (3)C11C—C10C—C15C—C14C1.0 (3)
C15B—C10B—C11B—C12B1.7 (3)C9C—C10C—C15C—C14C179.66 (18)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg4 are the centroids of the C1A–C6A, C10A–C15A and C10–C15B rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1A—H19···O1A0.921.912.618 (3)133
N1A—H20···N1Ci0.892.413.262 (3)162
N1B—H21···O1B0.881.962.634 (3)132
N1B—H22···O4Bii0.872.223.022 (3)153
N1C—H23···O1C0.931.932.633 (3)130
N1C—H24···O3Aiii0.842.192.977 (2)156
C15B—H15B···O1A0.952.553.434 (3)154
C18B—H18D···O3Civ0.982.383.212 (3)142
C18B—H18F···O1A0.982.533.177 (3)123
C2B—H8···Cg10.952.753.342 (2)121
C2C—H14···Cg2v0.952.943.674 (2)135
C16C—H16I···Cg4vi0.982.803.724 (2)157
Symmetry codes: (i) x1, y, z; (ii) x, y+3/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x+1, y1/2, z+1/2; (v) x, y+1/2, z3/2; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC18H19NO4
Mr313.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.8537 (3), 20.5009 (4), 19.5952 (3)
β (°) 127.043 (1)
V3)4762.78 (16)
Z12
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.20 × 0.14
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.964, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
48383, 10835, 6967
Rint0.048
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.124, 1.02
No. of reflections10835
No. of parameters631
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.24

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg4 are the centroids of the C1A–C6A, C10A–C15A and C10–C15B rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1A—H19···O1A0.921.912.618 (3)133
N1A—H20···N1Ci0.892.413.262 (3)162
N1B—H21···O1B0.881.962.634 (3)132
N1B—H22···O4Bii0.872.223.022 (3)153
N1C—H23···O1C0.931.932.633 (3)130
N1C—H24···O3Aiii0.842.192.977 (2)156
C15B—H15B···O1A0.952.553.434 (3)154
C18B—H18D···O3Civ0.982.383.212 (3)142
C18B—H18F···O1A0.982.533.177 (3)123
C2B—H8···Cg10.952.753.342 (2)121
C2C—H14···Cg2v0.952.943.674 (2)135
C16C—H16I···Cg4vi0.982.803.724 (2)157
Symmetry codes: (i) x1, y, z; (ii) x, y+3/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x+1, y1/2, z+1/2; (v) x, y+1/2, z3/2; (vi) x+1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009

§Additional correspondence author, email: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009

Acknowledgements

PR thanks the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education and the Thailand Research Fund through the Royal Golden Jubilee PhD Program for financial support. The authors thank Prince of Songkla University and the Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBatt, D. G., Goodman, R., Jones, D. G., Kerr, J. S., Mantegna, L. R., McAllister, C., Newton, R. C., Nurnberg, S., Welch, P. K. & Covington, M. (1993). J. Med. Chem. 36, 1434–1442.  CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Suwunwong, T., Chantrapromma, S. & Karalai, C. (2010). Acta Cryst. E66, o3070–o3071.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGacche, R. N., Dhole, N. A., Kamble, S. G. & Bandgar, B. P. (2008). J. Enzyme Inhib. Med. Chem. 23, 28–31.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIsomoto, H., Furusu, H., Ohnita, K., Wen, C. Y., Inoue, K. & Kohno, S. (2005). World J. Gastroenterol. 11, 1629–1633.  PubMed CAS Google Scholar
First citationKhatib, S., Nerya, O., Musa, R., Shmnel, M., Tamir, S. & Vaya, J. (2005). Bioorg. Med. Chem. 13, 433–441.  CrossRef CAS Google Scholar
First citationNowakowska, Z., Wyrzykiewicz, E. & Kedzia, B. (2001). Il Farmaco, 56, 325–329.  CrossRef CAS Google Scholar
First citationRojas, J., Dominguez, J. N., Charris, J. E., Lobo, G., Paya, M. & Ferrandiz, M. L. (2002). Eur. J. Med. Chem. 37, 699–705.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShibata, S. (1994). Stem Cells, 12, 44–52.  CrossRef CAS PubMed Google Scholar
First citationSivakumar, P. M., Seenivasan, S. P., Kumar, V. & Doble, M. (2007). Bioorg. Med. Chem. Lett. 17, 1695–1700.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuwunwong, T., Chantrapromma, S. & Fun, H.-K. (2009). Acta Cryst. E65, o120.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSuwunwong, T., Chantrapromma, S., Pakdeevanich, P. & Fun, H.-K. (2009). Acta Cryst. E65, o1575–o1576.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTewtrakul, S., Subhadhirasakul, S., Puripattanavong, J. & Panphadung, T. (2003). Songklanakarin J. Sci. Technol. 25, 503–508.  CAS Google Scholar
First citationTomar, V., Bhattacharjee, G., Kamaluddin & Kumar, A. (2007). Bioorg. Med. Chem. Lett. 17, 5321–5324.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2485-o2486
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds